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ABSTRACT
The aim of this work is focusing on the behavior of internal and external twin-fluid atomizer using
different helical grooved of air and water pathways, respectively. The present atomizer comprising
a liquid inlet, an gas inlet arranged to receive a pressurized flow of air. A water flow path
extending from the liquid inlet to a liquid stream outlet, and a helical air flow path extending from
the gas inlet to a location adjacent the liquid stream outlet, which impinges on a liquid stream
passing out through the liquid stream outlet for atomizing the liquid stream.
There are many parameters affecting the behavior of that spray. The spray performance of that
atomizer has been studied by investigating the discharge coefficient of the liquid, the mass
concentration and the spray cone angle. Therefore, an experimental test rig is built-up.
The effects of air injection pressure, helical geometry, length to diameter ratio (I/d) of mixing zone
and air water ratio (AWR) have been considered. The injection pressure of air varies up to 0.5
MPa, the I/d ratio of the mixing zone varies up to 3.0 and the air to water ratios varies up to 17.
The results show that, as the air mass flow rate increases in all difference water pressures, the
discharge coefficient decreases, but it increase by increasing the 1/d. The triangle shape of helical
groove has gross effect on spray characteristics. Spray cone angle increase with the air pressure
increase, while it decreases with 1/d increases at the same air pressure. As I/d is decreased the mass
concentration has a wider radius as compared with first one.
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1. INTRODUCTION combustion engines, jet engines and oil burners, in
Atomization is the process in which a certain industrial processes such as spray drying and medical

volume of liquid is broken into many small drops applications such as the delivery of drugs to the

generating a much increased surface area. The lungs.

atomization of liquids has many important Many studies of twin-fluid atomization have

applications in the delivery of liquid fuels in internal involved the direct injection of the liquid jet into a
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high velocity air stream. Some atomizers accomplish
this by discharging the liquid at slow moving stream
into a relative high velocity of air stream [1-3].
Another further twin-fluid method is effervescent
atomization [4-6]. In effervescent atomizers, a small
amount of air is introduced into the bulk liquid in a
mixing chamber upstream of the discharge orifice.
Karnawat et al [7] studied the controlled spray
pattern that can be obtained with a novel twin-fluid
internally mixed swirl atomizer. The atomizer can be
used to provide a wide range of spray patterns in
terms of spray cone angle and solidity of spray cone
by adjusting the factors like liquid supply pressure,
liquid flow rate and air-liquid ratio (ALR). An
experimental studied by [8] into the production of
fine drops of water by twin-fluid atomization using
two types of atomizer, an internal mixing type
atomizer and a novel type of prefilming air-blast
atomizer. The applications of spray and combustion
systems, the pressure swirl atomizer has attracted the
attention of many research works and has been the
subject of considerable theoretical and experimental
studies. The most of researches concerning the twin-
fluid atomizers can be found in [9-17]. The helical
path pressure atomizer [18] considers as one of the
pressure swirl atomizers where pressurized water
flows inside the atomizer through a helical path and
is issued from a nozzle hole as a spray to the
atmosphere.

From the previous works, it can be concluded that
there is few information about the twin-fluid
atomizer using helical or curved pathway.

Therefore, in the present work, a twin-fluid
atomizer using different helical grooved pathways
was designed and manufactured in order to study the
spray performance. This study includes the discharge
coefficient of water, mass concentration, and spray
cone angle issued into different air flowpath
pressures. The effect of air injection pressure, air to
water ratio (AWR), helical grooved shape and I/d of
the mixing chamber are studied.

2. EXPERIMENTAL TEST RIG

An experimental test rig was constructed to
measure  the  discharge  coefficient,  mass
concentration and spray cone angle for different
helical flowpath geometry, air mass flow rate at the
same different water pressures and length to diameter
(I/d) of mixing zone. A schematic diagram of the test
rig is shown in Fig. 1 and photo (1). In the
experiments, the supply water pressured by the gear
fuel pump in order to offer the pressure needed was
controlled by a valve and measured by Bourdon
pressure gauge. The compressed air was supported
by the air compressor depending on the required
pressure, through an air chamber a filter control valve
into the atomizer. The atomizer is mounted

downwards on a vertical plane, so that the water
spray is injected directly into a chamber at the
ambient conditions. In all experiments, water and air
have been used as atomized and atomizing fluids,

respectively.
®_
% ®_ i
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Fig.1 Schematic diagram of the test-rig
1- air compressor  3- water tank

2- gear fuel pump  4- atomizer

Photo (1) The experimental test- rig

The tested atomizer figures (2a and 2b) preferably
comprise a housing defining a pressurized air inlet
opening and a liquid inlet opening. Pressurized air
inlet opening is preferably threaded so as to sealingly
accept a suitably threaded pressurized air nipple
assembly. Water inlet opening communicates with a
multiple stepped axial bore, which communicates
with pressurized air inlet opening. Water flows
through a successively narrowing bore from a
threaded water inlet which receives a water inlet
nipple assembly to an outlet adjacent end portion and
elongate outlet bore portion of housing impinge
obliquely on the water flow and produce atomization
thereof. Photo (2) shows the atomizer assembly.

Overall, it is reasonable to divide the twin-fluid

atomizer into the following categories:
* Contacting of air and fluid within the nozzle
head (internal mixing) at I/d equal 2, 2.5 and 3.

» Contacting of air and fluid outside the nozzle
head (external mixing) at I/d equal zero.
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Fig. 2-a Internal twin-fluid atomizer assembly
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Photo (2) The atomizer assembly

The experimental program involves three helical
geometry of grooved pathways they are; circle,
triangle and square shape. The geometries of helical
flowpaths have been tested in the test rig shown in
photo (3).

——

D T
\

Sauare shape

- i of

Triangle shape

Photo (3) Geometry of helical shapes

There are two cases of helical flowpaths are
shown in Fig. 3. In case (1), a water flowpath is
extending vertically from the liquid inlet to a liquid
stream outlet, and helical air flowpath extended
horizontally from the air inlet. In the second case (2)
a helical water flowpath is extending horizontally
from the liquid inlet and the air flowpath extending
from the vertical bore to a location adjacent the air
stream outlet.

Case (1):

The sampling distance (Y) was set to 650 mm from
the tip of nozzle. The inner diameter is equal 4 mm.
As a fluid, the water was used with the flow rate in
the range from approximately 80 L/h to 140 L/h, the
I/d various up 3, the air to water ratio (AWR) was
adjusted from 1.6 to 17 and the air injection pressures
were set t0 0.2, 0.3, 0.4 and 0.5 MPa.

The determination of the discharge coefficient of the
atomizer is an important task when the atomizer is
designed, and it directly decides the success or failure
of the design. If the discharge coefficient is much
big, the outlet area will be much bigger than the fact
needed so as to influence the spray quality of the
atomizer. If the discharge coefficient is small, it may
not get to the designed mass flow rate and cannot
satisfy the need of the temperature. So for all the
atomizers determining the formula of the discharge
coefficient of the atomizer is an important task. As
water flow can be considered to be incompressible, p
is assumed constant for all the calculations. The mass

liquid flow rate m  is defined as:

mi=Vi o
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Where Vi is the measured volumetric flow rate for
the water fluid.

The air-to-water mass flow ratio is calculated by:

AWR = Ma _Vapn

m Vip
Here V . is the inlet volumetric air flow rate, and Pa
is the air density corresponding to the inlet pressure
and temperature conditions. As the air volumetric
flow is measured to standard conditions, the readings

have to be corrected by the actual pressure and
temperature values.

Va‘ =\7a PatTa
\ Pa.Tat

Where Va is the measured air volumetric flow rate
and P, and T, are the atmospheric pressure and
temperature, respectively. For the present operating
conditions, the air flow has to be regarded as
compressible, and its density is calculated using the
ideal gas relation. The air-to- water mass ratio is
written as:

AWR_ VaPaMa

RaTaVI Yo

Where R, is the universal gas constant, M,, T, and P,
are air molecular weight the absolute air flow
temperature and pressure, respectively. Just like the
twin-fluid atomizer, the formula for the mass flow
rate of the liquid is written as,

mi = CdAo 2 o AP
Where, A, is the cross-sectional area of the discharge
nozzle.

Then the discharge coefficient of the liquid can be
written as:

m
AoﬂZﬂApl
A collector at 65 cm vertically from the nozzle tip
can estimate the water distribution of the spray. The
liquid patternator for measurement of mass

distribution is designed in two ways and it consists of
test tubes, which located in the cross.

The spray cone angle is important parameter for
atomizer and can influence the combustion and the
flame length directly. It must be determined based on
the size of the combustor and the mixing conditions
of the air and fuel.

To measure the spray cone angle, a digital camera
was used. Initially an automatic flash were used to

Ca =

obtain the best possible instant picture. Using the
Photoshop software, the pictures were converted to
negative forms, in order to improve clarifying the
spray boundaries. Then, using the AutoCAD
software, the spray cone angles were determined.

Air ‘
————
Case (1) Water is vertical
Air
Water
——

Case (2) Water is horizontal

Fig. 3 Two cases of helical flowpath
3. RESULTS AND DISCUSSION

In the present experiments, for a constant water flow,
different air flows have been established. For each
experimental condition, the resulting water and air
pressures, as well as ambient air temperature, have
been simultaneously measured.

The photographs of the spray pattern produced by the
present atomizer with different 1/d are shown in
Photo (4).

Figure 4 represents the volumetric water flow
rates versus the difference water pressures using air
mass flow rates. It is noticed that, the increasing the
difference water pressure, increases the volumetric
water flow rate, but by increasing the air mass flow
rate, the volumetric flow rate is decreased.
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I/d=3

I/d =2

I/d =0

Photo (4) Photograph of the spray pattern produce by
the present atomizer with different I/d

Figure 5 illustrates the effect of different air
mass flow rates on the discharge coefficient for
difference water pressure. It is seen from the figure,
the increase of air mass flow rate and decrease the
difference water pressure, decreases the discharge
coefficient.

Figure 6 illustrates the effect of I/d on the
discharge coefficient for different air mass flow rates.
It is seen that the curve of the I/d equal 2 has the
lowest discharge coefficient and when the I/d
increases the discharge coefficient slightly increases
at the same air mass flow rate. Calculated values for
Cq are presented in Fig. 7 for different air mass flow
rates and different helical shapes with difference
water pressure at 0.2MPa and 1I/d equal 2. It should
be noted that higher values of discharge coefficient
have been obtained for the triangle helical path of air.
Inspection of this figure has shown that for the
triangle helical path, the maximum air mass flow rate
that is reached higher than those for the other two
paths.

Figure 8 represents the air to water ratio versus
the air mass flow rates using different volumetric
water flow rates. Increasing the air mass flow rate
from 200 to 1400 kg/h, the AWR at same I/d and
triangle shape increased to about 3.5 and 5.7 times of
this AWR for volumetric flow rate 80 and 140 L/h
respectively.

The mass concentration is the quantity of
accumulated water during a certain time in a
graduated tube divided by the total injection water
flow rate. The radial mass concentration was
measured for different air pressures, helical geometry
and length to diameter (I/d) of mixing zone.
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Fig. 6 Effect of I/d on the discharge coefficient with
different air mass flow rates
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Fig. 7 Discharge coefficient for the different helical
shapes for various air mass flow rate
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Fig. 8 Air to water ratio for different air and
volumetric liquid flow rates

Figures 9 to 11 show a sample of the results of
the measured radial mass concentration at different
air pressures, helical geometry pathways and I/d.
Because of the issued spray is a solid cone type, one
peak of the maximum mass concentration is formed
around near the spray axis. Figure 9 shows that, as air
pressure for all results decrease, the mass
concentration of liquid at the spray core increased,
while the concentration become less at wider radial
distance and the peak mass concentration moved
outwards, as its value decreased.

Figure 10 indicates the effect of different shape
of flow paths on the mass concentration at Y=65 cm
from the tip of nozzle, air and water pressures are the
same at 0.3 MPa and I/d equal 2. This figure shows
that the peak value of the mass concentration is
located near the center of the spray and then it
decreases with increasing the radial distance. Also
this figure shows that, the triangle shape have wider
spray than the other two shapes.

Figure 11 presents the effect of I/d for different
helical shapes on the radial of the water mass
concentration at water and air pressures are the same
at 0.3 MPa and the axial distance (YY) equal 65 cm.
This figure shows that, as the I/d decreases, the radial
profile of the liquid mass concentration tend to be
more uniform. Also shows that, the maximum value
of the mass concentration is located near the center of

the spray up to the midradius and then decreases with
increasing the radial distance.

The spray cone angle for different air pressures,
I/d of the mixing zone and helical shape of air are
shown in Figs. 12 and13. The effect of I/d on the
spray cone angle for different air pressures is shown
in Fig. 12. Increasing the I/d and air pressure, the
spray cone angle also increases to about 2 to 3 times.

Figure 13 illustrates that the effect of air
pressures is stronger on the spray cone angle than the
effect of the geometry path of air flow. Also this
figure shows that, the triangle shape have big spray
cone angle than the other two shapes.

Case (2):

The cone shape of spray is one of the studied
characteristic and used determine the efficient
atomization or combustion of fuel, Referring to Fig.
14, it can be concluded that the increase in air
pressure increased the spray angle. It is clear also
found from Fig. 15 that the spray angle is largest for
I/d equal zero and lowest for I/d equal 3 with water
pressure 0.3 MPa and triangle shape. Figure 15
shows that, as I/d ratio increased, the concentration of
water at the spray core increased, while the mass
concentration becomes less at wider radial distance.
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Fig. 9 Effect of air pressures on the mass
concentration
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Fig. 10 Effect of helical shape flow path on the
mass concentration along spray axis
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Figures 16 and 17 show the comparison
between the two cases for triangle shape at water
pressure equal 0.3 MPa and I/d equal 2. It is clear
from the both figures to found, that the maximum
values and the spray cone angle from case (2) great
than the other one.

4. CONCLUSIONS

The discharge coefficient, the mass concentration
and the spray cone angle are studied experimentally.
The influence factors considered are as follows:
the helical grooved shape, AWR, water pressure
difference, air pressure, volumetric water flow rate,
and l/d.

The results of the experimental study are summarized
as the follows:

- As the I/d decreased, the C4 of liquid decreased
for all helical shapes, while for the triangle
helical shape have the maximum values.

- As the I/d increased the mass concentration of
liquid at the spray core increased, while the mass
concentration becomes less at wider radial
distance. But when the air injection pressure
increases the peak value decreases.

- The spray cone angle widened with the decrease
in I/d ratio and the increase of air injection
pressure.

- The higher values of spray angle and wider spray
and uniform shape found by the triangle shape.

- In case (1), where water flow path extends
vertically and helical air flow path also extends
horizontally from the air inlet. But the case (2)
has greater values compared with case (1) as the
helical water flow path extends horizontally and
the air flow path also extends vertically from
vertical bore.

- For case (2), at the lowest air pressure tested 0.3
MPa, the spray cone angle lies between 15 and 32
degrees, while the concentration become great at
wider distance.
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