

Taxonomic significance of stamens and pollen morphology of some selected taxa of Primulaceae in Egypt

Mona Adel Shiha

Biology and Geology Department, Faculty of Education, Alexandria University Corresponding author: shihaalex@yahoo.com

Abstract

The circumscription study of Primulaceae is still uncertain and remains controversial. Stamens and pollen grains morphological characters of five species and one variety representing five genera viz., Anagallis, Lysimachia, Coris, Primula and Samolus of Primulaceae in Egypt have been studied using LM and SEM. The specific target of the present study is to evaluate the taxonomic value of the macro and micromorphological characters of stamens and pollen grains in order to distinguish between the studied species. The obtained results showed remarkable variations in anther shape, anther dehiscence, filament attachment and presence of trichomes on the anther filament. Pollen grains are radially symmetrical, isopolar, spheroidal-subprolate to prolate, with amb angulaperturate or fossaperturate and tricolpate or tricolporate. Tectum is microreticulate, reticulate with perforated lumine and clavate exine ornamentation. Out of the studied taxa Coris monspeliensis is distinguished by the presence of prominent margo, reticulate exine ornamentation, minute luminal perforations decreasing towards the colpi, orbicular anther shape, latrorse dehiscence of anthers with short longitudinal slit and presence of glandular diseriate trichomes at the base of the filaments. Clavate exine ornamentation as well as lanceolate anther shape, extrorse dehiscence and short filament can distinguished Samolus valerandi from the remaining studied taxa. An artificial key for the studied species was constructed based on stamens and pollen morphological criteria is provided.

Keywords: Anther dehiscence, Exine ornamentation, Primulaceae, Pollen grain, Stamen

Introduction

Ericales) Primulaceae (order comprises about 2590 species circumscribed in 58 genera (Stevens, 2001 onwards), distributed in the Northern hemisphere. The family includes herbs, shrubs and trees. The flowers are characterized with sympetalous corolla, stamens epipetalous, opposite the petals, central placentation, bitegmic free tenuinucellate ovules. and nuclear endosperm (Källersjö et al., 2000).

In Egypt, Primulaceae (including Coridaceae) are represented by five genera, two subspecies and two varieties (Täckholm, 1974), while Boulos (2000) added one more subspecies viz.: *Anagallis* L. (with two subspecies and two varieties), *Lysimachia* L., *Coris* L., *Primula* L., and *Samolus* L.

The circumscription study of Primulaceae is still uncertain and remains

controversial. Primulaceae was treated as a sister group of Maesaceae, Myrsinaceae, and Theophrastaceae in the Primulales (Anderberg et al. 1998, 2000 and Källersjö et al. 2000). Those closely related families based on morphological and molecular data were subordinated as subfamilies within Primulaceae. In this sense. Primulaceae now comprises the subfamilies Maesoideae, Myrsinoideae, Primuloideae, and Theophrastoideae (Stevens, 2001 onwards).

The floral charchaters have proven to be valuable in defining relationship within Primulaceae (El-Karemy & Hosni, 1993; Oh *et al.*, 2008; Morozowska *et al.*, 2011; Xu *et al.*, 2016 and Luna *et al.*, 2017). Stamens and pollen morphology have been of interest for over one century few studies on these topics have been done (Bonner and Dickinson, 1989, 1990; Keijzer *et al.*, 1996 and Islam *et al.*, 2008). However, very few reports regarding the taxonomic significance of stamen and pollen morphology as seen by LM and SEM are available of Primulaceae. Accordingly, the present study deals with stamens and pollen grains morphology of six studied species in order to evaluate the importance of these diagnostic characters as criteria for taxonomic delimitation.

Material and methods

Herbarium and living specimens of the studied taxa of Primulaceae were collected from various sources (table 1). For LM investigation, stamens were prepared for LM and SEM investigation. Pollen grains were acetolyzed according to

Erdtman (1960). At least 30 fully developed grains per specimen were examined by using Zeiss light microscope with an eye piece micrometer. For SEM investigation, dehydrated stamens and dry pollen grains were transferred directly on a stub with double-sided tape, coated for five minutes with a thin layer of gold in a polar on JEC-1100E ion sputtering coating unite, examined at accelerating voltage of 20 Kv. and then photographed with JEOL JSM-IT200 series SEM (Electron Microscopic Unite, Faculty of Science, Alexandria University). The terminology for stamens morphology based on Endress and Stumpf (1991) and for pollen morphology on Erdtman (1952) and Punt et al. (2007).

Table 1. Collection data of the studied species of Primulace

No	Taxa	Locality/ Source / Date and Collector				
1.	Anagallis arvensis L. var. caerulea	Meditteranean Coastal region, Burg El- Arab,				
	Gouan.	2018. M. Shiha & M. Megahad s.n.(ALEX)				
2.	A. pumila Sw.	Meditteranean Coastal region, Saloum., 21-4-				
		2007, L. Boulos and A. Hegazy s.n.(ALEX)				
3.	Lysimachia linum-stellatum L.	Western Meditterranean Coastal region:				
	(=Asterolinon linum-stellatum (L.)	Amria, 25-4-2007, L. Boulos s,n.(ALEX)				
	Duby					
4.	Coris monspeliensis L.	Meditteranean Coastal region, Ras El- Hekma,				
		24-4-1997, L.Boulos s.n. (ALEX)				
5.	Primula boveana Decne.	Shagg Musa, Sinai, 8-5-2004, K. Shaltout s.n.				
		(Southern Sinai Herbrium)				
6.	Samolus valerandi L.	Siwa Oasis: Gebel G'afar, along an irrigation				
		canal in the farm,15-3-1998, K. Shaltout s.n.				
		(Environmental Quality international Herb.)				

Mona Adel Shiha

	Stamens characters				Pollen grains characters									
Таха	A.L.	A.W.	Anther	Filament	т.	A.D.	P.A.	E.A.	P/E	Shape	Amb	Туре	C.L.	Exine sculpture
Characters	(µm)	(µm)	Shape	attachment			(μm)	(μm)						
Anagallis arvensis var. caerulea	868.8	409.7	Sagittate	Dorsifixed long filament	G.A.M.	L.S.	28.88-30.87 (30.53)	17.22-18.01 (17.99)	1.67	Prolate	F.A.	Tricolpate	25.01-28.87 (28.62)	Microreticulate
Anagallis pumila	787.2	453.1	Sagittate	Dorsifixed long filament	G.A.M.	L.S.	19.01-19.93 (19.58)	14.01-14.93 (14.76)	1.32	Subprolate	A.A.	Tricolporate with Bridge	13.23-13.97 (13.85)	Microreticulate
Lysimachia linum-stellatum	364.4	288.9	Kidney	Basifixed short Filament		L.S.	21.8- 23.1 (22.51)	10.90- 11.5 (11.17)	2.01	Prolate	F.A.	Tricolpoate	18.1-19.0 (18.96)	Microreticulate
Coris monspeliensis	500	560	Orbicular	Basifixed- long Filament	G.D.M.	S.L.S.	24.93-25.78 (25.41)	16.92-17.83 (17.51)	1.43	Prolate	F.A.	Tricolporate	20.87-21.43 (21.25)	Reticulate - perforate lumin, double baculate muri
Primula boveana	2.481 mm	623.7	Lanceolate	Basifixed short filament		L.S.	21.83-22.67 (22.24)	18.92-19.45 (19.15)	1.16	Sheroidal - Subprolate	A.A.	Tricolporate With Bridge	16.22-17.05 (16.97)	Microreticulate (Heterobrochate)
Samolus valerandi	1.368 mm	378.9	Oblong	Basifixed short filament		L.S.	41.8-42.9 (42.35)	27.87-28.78 (28.23)	1.5	Prolate	F.A.	Tricolpate	16.9-18.9 (18.5)	Clavate

Table 2. Stamen and pollen characters of the studied taxa of Primulaceae

Abbreviation: A.A.= Angula Aperturate, A.D.= Anther Dehiscence, A.L. = Anther length, A.W. = Anther width, C.L. = Colpus length, E.A. = Equatorial axis, F.A.= Foss Aperturate, G.A.M.= Glandular Articulate multicellular, G.D.M.= Glandular Diserriate multicellular, L.S.= Longitudinal slit, P.A. = Polar axis, P/E= relation between polar axis and equatorial axis, S.L.S.= Short Longitudinal Slit, T.= Trichome.

Results

A summarized stamen and pollen morphological characteristics as revealed by LM & SEM were presented in table 2. Microphotographs by SEM to show specific structures were illustrated in Figs. 1-27. The stamens and pollen morphology of the studied taxa examined using SEM show considerable variations in anther shape, filament attachment, way of anther dehiscence, pollen type, pollen aperture and exine ornamentaion.

1. Anagallis arvensis var. caerulea

Stamens five, epipetalous arranged opposite the petals. Anthers sagittate shaped, 868.8 X 409.7 µm (L x W), latrorse dehiscent (the anther split positioned to the side, towards other anther) and by longitudinal slit. Filaments long dorsifixed with long glandular articulate trichomes. Pollen grains isopolar, radiosymmetric, tricolpate, prolate in shape, P/E = 1.6. The polar axis (P) length is 30.53 µm and the equatorial axis (E) is 17.99 µm., with fossaperturate amb. Ectocolpi elongate, nearly equal to the polar axis in length, presence of margo (smooth exine area around the colpus). The exine sculpturing (tectum ornamentation) is microreticulate. Lumina regular rounded in shape with minute granules. (figs. 1, 2, 14, 15).

2. Anagallis pumila

Stamen anthers sagittate shaped, anther length is 787.2 µm X 453.1µm (L X W), extrorse dehiscent (the anther face lies towards center of the flower by longitudinal slit). Filament very long and dorsifixed. Glandular articulate trichrome spread all over the longitudinal axis of the filaments. Pollen grains isopolar, radiosymmetric, tricolporate, subprolate in shape P/E = 1.33. The polar axis length is 19.58µm and the equatorial axis 14.76µm, with angulaperturate amb. Aperture: the endoaperture is an equatorial lalongate. Ectocolpi elongated, nearly equal to the polar axis in length (CL= 16.85). The

colpus margin is distinct and often raised at the equatorial forming a bridge covered the pore. The exine sculpture is microreticulate (heterobrochate). Lumina vary in shape, muri are latimurate i.e. muri are thicker than the distance cross lumina (figs. 3, 4, 5, 6, 16, 17).

3. Lysimachia linum- stellatum

Stamen small sized, reniform shaped, 364.4µm X 288.9µm (L x W), extrorse dehiscence by longitudinal slit. Filaments short, basifixed and trichomes wanting. Pollen grains isopolar, radiosymmetric, tricolpate, prolate to preprolate in shape P/E = 2.01. The polar axis length is $22.51 \mu m$ and the equatorial axis 11.17µm, with fossaperturate amb. Ectocolpi elongated, distinctly sunken, nearly equal to the polar axis in length (CL= 18.96µm) with acute ends. The exine sculpture is microreticulate - foveolate (heterobrochate), margo absent. Lumina vary in shape with minute granules, muri latimurate, i.e. muri thicker than the distance cross lumina (figs. 7, 8, 18, 19).

4. Coris monspeliensis

Stamens small, orbicular, 500 µm X 560 μ m (L x W), latrorse and dehisced by short longitudinal slit. The filaments very long and basifixed. Few glandular, multicellular, diseriate trichomes detected at the base of the filaments. (figs 9, 10, 11). Pollen grains isopolar, radiosymmetric, tricolporate, prolate in shape, P/E = 1.43. The polar axis length is 33.76 µm and the equatorial axis is 23.33µm, with angularaperturate amb. Ectocolpi elongated, nearly equal to the polar axis in length (CL= 30.0µm) with acute ends and small apocolpi. The colpus margin is distinct, often raised at the equator. The endoaperture lalongate, extending beyond the boundaries of the ectocolpi and covered with conspicuous operculum. The exine sculpture at mesocolpi reticulate with minute luminal perforation. However, the exine area bordering the colpi called the

Figs 1-8. SEM micrographs of stamens in Primulaceae Figs 1, 2 *Anagallis arvensis* var *caerulea*; 1-adaxial showing longitudinal slit ,2- abaxial surface showing dorsifixed attachement of the anther, articulate multicellula trichomes scattered allover the filament. Figs 3-6 *Anagallis pumila*; 3- showing longitudinal slit, 4,5 abaxial surface showing dorsifixed attachment of the anther, 6- showing articulate multicellular trichomes. Figs 7,8 *Lysimachia linum-stellatum*; 7- adaxial showing longitudinal slit ,8- showing basifixed attachment.

Taxonomic significance of stamens and pollen morphology

Figs 9-13. SEM micrographs of stamens in Primulaceae. Figs 9-11 *Coris monspeliensis*; 9-showing stamens with trichomes at the base of the filament, 10- showing orbicular anther shape with short longitudinal slit and basifixed attachment, 11- showing glandular diseriate trichomes. Fig 12-*Primula boveana*; showing lanceolate anther, longitudinal slit and basifixed attachment. Fig 13- *Samolus valerandi*; showing oblong anther, longitudinal slit and basifixed attachment.

Mona Adel Shiha

Figs 14-19. SEM micrographs of pollen grains of Primulaceae. Figs 14,15 *Anagallis arvensis* var. *caerulea*;14- oblique equatorial view showing colpate, microreticulate ornamentation and presence of margo. 15- polar view showing fossaperturate amb. Figs 16,17 *Anagallis pumila*; 16- oblique equatorial view showing colporate pollen and ektexine bridge, 17- showing triangularaperture amb. Figs 18,19 *Lysimachia linum-stellatum*;18-equatorial view showing colpate and microreticulate exine ornamentation,19- polar view showing fossaperturate amb and microreticulate sculpture in the amb.

Taxonomic significance of stamens and pollen morphology

Figs 20-27. SEM micrographs of pollen grains of Primulaceae. Figs 20-23 *Coris monspeliensis*; 20- equatorial view showing colporate pollen, reticulate exine ornamentation and prescence of margo.21- showing ektexine bridge, 22- angulaperturate amb,23- reticulate exine with perforated lumina and double baculate muri. Figs 24,25 *Primula boveana*; 24- equatorial view showing colporate pollen, microreticualate exine, 25- polar view showing angulapertuarate amb. Figs 26,27 *Samolus valerandi*; 26- equatorial view showing colpate pollen, clavate exine ornamentation, 27-oblique polar view showing fossaperturate amb.

margo smooth. Muri straight, polygonal, double baculate and angustimurate, i.e. muri narrower than the distance across the lumina (figs. 20, 21, 22, 23).

5. Primula boveana

Stamens large in size, lanceolate shape, 2.481mm X 623.7µm (LxW), extrorse and dehiscend by longitudinal slit. Filaments short and basifixed. Trichomes wanting (fig. 12). Pollen isopolar, radiosymmetric, tricolporate, spheroidal to subprolate in shape P/E= 1.16-1.3. Polar axis (P) = 22.24 μ m, and equatorial axis E=19.15 μ m with angulaperturate amb. Ectocolpi granulated and elongated with acute or rounded end. The colpus margin distinct, often raised at the equator. The endoaperture lalongate, extending beyond the boundaries of the ectocolpi and covered with conspicuous operculum. The exine sculpture microreticulate (figs. 24, 25).

6. Samolus valerandi

Stamen large, oblong shaped, its 1.368mm X 378.9µm (L X W), extrorse and dehiscend by longitudinal slit. Filament short and basifixed. Trichomes wanting (fig. 13) Pollen grains isopolar, radiosymmetric, tricolpate, prolate in shape P/E = 1.5. The polar axis length is 42.35 µm and the equatorial axis 28.23µm with fossaperturate amb. Ectocolpi granulate and elongated, nearly equal to the polar axis in length ($CL=35.29\mu m$) with acute ends and small apocolpi. Exine sculpture clavate, free standing columella (figs.26, 27).

Discussion

From the foregoing data it was considered that stamens and pollen morphological characters are considered diagnostic at the generic and specific level among the studied six species of Primulaceae as examined by light LM & SEM. The taxonomic significance of pollen morphology in some members of Primulaceae has already been evident (Anderberg and El- Gazaly, 2000; Aboel Atta and Shehata, 2003; Morozowska *et al.*, 2011 and Luna *et al.*, 2017).

Stamen morphology of the studied taxa showed great variation with regards to dehiscence (long or anther short longitudinal suture), anther attachments (basifixed and dorsifixed), anther shape (sagittate, reniform, orbicular, oblong or lanceolate) filament indumentum such as glandular articulate multicellular or glandular diserriate multicellular. Moreover the pollen grains show considerable variation with respect to the type of apertures, as well as size of pollen and exine ornamentation. The type of apertures generally two; tricolpate and tricolporate. The pollen grains shape varies from spheroidal - subprolate to prolate, radially symmetrical and isopolar, ranging in size from 19.58µm in Anagallis pumila to 42.35µm in Samolus valerandi. The colpi nearly equal the polar pollen length. The colpi well defined lack margo as in Anagallis primula, Lysimachia linumstellatum, Primula boveana, and Samolus valerandi. Margo well defined as in Anagallis arvensis var. caerulea and Coris monspeliensis. The present finding is in accord with Punt et al. (1974) and Carrion et al (1993) since they described pollen morphology of Coris species.

Coris stamen is characterized by nearly round anther short longitudinal slit and very long filament provided with short biseriate glandular trichomes at the filament base. Pollen can be distinguished from the remaining of studied taxa of Primulaceae by the conjunction of relatively large pollen grains, prominent margo, and reticulate exine pattern with the peculiarly perforate tectum. The position of Coris in the Primulaceae has been acknowledged by most authors as a separate tribe Corideae 1897 Chant, 1978) (Pax, and or Coridoideae (Takhtajan, 1980) but not unanimously so. However, the family Coridaceae were accepted near the Primulaceae or inter- mediate between the

Primulaceae and the Lythraceae (Sattler, 1962; Willis 1973; Dahlgren, 1983 and Takhtajan, 2009). Indeed, *Coris* differs in a number of conspicuous characters from the Primulaceae, such as the sub-shrubby habit, zygomorphic flower, and toothed calyx tube. Sattler (1962) found sufficient differences in the floral development of *Coris* to support the acceptance of a family Coridaceae. According the present result in addition with the previous finding of Sattler (1962), Willis (1973) and Dahlgren (1983) studying its floral development support the exclusion of *Coris* in a separate family Coridaceae.

Based on the data in the present study,

Samolus valerandi is characterized by the presence of staminodes opposite the sepals, antipetalous five fertile stamens, extrorse anther dehiscence and oblong anther shape and unique clavate exine ornamentation. The present result is in accord with Caris and Smets (2004) who proposed to keep *Samolus* separated from the genera of Primulaceae and Theophractaceae and suggest inclusion *Samolus* in a separate family Samolaceae.

So far as the data of the present work are concerned, the subsequent artificial key based on the stamens and pollen characters are provided to enable the different taxa of Primulaceae to be distinguished.

1A. Pollen grain tricolpate

1B. Exine ornamentaion microreticulate	
1C. Trichomes present, glandular articulate, multicellular.	Anagallis arvensis
	var. <i>caerulae</i>
2C. Trichomes absent	. Lysimachia linum-stellatum
2B. Exine ornamentaion clavate	Samolus valerandi

2A. Pollen grain tricolporate

1D. Exine ornamentation microreticulate

1E. Anther shape sagittate, presence of glandular trichomes	Anagallis pumila
2E. Anther shape lanceolate, absent of trichomes	Primula boveana

References

Aboel Atta, AM.I.I. & Shehata, A.A. 2003. On the delimitation of Anagallis arvensis (Primulaceae) 1. Evidence based on macromorphological characters, palynological features and karyological studies. *Pak. J. Biol. Sci.* 6(1): 29-35

Anderberg, A.A., Stähl, B. & Källersjö, M. 1998. Phylogenetic relationships in the Primulales inferred from rbcL sequence data. *Plant Syst. Evol.* 211:93–102

Anderberg AA., Stähl, B. & Kälersjö, M. 2000. Maesaceae, a new primuloid family in the order Ericales s.l. *Taxon* 49:183–187 Anderberg, A.A. & El-Ghazaly, G. 2000. Pollen morphology in Primula sect. Carolinella (Primulaceae) and its taxonomic implications *Nord. J. Bot.* **20**: 5-14.

Bonner, J.L. & Dickinson, H.G. 1989. Anther dehiscence in Lycopersicon esculentum Mill. I. Structural aspects. *New Phytologist* 113: 97–115.

Bonner, J.L. & Dickinson, H.G. 1990. Anther dehiscence in Lycopersicon esculentum. 2. Water relations. *New Phytologist* 115: 367–375.

Boulos, L. 2000. *Flora of Egypt.* Vol.2 Al Hadara Publishing, Cairo, Egypt.

Caris, P.L. & Smets, E.F. 2004. Floral ontogenetic study on the sister group (Primulaceae). *Amer. J. Bot.* 91:627–643.

Carrion, JS., Delgado, M.J. & Garcia, M. 1993. Pollen grains morphology of *Coris* (Primulaceae). *Pl. Sys. Evol.* **184**: 89-100.

Chant, S.R. 1978. Primulaceae. In V.H. Heywood (ed.) *flowering plants of the world*. Oxford University Press, Oxford.

Dahlgren, R. 1983.General aspects of angiosperm evolution and macrosystematics. *Nord. J. Bot.* **3**: 119–149

El-Karemy, Z.A.R. & Hosni, H.A. 1993. Systematic studies on the Egyptian species of the family Primulaceae. *Feddes Repertorium* **104** (5-6): 327-334.

Endress, P.K. & Stumpf, F.S. 1991. The diversity of stamen in lower Rosoieleae (Rosales, Fabales, Proteales, Sapindales), *Bot. J. Linn.Soc.*107 (3): 217-293.

Erdtman, G. 1952. Pollen morphology and Plant Taxonomy (An introduction to Palynology-1, Angiosperm). Almqvist and Wiksell, Stockholm.

Erdtman, G. 1960. The acetolysis method: A revised description. *Svensk Botanisk Tidskrift*. 54: 561-564.

Luna, B. N. D., Freitas, M. de-F, Bass P., De toni, K. L. G. & Barros, C. F. 2017. Leaf anatomy of five Neotropical genera of Primulaceae. *Int. J. Plant Sci.* **178** (5): 362-377.

Islam, M.S., R. Abid & Qaiser, M. 2008. Anther types of Dicots within Flora of Karachi, *Pak. J. Bot.* **40**(1): 33-41.

Källersjö, M., Bergqvist, G. & Anderberg, A.A. 2000. Generic realignment in primuloid families of the Ericales s.l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. *Am. J. Bot.* 87:1325–1341.

Keijzer, C.J., Leferink-ten Klooster, H.B. & Reinders, M.C. 1996. The mechanics of the grass flower: anther dehiscence and pollen shedding in maize. *Ann. Bot.* 78: 15–21

Morozowska, M., Czarna, A., Kujawa, M. & Jagodzinski, A. M. 2011. Seed morphology and endosperm structure of selected species of Primulaceae, Myrsinaceae, and Theophrastaceae and their systematic importance. *Plant Syst. Evol.* **291**: 159-172.

Oh, I-C, Anderberg, A.L., Schönenberger, J. & Anderberg, A.A. 2008. Comparative seed morphology and character evolution in the genus *Lysimachia* (Myrsinaceae) and related taxa. *Plant Syst. Evol.* 271:177–197

Pax, F. 1897. Primulaceae. In A. Engler and K. Prantl. (eds) - *Die Natürlichen Pflanzenfamilien* IV (1):98-116- W. Engelmann, Leipzig.

Punt, W., Leeuw van Weenan, J., van Oostrum, W.A.P. 1974. The Northwest European Pollen Flora 3. Primulaceae. *Revi. Paleobot. and Palynol.* 17: 31–70.

Punt, W., Hoen, P.P., Nilsson, S. & Thomas, L. 2007. Glosssary of Pollen and Spore Terminology. *Revi. Paleobot. and Palynol.* 143: 1-81

Sattler, R. 1962. Zur frühen Infloreszenzund Blütenentwicklung der Primulales *sensu lato* mit besonderer Berücksichtigung der Stamen-Petalum Entwicklung. *Bot. Jahrb. Syst.* 81:

358–396.

Stevens, P. F. 2001 onwards. Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since] .will do.http://www.mobot. org/MOBOT/research/APweb

Täckholm, V., 1974. *Students' Flora of Egypt.* 2nd ed. Cairo University.

Takhtajan. A. L. 1980. Outline of the classification of flowering plants (Magnoliophyta). *Bot. Rev.***46** (3): 225-359 **Takhtajan. A. L. 2009**. *Flowering plants*, 2nd ed - Springer.

Willis, J. C. 1973. A dictionary of the flowering plants and ferns. 8th ed. Cambridge University Press, Cambridge, UK.

Xu, Y., Hu, C.M. & Huo, G. 2016. Pollen morphology of *Androsace* (Primulaceae) and its systematic implications. *J. Syst. Evol.* 54 (1): 48-64.