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    Abstract 

Traffic jam is a crucial issue affecting cities 

around the world. They are only getting worse as 

the population and number of vehicles continues 

to increase significantly. Traffic signal controllers 

are considered as the most important mechanism 

to control the traffic, specifically at intersections, 

the field of Machine Learning offers more 

advanced techniques which can be applied to 

provide more flexibility and make the controllers 

more adaptive to the traffic state. Efficient and 

adaptive traffic controllers can be designed using a 

multi-agent reinforcement learning approach, in 

which, each controller is considered as an agent 

and is responsible for controlling traffic lights 

around a single junction. A major problem of 

reinforcement learning approach is the need for 

coordination between agents and exponential 

growth in the state-action space. This paper 

proposes using machine learning clustering 

algorithm, namely, hierarchal clustering, in order 

to divide the targeted network into smaller sub-

networks, using real traffic data of 65 intersection 

of the city of Ottawa to build our simulations, the 

paper shows that applying the proposed 

methodology helped solving the curse of 

dimensionality problem and improved the overall 

network performance. 

Keyword: Adaptive traffic signal control, Clustering, 

Multi-agent system, Reinforcement learning, 

Simulation, Traffic controller. 

 

1. Introduction 

A signal controller is a device which controls traffic flow 

at a specific intersection. In real life situation, most traffic 

light controllers work with far less information about the 

traffic, they follow a protocol, that is, the light is red for 

some time and green for some subsequent time. The time 

intervals usually change during rush hours but are still 

static [1]. 

Intelligent traffic systems researches aim to increase the 

efficiency of traffic networks. Researchers have been 

trying to implement intelligent systems as a replacement 

for static ones, such intelligent systems use different 

machine learning algorithms to enable signal controllers 

to adapt and behave based on the traffic state in the 

network, this comes with a cost; as deploying such 

adaptive controllers at intersections without proper 

planning could lead to limit their potential benefits 

moreover, it might decrease the overall performance of 

the network. Therefore, optimally controlling and 

coordinating the operation of multiple signal controllers 

simultaneously is required. However, this integration adds 

some complexity to the system.  

Reinforcement learning is a machine learning algorithm, 

the agent learns to map states to actions to maximize a 

numerical reward, through taking actions and analyzing 

the reward, the agent must discover which actions leads to 

the best reward in a specific situation, learned actions not 

only affect the immediate situation but also the next ones 

[3]. 

Two major challenges associated with implementing 

intelligent controllers using reinforcement learning are, 

the need for coordination and the curse of dimensionality 

[2]. To address these limitations, we present a new 

method which uses clustering algorithm to divide the 

network into strongly connected sub-networks using 

traffic between the intersections as a measurement.  

Many works of intelligent signal control have used 

unrealistic evaluation, usually investigate performance on 

networks of 1–4 intersections with simple structures (e.g., 

one-way roads). While investigating such control system 

and simple networks is a good starting point, more 

realistic scenarios must be used to investigate if intelligent 

controllers can be applied in real world. The work 

presented in this paper makes several important 

contributions to intelligent signal control research. First, a 
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methodology for modeling and creation of realistic traffic 

scenarios is developed. It is used to create a traffic 

simulation based on a 9x7 section of the downtown core 

of Ottawa, Canada.  

The simulation also uses Realistic traffic data compute 

routes and expected vehicle entry/exit locations and 

turning rates.  

We also use machine learning algorithms instead of 

traditional geographical attributes like distances between 

intersections or dividing the network based on the city’s 

different territories or segments. 

This paper gives a literature review about clustering and 

reinforcement learning in section 2. Section 3 explores 

contributions and similar work of other researchers in 

clustering and coordinating between controllers. Section 4 

illustrates the proposed algorithm. Results are presented 

with SUMO simulator [10] using real traffic data acquired 

from the city of Ottawa and the results are shown in 

section 5. Finally, section 6 presents conclusion and future 

work. 

2. Overview 

2.1 Clustering 

Clustering is categorization of items. The clustering 

problem has been a focus of study in many field by 

researchers; this reflects its importance and usefulness in 

exploratory data analysis. Clustering is used in data-

analysis, decision-making, and machine-learning like 

document retrieval, and image segmentation. 

In this paper we will be focusing on and using hierarchical 

clustering technique which can be addressed by two 

algorithms, single link and complete link. Difference 

between algorithms is addressed in the way they 

characterize similarity.  

In single linkage method, the distance between two 

clusters is determined by those two elements (one in each 

cluster) that are closest to each other. Figure 1 depicts an 

illustrative image for demonstration. 

 
,

( , ) min ( , )
x X y Y

D X Y d x y
 

 (1) 

In complete link algorithm Eq2 is used, the distance 

between two clusters is determined by those two elements 

(one in each cluster) that are farthest from each other. In 

either case, two clusters are merged to form a larger 

cluster based on distance criteria, figure 2 depicts an 

illustrative image for complete linkage demonstration. 

 ,
( , ) max ( , )

x X y Y
D X Y d x y

 
 (2) 

 

Figure 1Single linkage 

 

Figure 2 Complete linkage 

 

The process of a hierarchical clustering is explained using 

the two-dimensional data set in Figure 3, which shows 

seven patterns labeled A, B, C, D, E, F, and G in three 

clusters. The algorithm yields a dendrogram representing 

grouping of patterns and levels at which clusters change, it 

is a tree diagram frequently used to illustrate the 

arrangement of the clusters produced by hierarchical 

clustering. A dendrogram corresponding to the seven 

points is shown in Figure 4. The dendrogram can be 

broken at different levels to yield different clusters of the 

data[14]. 

Typical pattern clustering activity involves the following 

steps [13]: 

1 Feature selection, which identifies the most effective 

features during clustering process. 

2 Pattern proximity, measured by using similarity 

distance function like Euclidean distance between 

groups. 

3 The grouping step, in which objects are assigned to a 

specific cluster or assigned a degree of membership 

to a cluster. 

 

Figure 3 Clustering dendogram. 
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Figure 4 Points falling in three clusters 

2.2  Reinforcement learning 

Learning is a many-faceted phenomenon; it’s the process 

of acquiring new knowledge, the development of motor 

and cognitive skill through instruction or practice, the 

organization of new knowledge into general, effective 

representations, and the discovery of new facts and 

theories through observation and experimentation. [15] 

Researchers have been trying to implement these 

capabilities into computer. Solving this problem remains 

one of the most challenging goals in artificial intelligence. 

The field of machine learning is concerned with the 

question of how to construct computer programs that 

automatically improve with experience. Reinforcement 

learning is type of machine learning problems which 

addresses the question of how an autonomous agent can 

learn to choose optimal actions to achieve its goals. Each 

time the agent performs an action in its environment, a 

trainer may provide a reward or penalty to indicate the 

benefit of the resulting state. For example, when training 

an agent to play a game the trainer might provide a 

positive reward when the game is won, negative reward 

when it is lost, and zero reward in all other states. [15] 

Reinforcement Learning focuses on studying agents which 

interacts with environment to maximize a reward. Markov 

decision process (MDP) is used to model the environment, 

in which we assume the environment state only changes 

depending on agent’s actions. The most common single-

agent RL algorithm is Q-learning 

The Q-learning agent learns optimal mapping between the 

environment’s state  s and the corresponding optimal 

control action  a based on accumulating 

rewards  ,r s a .Each state–action pair  ,s a has a value 

called the Q-factor that represents the expected long-run 

cumulative reward. In each iteration, i.e., k, the agent 

observes current state s and chooses and executes action a 

that belongs to the available set of actions A;  

 

 

then, the Q-factor is updated according to the immediate reward  ,r s a  and the state 

transition to state ś as follows [22]: 

(See (3) at the end of page) 

(3) 

where  and    0,  1 ò  are referred to as the learning 

rate and the discount rate, respectively. The agent can 

simply choose the greedy action at each iteration based on 

the stored Q-factors, as follows: 

  1 arg max ( , )k

a A
a Q s a


 (4) 

(4) 

However, sequence
KQ  is proven to converge to the 

optimal value only if the agent visits the state–action pair 

for an infinite number of iterations [21]. This means that 

the agent must sometimes explore (try random actions) 

rather than exploit the best-known actions. To balance the 

exploration and exploitation in Q-learning, algorithms 

such as ϵ-greedy and softmax are typically used [22]. 

3. Related Work 

Intelligent agents interact in a cooperative environment 

where they learn by sharing information and trial and 

error. 

A major problem of reinforcement learning approach is 

the need for coordination and exponential growth in the 

state-action space. This problem was investigated by Ming 

Tan [12], he showed that sharing learned policies among 

agents, speeds up learning at the cost of communication 

and for joint tasks agents engaging in partnership can 

significantly outperform independent agents at the cost of 

learning slowly. 

Whitehead, Steven D [16] also showed that when used to 

solve multi-stage decision problems, reinforcement 

learning algorithms perform a kind of online, incremental 

search in order to find an optimal decision policy. The 

time complexity of this search strongly depends upon the 

size and structure of the state space or when the system 

must adapt to a change in the environment, search can be 

excessive. An analysis of the search time complexity of 

systems indicates that for a restricted, but representative 

set of tasks, the search time scales at least exponentially in 

the depth of the state space. 

Over the past years researchers have been trying to change 

the way traffic controllers are operated, from using simple 

static controllers to adaptive controllers like actuated 

controllers [4] to using Machine Learning (ML) 

algorithms and more intelligent techniques, following we 

mention a few 
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1. Vital, Allan Saldanha, et al, they developed an 

intelligent agent able to perceive the environment 

through sensors and act on the environment 

autonomously and communicate with other agents 

aimed at collaborative decisions and actions into a 

region's traffic. Each agent has been appointed as an 

intelligent traffic light (LCA) and operations control 

center were appointed as region control agents 

(RCA). Where the scope of LCA's is the street and 

RCA is the set of traffic lights that have been defined 

as a region (e.g. city or neighborhood). It did not 

achieve the expected performance; the prototype 

demonstrates the feasibility to create intelligent traffic 

control capable of working in some social way to 

achieve a common goal [5]. 

2. Almejalli, Khaled, K.Dahal, and A.Hossain presented 

an intelligent decision support system based on the 

multi-agent approach. In that paper, an intelligent 

traffic control system (ITCS). In the proposed system, 

the network is divided into sub-networks, each of 

which has its own associated agent. The coordination 

between those agents was achieved through a high 

level agent called a coordinator, they also suggested 

that an investigation of an optimal way to split the 

network shall be carried out. The obtained results 

show its ability to identify the optimal global control 

action. [6] 

3. S.El-Tantawy, B.Abdulhai, and H.Abdelgawadpaper 

presented the development and evaluation of a novel 

system of multi agent reinforcement learning for 

integrated network of adaptive traffic signal 

controllers. It offered two possible modes, 

independent mode, where each intersection controller 

works independently of other agents; and integrated 

mode, where each controller coordinates signal 

control actions with neighboring intersections. The 

major challenges were the need for coordination and 

the curse of dimensionality. In this system, each agent 

plays a game with its immediate neighbors. [2] 

4. MA. Wiering presented a set of multi-agent model-

based RL systems for traffic light control which can 

also be used for optimizing driving policies for cars. 

Experimental results showed that the RL systems can 

outperform a number of non-adaptable systems, it 

used global communication between traffic lights and 

it was noted that, for low traffic loads, constructing 

good (near-optimal) fixed controllers is not difficult, 

since all traffic noes can operate locally. Therefore, 

the gain in using RL for learning traffic light 

controllers is quite small, although learning driving 

policies is still useful. When they increased traffic 

load, the amount of interaction between traffic nodes 

increases and the locally well performing fixed 

systems, don’t work well anymore. [7] 

 

 

5. P.G. Balaji X. German and D. Srinivasan presented a 

distributed multi-agent-based traffic signal control for 

utilizing green timing in a network to reduce the total 

travel. The proposed architecture uses traffic data 

collected by sensors at each intersection, stored 

historical traffic patterns and data communicated 

from agents in adjacent intersections to compute 

green time for a phase. The parameters values used in 

computing the green time is fine-tuned by online 

reinforcement learning with an objective to reduce 

overall delay. Simulation tests conducted on a virtual 

traffic network of Central Business District in 

Singapore for four different traffic scenarios showed 

almost 15% improvement. [17] 

6. Dave McKenney and Tony White proposed 

algorithms capable of controlling traffic signals that 

rely on traffic observations made by available sensor 

devices and local communication between traffic 

lights. This allows traffic signals to be updated to 

better suit current traffic demand, while also allowing 

large problem sizes to be addressed. To have the 

system evaluated, a realistic traffic model was built 

using information supplied by the City of Ottawa, 

Canada. It was found, through simulation within the 

SUMO traffic simulation environment, that the 

proposed adaptive system resulted in higher overall 

network performance when compared to the current 

fixed signal plan controllers. [9] 

7. SS Mousavi, M Schukat applied deep reinforcement 

learning algorithms with focusing on both policy and 

value-function based methods to traffic signal control 

problem in order to find optimal control policies of 

signaling, just by using raw visual input data of the 

traffic simulator snapshots. The approach have led to 

promising results and showed they could find more 

stable control policies compared to previous work of 

using deep reinforcement learning in traffic light 

optimization. [20] 

8. Yilun Lin, Xingyuan Dai, et al also proposed DRL 

(Deep Reinforcement Learning) dedicated to large-

scale UTC (Urban Traffic Control)problems to learn 

the relationship between the states and the actions. 

They test different reward functions and design a 

hybrid reward, in which the throughput of the traffic 

network, along with the balance of queueing length 

around intersections is chosen as the performance 

indexes, Tests show that this new model could be 

optimized within an acceptable time for a traffic grid. 

Compared with previous DRL models which take 

thousands of episodes to converge, their method takes 

only less than 50 episodes to converge for a more 

complex environment. 
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4. The proposed algorithm 

We propose to cluster the network to smaller and 

coordinated sub-networks; actuated controllers [19] shall 

be implemented at any singleton cluster. Achieving that, 

shall remove all unnecessary communications between 

network agents, reduce learning time and improve the 

overall network performance. Figures 5, 6 present the 

difference between the currently used model and the 

proposed model. 

 

 

 

 

 

 

 

 

Figure 5 Proposed model 

 

 

 

 

 

 

 

 

Figure 6 Current model 

 

 

 

 

 

 

 

 

 

After performing 8 simulations runs we could obtain 

traffic counts between junctions, those counts were then 

used to construct a distance matrix to find how close each 

junction to others using averaged traffic counts as metric, 

figure 7show illustrative heat map image, junctions names 

are listed along X-Axis and Y-Axis and describes how 

well connected are these junctions, darker dots mean more 

traffic between junctions, the network was then clustered 

into group of junctions. Algorithm 1 describes how to 

cluster the network using a distance matrix. 

In agglomerative approach, each object starts as a 

singleton and successively merges with other objects until 

a stopping criteria is met, on the other hand, divisive 

approach begins with all items belonging to a single 

cluster and keeps splitting until a stopping criteria is 

satisfied. 

 

5. Performance Evaluation 

5.1 Simulation setup 

To demonstrate the effectiveness of an intelligent traffic 

control system that system should be tested on realistic 

traffic scenarios. For this reason, a realistic traffic model 

based on a section of the downtown area of the City of 

Ottawa was developed for use within the SUMO [10] 

microscopic traffic simulation environment. The open 

source SUMO simulation environment was chosen for a 

number of reasons including portability, presence of an 

active development community and availability of a 

graphical user interface.  
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Figure 7 Distance matrix 

 



6 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, SUMO has been used by other intelligent 

systems researchers, such as Garcia-Nieto et al. [23] and 

Passos and Rossetti [24]. 

The remainder of this section details the key steps in the 

model creation process which is outlined in figure 5. The 

area addressed is a 9x7 block of down-town Ottawa, with 

over 50 intersections requiring control. This is not an 

extremely large network but, it is much larger than most 

of the simple networks used in previous intelligent traffic 

signal research. This area also contains a wide range of 

street types ranging from small one-way residential streets 

with low traffic volumes, to main streets of high volume 

and multiple lanes. 

After selecting an area to model, the road network for that 

area had to be captured and converted for use within the 

SUMO traffic simulator.  

Initially, OpenStreetMap [18] was used to export an 

area of the city, shown in figure 9, which could then 

be imported directly into SUMO, shown in figure 11, 

(which offers a tool for importing OSM networks). 

While this process allowed for a quick generation of a 

network, it also included unnecessary parts (such as 

roads extending far beyond the considered area) 

which had to be removed. Also, a few lanes had to be 

manually added to the network, as the 

OpenStreetMap import failed to capture them 

accurately. 

Figures 9, 10, 11 depicts the network as seen in 

OpenStreetMap and in JOSM editor after removing 

unnecessary parts, then finally then network after 

importing in the simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9  Downtown in open street map 

 

 

 
Figure 10 Area imported in JOSM editor 

 

 

 
Figure 11 Network in SUMO simulation 

 

 

 

 

 

 
Figure 8 Flowchart showing the traffic model creation process 

 

 _ _ *  _  iVolume interval round Last volume i Delate volume 
                (5)
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To build a traffic model which simulates a possible 

realistic scenario, traffic count and required data for each 

intersection was acquired from the City of Ottawa. An 

example of the supplied data is included in Table 1, 

showing the number of vehicles heading right (RT),left 

(LT) and straight (ST) over intervals throughout the day. 

 

The data within Table 1 has gaps from 10:00   to 11:30 

a.m. And 1:30 to 3:00 p.m. To fill these gaps [9], a simple 

linear interpolation function was used, adding 30 min 

intervals and allowing for a smooth transition from one   

volume to the next. This was achieved using Eq. (5), 

where last_volumerepresents the vehicle volume at the 

end   of the last known interval and Delta_volume is the 

required linear change in volume to match the next known 

volume, after the   addition of the specific number of 30 

min intervals 

The SUMO route generator used here relies on vehicle 

flows, which determine the number of cars to 

introduce/remove from a lane orroad segment over each 

interval, and turning rates, which determine the which 

vehicle to proceed in which direction. Using the data 

provided for each intersection (see Table 1 for an 

example), it is easy to calculate the turning ratios for the 

exit point of any roadiusing Eq. (6).  

All traffic flows for a road segment can be calculated by 

subtracting the total number of cars entering the road 

from the cars exiting the same road over a time interval. 

With this data calculated, the SUMO routing program 

generates 15 sets of car routes to be used in the 

simulation. This program generates sets of car routes by 

using the specified traffic flows to determine where/ when 

cars should be allowed into the network (which begins a 

route) and using the turning ratios at the end of each road 

segment to determine which way the car should proceed. 

When a car's route enters a `sink' road, the route is 

terminated. 

 i
i

Count
Ratio

Total
 (5) 

 

Vehicle’s route files were acquired from work presented 

in D. McKenney and T.White [9] and was used to 

generate traffic during simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 depicts a signal timing plan sample for 

intersection bank-albert as acquired from Ottawa traffic 

office. Figure 13 depicts xml snippet for the intersection 

after conversion in order to be used in the simulation. It 

shows how to determine traffic controller operation mode, 

the “type” attribute has two options, “static” or “actuated”, 

setting the type to “static” makes the intersection follow 

the coordinated timing plan while "actuated" makes it 

adaptive to traffic. Operation mode was set to static to 

follow optimized city plan and provide us with the 

required type of coordination in a way that produces green 

waves [11]. 

 

 

 
 

                 Figure 12 Bank-Albert signal timing 

 
 

         Figure 13 Bank-Albert signal timing plan in simulator 

 

5.2 Evaluation Metrics 

Two values were considered to measure the network 

performance: 1) Average number of departed cars that is 

the total number of cars which have reached their 

destination, 2) Mean Travel Time that is the average 

travelling time for all cars since entering the network until 

reaching their destination. 3) Expected learning time. 

 

 

 

 

 

 

 

 

 

AM Peak Off Peak PM Peak Night Weekend

1 2 3 4 5

Cycle 60 55 55 55 55

Offset 55 40 8 26 40

NS Thru 26 28 25 28 28

WB Thru 34 27 30 27 27

Table 1 Example of the available traffic volume data for each intersection 
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5.3 Results 

To test the capability of the proposed algorithm to 

effectively improve the traffic, the performance of the 

system using the proposed method was compared to the 

performance of the network using the signal timing plans 

provided by the City of Ottawa. Using SUMO’s route 

generation program [10], 8 scenarios were generated from 

the available data, each of which represents realistic 

vehicle volumes for an 11-hour period (7a.m.–6p.m.). 

Each scenario was simulated once with the network being 

clustered using the proposed algorithm and once without 

clustering. Results presented in this section are averaged 

over the 8 simulation runs. 

In the experimental simulation of the proposed 

methodology, mean travelling time i.e.; average time 

taken from source to destination and mean cars throughput 

i.e. number of cars which reached their destination, are the 

two measures used to evaluate the improvement. 

The average traffic count calculated between intersections 

was used as a threshold to perform the clustering 

algorithm, resulting in the clusters dendrogram, for 

demonstration of the dendogram, figures 14, 15 depicts 

each cluster (junctions belonging to same group) are 

bounded by a green rectangle using single link and 

complete link algorithms respectively. The clustering 

pattern for complete linkage distance tends to create 

compact clusters, also complete linkage dendogram shows 

that, intersections are grouped in a cluster of smaller size 

(1-2).On the other hand, single linkage tends to add one 

point at a time to the cluster, creating long stringy clusters. 

Single linkage dendrogram shows that, most intersections 

are grouped in one cluster, and a few are clustered as 

singleton junctions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After performing the clustering, all singleton intersections 

signal timing configuration were removed from the 

coordinated network setup by changing their signal timing 

operation mode to be “actuated” instead of “static” as 

previously explained in figure 10.  

In figure 16 we can see the network junctions outlined on 

X and Y axes before clustering, all intersections are 

considered as one huge network, or one cluster and each 

junction is considered as an agent which will 

communicate with all other agents in the network and 

such huge network will increase the RL state-action space 

dramatically and increase learning time as a result. 

 

In figure 17, 18 the network is shown after clustering 

process has been performed using single link and 

complete link algorithms respectively, intersections which 

belong to the same cluster have the same symbol for 

demonstration. We can see that, the complete-link 

algorithm produces tightly bound or compact network (1-

2 junctions per cluster), the single-link algorithm, by 

contrast, suffers from a chaining effect. It tends to produce 

clusters that are straggly or elongated (more than 10 

junctions for a cluster). However, from a pragmatic 

viewpoint, it was observed that, the complete link 

algorithms are more useful in producing hierarchies in 

many applications than the single-link algorithm [13]. 

Referring to Whitehead, Steven D [16] and Min Tan [12], 

decreasing the number of cooperative agents shall 

decrease the learning time. This is a first of step of 

overcoming the “curse of dimensionality” problem, other 

approaches include applying function approximation 

methods to reduce and/or interpolate the searchable value-

space, and it tries to generalize a value function. 

Figures 19, 20 illustrate the throughput and mean travel 

time of the clustered and non-clustered networks 

respectively.In Figure 19 clustering the network using 

single linkage technique performed slightly better than the 

original network, this is due to utilizing the traffic 

controllers by replacing static controllers with actuated 

controllers which optimized the network by saving “non-

used” and wasted green time and increased the number of 

total reached cars with 5%.The slight increase was due to, 

most intersections in the clustered network fell into the 

same cluster which makes it similar to the original 

network.  

On the contrary, in complete linkage clustered network 

there is higher throughput than the original work of 15% 

increase, where the complete clustering technique resulted 

in more cluster sub-networks typically of size (2). Figure 

20 shows the mean travel time figure as the original 

network provided less average travelling time, the result 

shows that the single linkage clustered network is (4) 

seconds more and complete linkage network is (9) 

seconds more . This happens because green signal stays 

longer in the original network, which results in reducing 

the average travelling time across the network. 

 
 

Figure 14 Single link clustering dendrogram 
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Figure 15 Complete link clustering dendrogram 

 
Figure 16 Non-clustered intersections 

 
Figure 17 Clustered intersections using single linkage 
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Figure 18 Clustered intersections using complete linkage 

 

 

Figure 19 Throughput rate over day 

 

Figure 20 Mean travel time over day 
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In figure 21 we can see a comparison of average travelling 

time between the single linkage clustered network, 

completed linkage clustered network and the work done 

by [D.McKenney and T.White] , which was performed on 

the same district. Both clustered networks had much lower 

average travelling time (seconds) than the agent system, 

but it should be noted that, the agent system delay was 

caused due to having vehicles' routes reaching up to (259 

seconds) of average travelling time. 

The benefit of following the adaptive approach to generate 

signal plans, is that the plans implemented at an 

intersection are modified to serve the current traffic flows 

more effectively and the hybrid usage of fixed and 

adaptive traffic controllers in the clustered network 

provides faster trips than the adaptive system developed in 

[9]. 

6. Conclusion and Future Work 

Generally, it is not easy to define appropriate state-action 

spaces in all real-world RL problems. Usually the tiling of 

the state space has to be rather fine to cover all possibly 

relevant situations and there can also be a wide variety of 

actions to choose from. Therefore, there exists a 

combinatorial explosion problem when trying to explore 

all possible actions and states. In our approach to improve 

the traffic signal controllers system and to overcome 

reinforcement learning challenges which are caused 

mainly due to exponential growth in the state-action space 

resulting in more communications between agents and 

increased learning time, the controllers were clustered 

using machine learning Hierarchal algorithm instead of 

using traditional techniques which are based on 

geographical attributes, into strongly connected sub-

networks using the traffic volume as a similarity measure, 

a realistic scenario was performed and results were 

acquired. The increase of departed vehicles (reached its 

destination), in the case of single linkage clustered 

network is 5%, this slight increase is due to that, most 

intersections in the clustered network belongs to the same 

cluster which make it similar to the original network, 

except for intersections which were isolated while in the 

complete linkage clustered network it reached up to 15%. 

 

 

 

 

 

 

 

 

 

The proposed system was compared to [D.McKenney and 

T.White] which was performed on the same district as this 

work and it was shown the suggested technique resulted in 

faster travelling time. Decreasing the number of 

cooperative agents shall decrease the learning time 

referring to Whitehead, Steven D and Min Tan Looking at 

the simulation result, we can see that the clustered 

network achieved promising and higher overall 

performance than non-clustered network. Another 

direction for future work is to apply the proposed system 

to reinforcement learning based network to test and record 

the system overall performance. 
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