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 Abstract 

In wideband cognitive radio networks, Nyquist 

sampling rate is very challenging problem. It required 

expensive high speed analog to digital converter and 

large storage spaces. Lately, compressive sensing has 

been emerged as significant solution to crack the 

conventional sampling rate requirements. It proved 

the ability to sample below Shannan-Nyquist criteria 

and reconstructing back the signal after considerable 

dimensional reduction. Mostly in cognitive radio 

networks, energy detection is widely used due to its 

simple implementation and blind detection property. 

However, regardless that energy detection is subject to 

noise uncertainty as well as shadowing and fading 

which deteriorate its detection performance. Several 

articles have been published to improve energy 

detection performance using large number of 

measurements. In this paper, since, the detection 

performance using small number of measurements or 

compressed measurements achieved significant 

performance using energy detection under additive 

white Gaussian noise channel. This motivated us to 

investigate the performance of compressed 

measurements-based detection over fading channels 

which has not been studied yet. The proposed 

algorithm has been implemented using MATLAB. We  

also studied the tradeoff between the compression 

ratios and using fraction of transmitted signal and its 

impact on detection performance and threshold choice. 

In comparison with the ordinary compressed energy 

detection over the Rayleigh fading channel the results 

reveal that the proposed enhanced compressed 

measurements-based energy detection is better in 

performance of detection. 

 

11..  IInnttrroodduuccttiioonn  

 

Because of a deficiency of spectrum, Cognitive Radio 

(CR) has been suggested as a tempting means to alleviate 

the problem. Empirical investigations have been 

conducted by Federal Communications Commission 

(FCC) and other agencies. They have come to the 

conclusion that more than 70% of the spectrum were 

poorly used because of a scarcity of spectrum [1-3]. To 

overcome this problem, they suggested opening unused 

licensed frequency channels by for primary users (PUs) to 

be shared with unlicensed ones (i.e., secondary users 

(SUs)). These unused licensed frequency channels – 

commonly known as spectrum holes – these are based on 

the opportunistic basis either by using overlay or underlay 

methods [4].  

 

CR has been adopted to make the SUs access the unused 

licensed frequency bands easily. The access to these 

hidden spectral opportunities could be achieved by 

exploiting spectrum sensing without interfering with the 

PUs communications as well as the other neighboring. As 
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some services moved from analog to digital broadcasting 

TV, e.g., VHF/UHF bands, they are proposed by IEEE 

802.22 wireless regional area network to be used by CR 

networks with sensing time less than two seconds, the 

probability of detection equal 90% and the probability of 

false alarm equal 10% or less. CR transceiver sensitivity is 

-21 dB for digital and – 95 dB for analog signals [5].   

 

Due to conventional sampling rate requirements, sensing 

becomes a very challenging task, for example, we require 

12 Giga sample per second (Gsps) to sample 6 GHz 

frequency band), something that may prove too costly. To 

settle the matter, Compressive sensing (CS) has been 

energetically proposed as one of the best solutions. It is a 

powerful mathematical tool that proved the ability of 

sampling below the conventional Nyquist sampling 

condition and recovering the transmitted signal once again 

after great dimensional reduction at the reception side by 

using reconstruction algorithms [6, 7]. 

 

Spectrum sensing performance could be measured by 

means of two metrics: the false alarm probability and the 

detection probability. The former is when a frequency of a 

certain band is declared to be not free while it is. The 

latter is when the frequency of a certain band is 

successfully declared to be occupied when it is. Various 

spectrum detection techniques have been adopted in 

literature such as energy detector, cyclo stationary 

detector and so on. Among spectrum sensing techniques, 

energy detector is the most commonly employed due to its 

simple implementation and blind property.  

 

Despite its advantages, energy detector is prone to noise 

uncertainty, shadowing and fading, and, as a result 

decrease in its detection performance. it is an accepted 

fact that the analytic expressions of detection and false 

alarm probability have firstly been addressed and derived 

by Urkowitz [8]. Then intensive efforts have been made to 

improve the performance of detection of energy detector 

[9-15]. Lately, the wideband spectrum sensing problem 

has been reviewed over fading channels exploiting energy 

detection [16-23]. 

 

Consequently, several mathematical expressions were 

derived [17, 24-29]. Nevertheless, these expressions have 

been influenced by errors of truncation. de Carvalho et al 

[19] studied analytically the effect of numerous fading 

models on the performance of detection of CR sensing 

task by means of energy detector. They suggested 

exploiting energy detector on channel subjected to log-

normal fading as it achieved well performance than other 

channels. Atawi et al reported that the relationship 

between probability of detection and time-bandwidth 

product is inversely proportion using generalized-K 

(EGK) distribution [20].  

 

The proposed analytic expression can be performed well 

exploiting integer and non-integer values of fading 

parameters for reception modes, non-diversity, and 

diversity. Considering the effect of multiple PUs on the 

performance of both probabilities of detection and false 

alarm, a innovative closed form of detection probability is 

provided [21]. To deal with the fading channel effect, [22] 

proposed cooperative sensing approach. In this approach, 

wideband spectrum is segmented into different separate 

narrowband clusters to be sensed by multiple SUs over 

channels of small-scale fading. In each cluster, cluster 

head responsible for sending the decision about frequency 

band status to the fusion center has been nominated. An 

alternative to Marcum Q-function approximation is used 

in in [23]. They provided different analytical approach to 

express the detection probability over different fading 

channels. 

 

Further improving on has been achieved to detection 

performance of energy detector by employing CS over 

Additive White Gaussian Noise (AWGN) channel [30, 

31]. To the extent that the researchers’ attention, the 

expression of the detection probability based on 

compressed measurements over fading channel has not 

been experimentally derived yet. Based on that, the 

current study attempts to attain a derivation for the 

aforementioned expressions using energy detector. Our 

contribution is to show that despite the reduction of using 

a small number of measurements or collected 

samples  M M N , the energy detector based 

compressed measurements can obviously able to detect 

the presence of PU transmitted signal on the observed 

frequency band in fading channel as well in AWGN. In 

compare to the traditional case without the use of 

compressed sensing, the detector requires large number of 

measurements or collected samples  N M N to 

detect the existing of PU signal on that channel under 

observation.  

 

Which by result, using less measurements M for 

detection is much better than using more measurements 

N in the same case in which this reduction contribute 

implicitly faster detection with less time. In addition to 

that in traditional energy detector using less measurements 

may cause falsely declaring the observed channel 

unoccupied while it is not and yields harmful interference 

to the network. Therefore, in this work, we extended the 

use of less measurements in compressed measurement 

based energy detection (CMBED) after enhancing its 

performance as showed by simulation results to include 

the case of fading channel, e.g., Rayleigh fading channel. 

The rest of the paper is organized as system model and 

proposed work are discussed in section 2 and 3 

respectively. In section 2, we described the signal used in 

the proposed framework. While in section 3, we derived 

the probability of detection and false alarm over both 

AWGN and Rayleigh fading channels Simulation results 

are highlighted in section 4. While our work is concluded 

in section 5. 

 

22..  SSyysstteemm  MMooddeell  

 

The conventional objective of spectrum detection of 

deterministic signal could be formulated as test of binary 

hypothesis to prove the existence of PU transmitted signal 

on the observed frequency band. 
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 
     
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: H ,PU is absent
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n t
x t

h t s t n t


 

 
 (1) 

where  x t is the received signal by the SU,  s t is the 

PU signal with bandwidth W in which it is an 

independent and identical Gaussian random variable. 

 n t is AWGN with mean is zero and variance is unity, 

 0,1N .
1H and 

0H denote the presence and absence of 

the PU transmitted signal respectively. h is the channel 

coefficient and presumed as time invariant during the 

sensing period. The contained energy in the compressed 

measurements could be given as: 

 
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2
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N

N k

k

x 




  (2) 

where kx is the samples collected from the signal under 

observation and
2 is the variance of noise. The 

decision N assumed to follow central chi-square 

distribution under 0H and noncentral chi-square 

distribution with N degrees of freedom under 1H could 

be expressed as: 
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The chi-square distribution pdf could be given as: 
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 (4) 

where    is gamma function,  1vI   is the  modified 

Bessel function of the first kind and  is noncentrality 

parameter and kx is the kth Gaussian random variable. 

The statistical test N is compared to predetermine 

threshold . Hence, false alarm probability and detection 

probability could be obtained as follows: 
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 (6) 

and after some manipulations on (5) and (6), we come to 

the following findings: 

   22, 2 2FP N N     (7) 

 2 2

2 ,D NP Q      (8) 

In the following section, we will discuss our proposed 

work on how to derive the probability of detection based 

on compressed measurements under AWGN and over 

Rayleigh fading, i.e., a special case of Nakagami-m fading 

channel with  1m  . 

 

33..  PPrrooppoosseedd  wwoorrkk  

 

In this section, first, we analyzed the probability of 

detection and false alarm over AWGN channel. Second, 

we derived the same probabilities over Nakagami-m with 

m 1 fading channel using compressed measurements. 

Compressivelyin vector notation, the problem ofdetection 

could be expressed as follows: 

y Ax  (9) 

Where
1 Nx  is the received signal, 

1M y  is the 

compressed measurements vector and 
M NA  is the 

measurement (sensing) matrix . The PU signal xis sensed 

by using CS unit to get the compressed measurements 

ywith low dimensionality as depicted in Fig. 1.  In [31, 

32], by using the compressed measurements y , the 

detection decision is defined as H1 if the PU signal is 

detected elseH0is announced. The system showed a 

dramatic reduction in computational cost due to the reduce 

in signal dimensionality. 

 

 
 

Figure 1. Compressed measurements-based energy 

detection system. 

 

DCT is used as a measurement (sensing) matrix. It is, 

explicitly, a sequence of finite data points in terms of the 

sum of cosine functions oscillating at different 

frequencies. The entry of measurement matrix is placed at 

the k
th 

row and i
th 

column and the DCT first M rows are 

chosen according to the coefficients with high-energy. 

The decision has been achieved after the energy of signal 

is computed from the compressed measurements as stated 

by Parseval’s theorem as follows [8, 31]: 

 
1 2

0

0

M

M k

k

y N W




   (10) 

where N0 is the power of noise. Based on the amount of ξM 

compared to a pre-determined threshold λ, the decision 

would be chosenH0or H1as follows: 
1

0

H

H

M   (11) 

33..11  DDeetteeccttiioonn  aanndd  FFaallssee  AAllaarrmm  PPrroobbaabbiilliittyy  

oovveerr  AAWWGGNN  cchhaannnneell  

For the simple non-fading channel, i.e., AWGN, the 

observable signal in vector notation in (1) is expressed as: 

0

1

: H

: H


 



n
x

s n
 (12) 
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Under hypothesis H0, the received signal is noise, 

 
iid

20,n  N ,nk=[n0, n1, …,nM-1].The signal energy is 

computed as: 

 
21

0

M

M k
k

n 




   (13) 

Similarly, under the hypothesis H1, xk = [s0+n0, s1+n1, 

…,sM-1+nM-1] and the signal energy is expressed as: 

 
21

0

M

M k k
k

s n 




   (14) 

where σ
2
 = N0W, the decision of (14) follows noncentral 

chi-square distribution as it is illustrated in (4) under with 

M degrees of freedom and  μ is noncentrality parameter 

which is related to signal-to-noise ratio, expressed as: 

     
2 21 1

2

0 0

1
M M

k k
k k

s s  
 

 

    (15) 

with DCT as sensing measurements, we use M 

coefficients out of Nin the conventional scenario of signal 

energy calculation Es as (2). In other words, we use a 

fraction of the energy contained in the signal as in: 

   
21

0

1
M

E s k

k

E s




   (16) 

Substituting (16) for (15) yields: 

 
21

2

0

M

k E E
k

Es    




    (17) 

where γ is signal-to-noise ratio, ηE= Es /σ
2
  again 

substituting (17) for (8), the result is: 

 2 ,D M EP Q     (18) 

in which the same equation has already been derived in 

[31] assuming     σ
2
 = 1. 

 

33..22  DDeetteeccttiioonn  aanndd  ffaallssee  aallaarrmm  PPrroobbaabbiilliittyy  

oovveerr  ffaaddiinngg  cchhaannnneell  

The average signal-to-noise ratio over fading effect is 

given as 
2 2h    [16, 34] and the energy content of 

signal under H1is presented as follows: 

 
21

0

M

M k k k
k

h s n 




   (19) 

If we assume the channel coefficient to be time invariant 

during the observation interval, then hk → h. The 

noncentrality parameter is given as: 
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2 21 1

2 2

0 0

M M

k k k
k k

h s h s  
 

 

    (20) 

using the similar steps as in AWGN channel, the fraction 

of that energy contained in the signal is: 

   
21

0

1
M

E s k
k

E s




   (21) 

By substituting (21) for (20), we get: 

 
21

2 2 2

0

M

k E E
k

h E hh s    



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Finally, substituting (22) for (8) produces: 

 2

2 ,D M EP Q h     (23) 

The probability density function of Nakagami-m could be 

expressed as central chi-square distribution[35] and 

Rayleigh channel probability distribution function is 

considered as a special case of Nakagami-m, m =1, and is 

presented as: 

,

1
expNakf 



 

 
  
 

  (24) 

The conventional method for obtaining the average PD 

over the distribution of specific fading is by averaging PD 

under AWGN over fγ(γ) of the output SNR and this 

method could be expressed as: 

 

   
0DBCM DP P f d  


   (25) 

 

where fγ(γ) is the distribution of fading channel as in: 

 

    2 2 2

2
0

d,DBCM M EP fQ h      


 
 (26) 

 

and by integrating (26), an enhanced closed-form 

expression of detection probability using compressed 

measurements over Rayleigh fading channel, 
DBCMP , 

using Eq B.53 in [36] could be expressed as: 
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 (27) 

where l=M/2-1 and μ=h
2
ηEγ . 

 

44..  SSiimmuullaattiioonn  RReessuullttss  aanndd  DDiissccuussssiioonnss  

 

In this section, we illustrate the simulation results of the 

performance of Enhanced Compressed Measurement 

Based Energy Detection (ECMBED). The illustration 

could be categorized into two parts: a) the simulation 

results of testing the performance of ECMBED in 

comparison with the closed form of (27) over Rayleigh 

fading channel and to the achievement results in [31], and 

Compressed detector, as well. b) ECMBED performance 

over Rayleigh fading channel is compared to the result in 

[17], (see Fig. 1 within the ref. [17]).   

 

In both cases, the PU transmitted signal follows the 

IEEE802.22 WRAN standard. It is an OFDM signal with 

2048 FFT, 4.45 Mbps data rate, cf is 54 MHz, and 16-

QAM payload modulation. The receiver operating 

characteristic (ROC) curves analysis has commonly been 

employed in the signal detection theory. It is a method to 

measure the tradeoff between the detection probability or 

the miss-detection probability with respect to the false 

alarm probability.  

 

In Fig 2, the performance of ECMBED versus SNR at 

different probabilities of false alarm values with M/N=0.2 

is depicted. In other words, 20 percentage of the collected 

number of samples N is used only to detect PU transmitted 

signal on the observed frequency band. The result 

revealed that the performance of detection probability 

improves as the probability of false alarm increases to the 

limit assigned by IEEE802.22 WRAN. For example, 
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almost 90% of detection could be achieved using -10 dB 

signal-to-noise ratio with PF = 0.1 while PD = 0.62is 

achieved with PF = 0.01. Likewise, PD = 0.9 could also be 

achieved at PF = 0.01 with only 3 dB marginal signal-to-

noise ratio. Furthermore, at low value of  probability of 

false alarm e.g., PF = 0.01, the marginal SNR required to 

shift the probability of detection  PD from 50% to 90%  

has been quite small. 

 
Figure 2 Performance of ECMBED at different PF, with 

M/N=20% 

 

44..11  EECCMMBBEEDD  PPeerrffoorrmmaannccee  iinn  CCoommppaarriissoonn  

wwiitthh  CClloosseedd  FFoorrmm  

 

In this subsection, we studied the performance trade-off 

between PM and PF over Rayleigh fading channel and 

depicted the results using complementary ROC curves as 

in Fig. 3. As shown that the performance of the proposed 

analytical expression of PD,RBCM produced sustainable 

result when it is compared to simulated ECMBED 

algorithm. The difference is barely noticed and the curves 

of PD,RBCM showed closeness in results. 

 

 
 

Figure 3 Complementary ROC curves of PD,RBCM 

comparing to simulated ECMBED results over Rayleigh 

fading channel (γ =-10, -15 and -20 dB) 

 

44..22  EECCMMBBEEDD  PPeerrffoorrmmaannccee  iinn  CCoommppaarriissoonn  

wwiitthh  CCoommpprreesssseedd  DDeetteeccttoorr  

 

In this subsection, we tested the detection performance of 

ECMBED using different values of SNR. The obtained 

results have been compared to the results achieved by the 

compressed detection as shown in Fig. 4. The simulated 

results showed that ECMBED produced high detection 

performance in comparison with compressed detector 

using only 20 percentage of compression ratio. 

 

 
Figure 4 Performances comparison between ECMBED 

and compressed detector at different PF, M/N=20%and 

N=100. 

 

Also we have reduced the compression ratio to be in 

magnitude of 10 percentage and observed the detection 

performance using different amount of probability of false 

alarm. Even if the compression ratio reduction is 10%, 

ECMBED showed better performance and the results 

illustrated in Fig. 5. 

 

 
Figure 4 Performances comparison between ECMBED 

and compressed detector at different PF, M/N=10%and 

N=100. 
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Fig. 4 and 5 illustrated the impact of using compressed 

measurements. As it has been realized that compressed 

measurements has permitted the SU to sense the PU signal 

even if we used 10 percentage of the ratio of compression. 

In other words, ECMBED used small amount of samples 

to decide the status of the observed frequency band, 

occupied or not which considered far less than that  

needed when Nyquist sampling rate has been applied. 

Finally, we also tested that performance of ECMBED 

using complementary ROC curves and compared the 

obtained results to the results obtained by ordinary energy 

detection (OED), CMBED and the compressed detector. 

The comparison parameters were M/N=20%, N=100and 

SNR = -15 dB. The simulation results of ECMBED 

performance were high as depicted in Fig. 6. 

 

 
 

Figure 6 Complementary ROC curves of ECMBED, 

OED, CMBED and the compressed detector at SNR = -15 

dB and N=100. 

 

We also studied the effect of ηE on the mis-detection 

probability versus threshold. and it has been realized that 

ηE affected the choice of detection threshold as depicted in 

Fig. 7. However the improving introduced by ηE would be 

at the expense of scarifying the reduction in compression 

ratio. Therefore, the increase in the magnitude of ηE 

should be bounded to the point that compressed 

measurements still valid. 

 

For more clarity to Fig. 7, the trade-off between ηEand 

M/Nhas been depicted in Fig. 8. It has been realized that 

as M/Nincreased the value of ηEincreased too, however in 

the same figure the detection performance after certain 

value of  M/N, the performance of the probability of 

detection degraded.  

 

 

Figure 7 The effect of 
E on the detection threshold 

 

 

 
Figure8the effect of compression ratios on both detection 

performance of ECMBED and the fraction of PU 

transmitted signal. 

 

 

44..33  EECCMMBBEEDD  PPeerrffoorrmmaannccee  oovveerr  RRaayylleeiigghh  

FFaaddiinngg  CChhaannnneell  

 

ECMBED complementary ROC curves over Rayleigh 

channel when M = 4 and M = 10 is illustrated in Fig. 9, in 

both cases, ECMBED shows better performance than the 

OED over fading channel as in [17]. 
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Figure 9 Comparing ECMBED performance results to the 

result obtained in [17]over Rayleigh fading channel using 

complementary ROC curve, (Top figure, M = 4 , bottom 

figure M = 10). 

 

Finally, we investigated the effect of SNR on the 

performance of analytical expression of (27) as in Fig. 10. 

 
Figure 10 the effect of SNR on the performance of the 

analytical expression of (27). 

55..  CCoonncclluussiioonn  

In this paper, we used compressed sensing to emphasize 

that despite the reduction of using a small number of 

measurements M (M<<N), the energy detector using 

compressed measurements can obviously able to detect 

the presence of PU transmitted signal on the frequency 

band of interest. Comparing to the traditional case without 

the use of compressed measurements, the energy detector 

requires large number of measurements M (M→N) to 

detect the existing of PU signal on that channel under 

observation. By result, using less measurements M for 

detection is much better than using large N in same case in 

which this reduction contribute implicitly faster sensing 

with less time. In addition to that using less measurements 

in traditional energy detector may cause falsely declaring 

the observed channel unoccupied while it is not and yields 

harmful interference to the network. In this paper, the 

performance of compressed energy detection based 

compressive spectrum sensing over Rayleigh fading 

channel has been investigated. It has been observed that 

even though the collected number of samples for detection 

is less than the number required by Nyquist criterion, the 

proposed method could detect the PU transmitted signal at 

a high compression ratio M/N=10%. The impact of using 

fraction of transmitted signal and the compression ratios 

on the performance of detection and threshold has also 

been investigated. When we compared the performance of 

ECMBED closed form to that realized by simulation, the 

results were close in both cases, and outperforms the 

results obtained by ordinary energy detection and 

compressed detection. The overall detector performance 

has been affected by the SNR values which is attributed to 

intrinsic variations of the corresponding detection 

probability. 
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