
Az. J. Pharm Sci. Vol. 50, September, 2014. 
 

117 

PROTECTIVE EFFECT OF ALLOPURINOL ON PARACETAMOL-

INDUCED LIVER INJURY IN RATS 

BY 

Nesreen I. Mahmoud
1
, Basim A. Shehata

2
, Ali A. Aboseif

3
, 

FROM 

1
Department of Pharmacology and  Toxicology ,  Faculty  of Pharmacy  ,  Nahda University, 

Beni-Sueif, Egypt 

2
 Department  of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Sueif University, 

Egypt 

3
 Department  of  Pharmacology  and  Toxicology ,  Faculty  of Pharmacy, Nahda University, 

Beni -Sueif, Egypt 

 

ABSTRACT  

   Background Liver injury is a major health problem that challenges not only 

healthcare professionals but also the pharmaceutical industry and drug regulatory agencies. 

Continuous exposure to certain chemotherapeutic agents, drugs, environmental toxins, viral 

infections and bacterial invasion within the body can trigger liver injury and eventually lead 

to various liver diseases. 

  Aim: The present investigation aims to elucidate the possible hepatoprotective effect 

of allopurinol on liver injury induced by administration of a single dose of paracetamol 

(PCM) to adult male albino rats. 

  Methodology: Animals were divided into 4 groups, each of 6 rats. The first group 

was kept as normal control group received (carboxy methyl cellulose 1 % + tween 80 p.o.). 

The second group (hepatotoxicity control group) received (750 mg/kg PCM p.o. as a single 

dose at day 14). The third group received (NAC; 300 mg/kg/day p.o.) on a daily basis for 14 

consecutive days. The fourth group (treatment group) received allopurinol (50 mg/kg/day 

p.o.) also for 14 consecutive days. Method of induction of liver injury by PCM: After 13 days 

of pre-treatment, animals were fasted for 18 hours then administered the last protected dose at 

day 14. After 2 hours, PCM was administered then animals were further fasted for 24 hours. 

After that, animals were sacrificed and blood tissue samples were collected . 

  Results: Administration of PCM caused liver injury in rats evidenced by significant 

increase in serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase 

(AST), hepatic malondialdehyde (MDA) content, myeloperoxidase (MPO) activity, total 

nitrate/nitrite (NOx) production. In addition, significant decreases in hepatic catalase (CAT) 

activity and hepatic glutathione (GSH) content. Treatment with N-acetyl cysteine (NAC) or 

allopurinol protect against liver injury as evidenced by significant decreases in hepatic MPO 
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activity, NOx production and MDA content, In addition, significant increases in hepatic CAT 

activity and GSH content. 

  Conclusion: It seems that allopurinol might be protective against liver injury in rats 

and is promising for further clinical trials. 

 

INTRODUCTION 

The exposure of liver to injury is much higher than any other organ because of its 

central role in metabolism as well as its ability to concentrate and biotransform xenobiotics 

(Wang and Chaudry, 1996). In metabolism, the blood that reaches the liver through the 

portal circulation contains endotoxins, metabolic waste products, absorbed chemicals and 

other cell debris which represent a high risk of liver toxicity (Koporec et al., 1995). On the 

other hand, the fragile parenchymal cells with the easily disrupted glisson’s capsule and the 

large size of the liver make this organ more susceptible to injury (Clancy et al., 2001) 

Paracetamol (PCM) is an over the counter (OTC) drug that is commonly used for its 

analgesic and antipyretic properties. However, PCM overdose is the most frequent cause of 

severe liver failure in the world and has a mortality rate of 90% (Zyoud et al., 2010). N-

acetyl-p-benzoquinonimine (NAPQI) is the toxic metabolite of PCM overdose which causes 

depletion of the cellular glutathione content (Kedderis, 1990). Unconjugated NAPQI binds 

to cellular macromolecules leading to oxidative stress, cellular necrosis and  finally cell death 

(Somani et al., 2000).  

Under this pathological condition, an extensive conversion of Xanthine 

dehydrogenase (XDH) to xanthine oxidase (XO) takes place (Haidari et al., 2009). XO uses 

molecular oxygen as an electron acceptor and leads to the formation of superoxide anion (O2
-

) and hydrogen peroxide (H2O2) in parallel with uric acid production. Therefore, XO can act 

as a source of reactive oxygen species (ROS) and induce damage to biological 

macromolecules (Rackova et al., 2007). Based on these facts, the inhibition of XO activity 

may decrease ROS production and result in anti-oxidative effects. Allopurinol is the sole 

xanthine oxidoreductase (XOR) inhibitor under clinical application (Fels and Sundy, 2008). 

In this investigation, the antioxidant effect of allopurinol was tested against NAC in PCM-

induced liver injury in rats.   
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MATERIALS and METHODS 

 Animals 

        Adult male albino rats weighing (180 ± 10 g) were used in this study. Animals were 

purchased from Nile Company for Pharmaceuticals and Chemical Industries, El Ameria 

Area, Egypt. The rats were kept under standard conditions of temperature (25°C ± 0.5) and 

relative humidity (55  1) with 12-light/12-dark cycle for one week for adaptation before 

being subjected to laboratory experiments and were allowed free access to standard forage 

and drinking water ad libitum. Experimental protocol was designed according to the 

regulation of ethical committee Faculty of Pharmacy Beni-Sueif University. 

Drugs and chemicals  

Drugs: N-acetyl cysteine was provided as a kind gift from SEDICO Company (Egypt) 

in a form of authentic powder, whereas allopurinol and paracetamol (acetaminophen) were 

obtained as a kind gift from GlaxoSmithKline Company in a form of authentic powder. 

Chemicals and kits: alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 

kits were purchased from (Spinreact Company, Spain). Glutathione powder (GSH ),1,1-3,3- 

tetramethoxypropane, 5,5`-Dithiobis-(2-nitrobenzoic acid; DTNB), horseradish peroxidase 

(1067 U/mg solid), O-dianisidine hydrochloride, O-phosphoric acid, N- (1-Naphthyl), 

ethylenediamine dihydrochloride (NEDD), sulfanilamide 2% (w/v), thiobarbituric acid and 

trichloroacetic acid  (TCA) were purchased from (Sigma-Aldrich Company, MO, USA). 

Vanadium Chloride (VCl3) was obtained from (Acros Company, Belgium). All other 

chemicals are of analytical grade. 

Induction of liver injury in rats 

  After 13 consecutive days of pre-treatment, animals were fasted for 18 hours then 

received the last protected dose at day 14. After 2 hours, a single oral dose of paracetamol 

(750 mg/kg) was administered according to the method described by Plaa and Hewitt, 

(1982) and Dash et al. (2007). Twenty four hours after PCM administration, animals were 

anaesthetized by thiopental sodium (75 mg/kg, intra-peritoneal) and blood samples were 

collected from retro-orbital plexus using heparinized micro-capillary tubes. After that, rats 

were sacrificed by cervical dislocation to separate liver samples (Kiran et al., 2012). 

Experimental design 

         Rats were randomly assigned to four groups, each of 6 animals. The first group was 

kept as normal control group. The second group (hepatotoxicity control group) received a 

single dose of paracetamol (750 mg/kg p.o.; Plaa and Hewitt, 1982; Dash et al., 2007). The 

third group (official antidote) received NAC (300 mg/kg/day p.o for 14 consecutive days; 

Abla et al., 2005). The fourth group (treatment group) received allopurinol (50 mg/kg/day 

p.o. also for 14 consecutive days; Aldaba-Muruato et al., 2012). Drugs were suspended in 

1% CMC/tween 80 solution.  
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Assessment of liver injury 

Preparation of tissue homogenate 

        To prepare liver homogenate 20%, a portion of the median or left lobes was 

homogenized with 5 volumes of isotonic ice-cooled normal saline using a homogenizer for 

the estimation of hepatic MDA content, hepatic GSH content and CAT activity as oxidative 

biomarkers and nitrate/nitrite production as inflammatory biomarker. 

          Another portion was homogenized with 60 volumes of ice-cooled hexadecyl 

trimethylammonium bromide (1%) solution in normal saline and centrifuged at 4000 xg for 

15 minutes at 4 °C in a cooling centrifuge. The supernatant was used for the estimation of 

hepatic MPO activity as inflammatory biomarker. 

 Histopathological study 

        Samples were fixed in 10% formal saline for histological examination. Samples were 

embedded in paraffin, and sections were stained with haematoxylin and eosin for histological 

evaluation of hepatic damage by light microscopy.  

Treatment of blood sample 

        After collecting blood samples in centrifuge tubes, the tubes were  allowed to 

coagulate at room temperature, then placed in water bath  at 37 ºC for 10 minutes. 

Centrifugation at 1000 xg for 20 minutes was performed. The clear serum was separated and 

used for determination of ALT and AST. 

Quantitative determination of alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST)  

 Serum ALT and AST  activities reflect the release of these enzymes from injured liver 

cells and their serum levels were assayed quantitatively according to the manufacturing 

procedure (Young, 1990). The change in absorbance (ΔA/minute) was measured at 340 nm 

over 3 minutes spectrophotometrically.  

Determination of myeloperoxidase (MPO) activity: 

Myeloperoxidase activity served as quantitative index of neutrophil infiltration and 

inflammation in several tissues (Bradley et al., 1982). Liver MPO activity was measured in 

liver homogenate according to the manufacturing procedure Harada et al., 1999. The change 

in absorbance (ΔA/minute) was measured at 460 nm over 3 minutes spectrophotometrically.     

Determination of total nitrate/nitrite (NOx) ratio: 

        The levels of NO and iNOS activities in liver tissues were measured colorimetrically 

using spectrophotometer at 540 nm according to the method described by Miranda et al. 

(2001).  

Determination of Lipid peroxidation: 

        Lipid peroxidation products were estimated by the determination of the level of 

thiobarbituric acid reactive species (TBARS) that were measured as malondialdehyde (MDA) 
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in liver homogenates according to the method described by Uchiyama and Mihara (1978). 

MDA was measured colorimetrically using spectrophotometer sat two wavelengths, namely 

520 and 535 nm, to exclude interfering substances. The difference in absorbance at both 

wavelengths was used to calculate the content of TBARS in the sample.  

Determination of reduced glutathione:  

        Glutathione was measured in liver homogenate according to the method described by 

Sedlak and Lindsay (1968).  The principle of the method depends on the reduction of 5,5`-

Dithiobis-(2-nitrobenzoic acid; DTNB) by the sulfhydryl group of GSH. The formed product 

was measured colorimetrically at 412 nm. Results were expressed as µmol/g tissue. 

 Determination of catalase (CAT) activity: 

        Catalase (CAT) activity was measured in hepatic tissues according to Clairborne 

(1985). The principle of this method depends on the decrease in catalase activity due to the 

decomposition of hydrogen peroxide at 240 nm. Enzyme activity was expressed as U/g 

tissue. 

 Statistical analysis: 

       All data are expressed as mean ± standard error (S.E.) of 6 rats per experimental group. 

Statistical analysis was performed using one-way ANOVA followed by Student-Newman-

keuls multiple comparisons test by the aid of Graph bad prism and Graph pad instant 

computer software, San Diego, USA. P < 0.05 was used as a criteria for significance between 

data. 

RESULTS: 

Histopathological study 

On histological examination of rat liver sections from the normal group, the 

histological features were typically of normal architecture (Fig, 1A). 

Liver sections obtained from PCM group showed loss of normal hepatic architecture 

and congested central vein. Massive inflammatory reactions and activated Von Kupffer cells 

were also observed. Hepatocytes showing cellular degeneration and Centrilobular necrosis 

(Fig, 1B).  

 Treatment with NAC (300 mg/kg)
 
or allopurinol (50 mg/kg)

 
attenuated the extent and 

severity of the histological signs of tissue damage in liver tissues (Fig; 1C, 1D).   
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Fig (1):  (A) Normal control group: the section showed normal hepatic architecture with 

normal central vein (red arrow) and radiating cords of hepatocytes (star). Cords of 

hepatocytes are separated by blood sinusoids (blue arrow) lined with Von Kupffer cells 

(white arrow). (B) PCM group: the section showed irregularly dilated central vein (red 

arrow) with massive inflammatory reactions and activated Von Kupffer cells (white arrow). 

Hepatocytes showing cellular degeneration (yellow arrow) and Centrilobular necrosis 

(yellow arrow). Hepatocytes are separated with dilated congested sinusoids (blue arrow). 

(C) N-acetyl cysteine group: the section showed that all hepatocytes are normal with slightly 

congested central vein (red arrow). Hepatocytes are separated with slightly congested blood 

sinusoids (blue arrow) with some activated Von Kupffer cells (white arrow). (D) 

Allopurinol group: this section showed normal architecture and normal hepatocytes (star) 

with slightly dilated congested central vein (red arrow) and some activated Von Kupffer 

cells (white arrow). 

Serum ALT and AST activities 

Serum ALT activity was significantly increased in PCM group to about 260 % as 

compared with the normal group; while treatment with NAC or allopurinol significantly 

decreased ALT  to reach about 56 % or 65 % , respectively, as compared to PCM group (Fig, 

2A). Alternatively, Serum AST level was significantly increased in PCM group to about 324 

% as compared with the normal group; while NAC or allopurinol significantly decreased 

ALT to reach about 43 % and 61 %, respectively, as compared to PCM group (Fig, 2B). 
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(A)                                                                                         (B) 

Fig (2): Effect of oral treatment with allopurinol for 14 consecutive days on serum ALT (A) 

and AST (B) activities as compared to NAC intake on liver enzyme activities against PCM-

induced liver injury in rats. 

*
significantly different from the respective normal control values at p < 0.05. 

@
significantly different from the respective PCM control value at p < 0.05. 

Hepatic MPO activity 

 The MPO activity of hepatic tissue was significantly increased in PCM group to about 

1005 % as compared to the normal control group; while treatment with NAC or allopurinol 

significantly decreased hepatic MPO activity to reach about 15% and 14 %, respectively, as 

compared to PCM group (Fig, 3A). 

Total nitrate/nitrite (NOx) ratio 

        Oral administration of PCM significantly increased hepatic NOx production as 

compared with normal control group to about 176 %. On the other hand, treatment with NAC 

or allopurinol significantly decreased hepatic NOx production to reach about 71 % and 78 %, 

respectively, as compared to PCM group (Fig, 3B) 

  

 

 

 

 

   

      (A)                                                                       (B)                                                                                              

Fig (3): Effect of oral treatment with allopurinol for 14 consecutive days on hepatic MPO 

activity (A) and NOx production (B) as compared to NAC intake against PCM-induced liver 

injury in rats. 
*
significantly different from the respective sham control values at p < 0.05. 

@
significantly different from the respective toxicity control value at p < 0.05. 
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Hepatic MDA content 

        Hepatic MDA content was significantly increased in PCM group to about 575 % as 

compared to normal control group; while a significant decrease in hepatic MDA content 

occurred after treatment of rats with NAC or allopurinol to reach about 51 % and 46 %, 

respectively, as compared to PCM group (Fig, 4A).  

 Hepatic content of reduced glutathione  

       Compared to normal control group, hepatic GSH content was significantly decreased 

in PCM group to about 34 %. After treatment with NAC or allopurinol a significant increase 

in hepatic GSH content was occurred to reach about 179 % and      178 %, respectively, as 

compared to PCM group (Fig, 4B).  

 

 

  

 

 

 

             (A)                                                                         (B) 

Fig (4): Effect of oral treatment with allopurinol for 14 consecutive days on hepatic MDA 

(A) and GSH (B) contents as compared to NAC intake against PCM-induced liver injury in 

rats.  

*
significantly different from the respective sham-operated control values at p < 0.05. 

@
significantly different from the respective ischemic control value at p < 0.05. 
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Hepatic catalase (CAT) activity 

        Administration of PCM significantly decreased hepatic CAT activity to about 4,4 % as 

compared to normal control group; meanwhile treatment with NAC or allopurinol 

significantly increased hepatic CAT activity to reach about 1150 %  and 950 %, respectively, 

as compared to PCM group (Fig, 5) 

 

 

 

 

 

 

 

Fig (5): Effect of oral treatment with allopurinol for 14 consecutive days on hepatic CAT 

activity as compared to NAC intake against PCM-induced liver injury in rats.  

* Significantly different from sham control value at p < 0.05 

@ Significantly different from ulcer control value at P < 0.05 

DISCUSSION: 

Current investigation showed that single oral dose administration of PCM (750 

mg/kg) caused acute liver damage to rats as evidenced by significant increases in serum 

levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In 

addition, there were significant increases in hepatic malondialdehyde (MDA) content, 

myeloperoxidase (MPO) activity and total nitrate/nitrite (NOx) production. On the other 

hand, significant decreases in hepatic glutathione (GSH) content and catalase (CAT) activity 

were observed. Histopathological examination further supported hepatotoxicity induced by 

PCM over dose. 

Previous investigations showed similar results concerning PCM-induced 

hepatotoxicity in rats where Alipour et al. (2013) reported similar increases in liver enzymes 

after administration of PCM in a single dose of 850 mg/kg in rats. Da Silva Melo et al. 

(2006) also reported the same result in administration of a single dose of 650 mg.kg
-1

 of PCM 

in rats. In addition, a similar increase in hepatic MDA content was observed by Lahouel et 

al. (2004) and Chandrasekaran et al. (2009). In addition, the decreases in hepatic GSH 

content and CAT activity are in harmony with the results reported by Yousef et al. (2010) 

and Gupta et al. (2014). Additionally, the elevations in inflammatory biomarkers; MPO 

activity and NOx production induced by PCM is in agreement with the work of Gardner et 

al. (2002) and Sener et al. (2006). 
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Acute liver injury caused by PCM is a severe condition in which metabolic 

homeostasis is affected. In addition, liver enzymes are leaked into the blood stream relative to 

the extent of liver damage (Naik and Panda, 2007). The damaged hepatocytes trigger a 

cascade of inflammatory responses leading to various degrees of liver damage (Sass et al., 

2002) which is further propagated by the induction of different extrahepatic inflammatory 

cells (monocytes, macrophages and neutrophils) to the area of injury. Therefore the 

pathophysiology of liver injury induced by PCM is complicated and involve an interaction 

between parenchymal and non-parenchymal cells (Chan et al., 2007).    

 The toxicity of PCM develops when its intake exceeds its hepatic detoxification. Under 

therapeutic doses, about 2 % of PCM is excreted in the urine unchanged. More than 90% is 

metabolized by way of conjugation  and is eliminated mostly as glucuronide and sulfate 

conjugates in the urine and bile (Manyike et al., 2000; Watkins and  Seeff, 2006)  

 Approximately 5 % to 9 % of the given dose of PCM undergoes oxidative conversion 

by way of the cytochrome P450 enzymes to the toxic metabolite N-acetyl-p-benzoquinone 

imine (NAPQI; Kaplowitz, 2004). CYP2E1 is the major source of NAPQI formation which is 

a highly reactive electron species that can act as an electrophile or an oxidant radical. 

Normally, it is rapidly metabolized by conjugation with intracellular GSH forming a nontoxic 

PCM–GSH conjugate which is finally excreted as mercapturic acid and cysteine conjugates 

(James et al., 2003).  

At toxic doses, the sulfation and glucuronidation routes become saturated and hence, 

higher percentages of PCM molecules are oxidized to highly reactive NAPQI (Eesha et al., 

2011). NAPQI can covalently bind to macromolecules of cellular membrane and increase the 

lipid peroxidation (LPO) resulting in tissue damage. In addition, NAPQI can also alkylate 

and oxidise intracellular GSH, which results in depletion of liver GSH pool. GSH depletion 

further contributes to cellular oxidative stress, DNA damage and subsequently leads to 

necrotic cell death (Hinson et al., 2004).  

 Covalent binding of NAPQI to hepatic proteins can also trigger an immune response. 

The activation of innate immune system leads to the influx of neutrophils which release MPO 

into tissue and promote inflammation process (Nassini et al., 2010). Kupffer cells are the 

phagocytic macrophages of the liver which when activated release numerous signaling 

molecules which participate in the development and propagation of hepatic injury (Ishida et 

al., 2002). The activated Kupffer cells are also important in NO and superoxide formation. 

Peroxynitrite (ONOO
-
) could be formed in early phase of paracetamol overdose by 

superoxide anion derived from Kupffer cells and nitric oxide from Kupffer and endothelial 

cells (Knight et al., 2001). The toxic ONOO
-
 produces nitrated tyrosine that correlates with 

cell necrosis (Michael et al., 2001). In addition, it is also a potent oxidant that can attack a 

wide range of biological targets under conditions of reduced cellular oxidant scavenging 

capability (Sadowska-Bartosz et al., 2014). 

 According to the results of present work, the hepatoprotective effect of NAC was 

evidenced by enhancing liver function and maintaining cell integrity which was indicated by 
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significant decreases in serum ALT and AST activities. These results are in accordance with 

previous investigators showing similar protective effects of NAC on PCM model (Avizeh et 

al., 2010).  The present investigation showed that NAC has a powerful antioxidant activity as 

evidenced by significant increase in hepatic GSH content which is similar to the results 

observed by Bulbuloglu et al. (2011) and Nissar et al. (2013). NAC is a thiol (sulfhydryl)-

containing antioxidant that has been used to reduce various conditions of oxidative stress 

(Sachdeva and Flora, 2014). It has the ability to restore the hepatocellular GSH content. It 

can enter cells more easily due to its small size and it is converted enzymatically to cysteine 

which is a precursor for GSH biosynthesis (Finamor et al., 2014). Therefore, NAC can 

eliminate electrophonic intermediates and free radicals through conjugation and reduction 

reactions (Kalantari and Salehi, 2001). 

 The antioxidant activity of NAC was evidenced also by the significant decrease of 

LPO which was evidenced in the present investigation where NAC was able to decrease 

MDA content. The antioxidant activity of NAC was further confirmed by the significant 

increases in CAT activity. These results are similar to the results of Galicia-Moreno et al. 

(2012) and Cetinkaya et al. (2012). 

 These observations are in accordance with the result of Hemalatha et al., (2013) who 

reported that NAC reduced methimazole-induced lipid peroxidation. Also, NAC has a potent 

antioxidant activity by acting not only as a substrate for GSH biosynthesis but also by acting 

as a direct scavenger of free radicals (Uraz et al., 2013) .  

In addition, NAC was observed to posses anti-inflammatory  effect  which was  

proved  by reducing neutrophil  infiltration  as  evidenced  by  decreased  MPO activity 

together with decreased production of NOX. These results are matched with results obtained 

by Forgiarini et al. (2014) who observed similar decreases in the level of MPO and NOX 

upon administration of NAC to protect against lung IR injury, and  the result of Sahin and 

Alatas (2013) who evaluated the protective effect of NAC on (CCl4)-induced acute liver 

injury in the rat, reporting similar decreases in levels of MPO and NOX in NAC treated 

groups.        

 On the other hand, the oxidation of sulfhydryl residues by NAPQI triggers the 

conversion of xanthine oxidoreductase from xanthine dehydrogenase form (XDH) to the 

xanthine oxidase (XO) form (Haidari et al., 2009). XO uses molecular oxygen as an electron 

acceptor and leads to the formation of O2
-
 and hydrogen peroxide in parallel with uric acid 

production. Therefore, XOR can act as a source of ROS and induce damage to biological 

macromolecules (Rackova et al., 2007). Reactive oxygen species  from XOR and NADPH 

oxidase mediate the expression of endothelial-cell surface P-selectin, one of the first cell-

surface molecules to be expressed on the endothelial cell in response to inflammation and 

activate the transcription factors nuclear factor-kB (NF-kB) (Takano et al., 2002).  

Based on these facts, the inhibition of XOR activity may decrease ROS production 

and result in anti-oxidative effects  (Fels and Sundy, 2008). 

Allopurinol  competitively inhibits the action of XOR and effectively protects against 

free radical production, releasing of inflammatory mediators and against tissue damage (Viña 
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et al., 2000). Therefore,  the antioxidant properties of allopurinol are referred to its inhibition 

of XO which can lower the ROS load of the body, thereby making endogenous reducing 

equivalents available for other detoxification reactions (Lin et al., 2000). 

The present investigation demonstrated that allopurinol improved liver function as 

evidenced by significant decreases in ALT and AST levels.  These results are similar to the 

result of Jeon et al. (2001) who studied the protective effect of allopurinol on hepatic energy 

metabolism in ischemic reperfused rat liver. Demirel et al. (2012) confirmed these results in 

thioacetamide-induced acute liver failure. 

Current investigation demonstrated that allopurinol has a potent antioxidant activity 

which was evidenced by modulation of oxidative stress biomarkers. The results reveled that 

allopurinol significantly increased hepatic GSH content and CAT activity in PCM model. 

These findings confirm the results obtained from the in vitro study carried out by Maruf et 

al. (2014) who reported similar increase in GSH by allopurinol in azathioprine-induced 

cytotoxicity. In addition, similar increase in GSH level by allopurinol was also confirmed by 

the investigation studied by Sinik et al. (2005) in partial unilateral ureteral obstruction.  

On the other hand, similar increase in CAT activity was also reported from the in vitro 

study of Mesquita-Casagrande et al. (2013) and Rodrigues et al. (2014) who studied the 

protective effect of allopurinol on hypoxanthine-induced oxidative stress in rat kidney. 

The antioxidant effect of allopurinol was further evidenced by the significant decrease 

in hepatic MDA content in PCM model. These results are in harmony with the results 

reported by Akbulut et al. (2014) who studied beneficial effects of allopurinol against 

cyclosporine-induced hepatotoxicity. In addition, Giray et al. (2001) concluded that 

allopurinol prevented Cypermethrin-induced oxidative stress in rat brain and liver.  

In addition, the present work showed that allopurinol has anti-inflammatory activity 

as evidenced by significant decrease in hepatic MPO activity and NOx production in PCM 

model.  These  results  confirm  the  work  of  other  investigators  who reported  similar  

decrease  in  hepatic  MPO  activity. Ansari et al. (2013) reported that allopurinol decreased 

MPO activity and exerted a neuroprotective effect against cerebral ischemic reperfusion 

injury in diabetic rats. Further support for this idea was provided by Makay et al. (2009) who 

reported similar decrease in NOX production during studying the mitigating role of 

allopurinol on oxidative stress in experimental hyperthyroidism. In addition, Alorainy (2008) 

reported similar decrease in NOX level by allopurinol in rat model of rheumatoid arthritis. 

CONCLUSION 

 In conclusion we suggest that allopurinol may be a promising agent for protection 

against liver injury compared with NAC. Further sufficient preclinical and clinical studies 

should be conducted to clarify this fact. 
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 المحذث فى الجرران بواسطتالضرر الكبذي على التهاب لوبيورينول لعقار االتأثير الوقائى 

 سيتامولاالبار

 للسادة الذكاترة

 *, ثبسى إَس شحبرّ**, عهٗ احًذ اثٕسٛف*َسشٍٚ اسحق يحًٕد

 مـــــــــــــــــــــــــــــــــه

 الأدٔٚخ ٔانسًٕو, كهٛخ انصٛذنخ, عبيعخ انُٓعّ, عًٕٓسٚخ يصش انعشثٛخ* قسى 

 ** قسى الأدٔٚخ ٔانسًٕو, كهٛخ انصٛذنخ, عبيعخ ثُٗ سٕٚف, عًٕٓسٚخ يصش انعشثٛخ

فٙ انشعبٚخ  فقػ رزحذٖ انًزخصصٍٛ انزٙ لا يشاض انكجذّٚ رعزجش يٍ أْى انًشبكم انصحٛخ انكجش٘ نلإَسبٌإٌ الأ : خلفيت

 ٛبدانزعشض انًسزًش نجعط انعلاع إٌ انٓٛئبد انزُظًٛٛخ.كزنك صُبعخ الأدٔٚخ ٔانًٓزًٍٛ ثأٚعب  رزحذ٘ نكٍانصحٛخ ٔ

  .هكجذن بد يخزهفخأٌ رؤد٘ إنٗ إصبثيٍ انًًكٍ الأدٔٚخ ٔانسًٕو انجٛئٛخ ٔالانزٓبثبد انفٛشٔسٛخ ٔانجكزٛشٚخ كزنك ٔ خانكًٛٛبئٛ

ى عٍ إعطبء انُبعانعشس انكجذ٘ عهٗ  لنعقبسانٕثٕٛسُٕٚانٕقبئٗ انًحزًم  نٗ رٕظٛح انزؤصٛشإانذساسخ  ِرٓذف ْز الهذف:

 نزكٕس انغشراٌ انجٛعبء انجبنغخ. عٍ غشٚق انفى يٍ انجبساسٛزبيٕل عبنٛخ انزشكٛض عشعخ ٔاحذح

 عٕيهذ. انًغًٕعخ الأٔنٗ قذ عشراٌ سزخسثعخ يغًٕعبد, كم يغًٕعخ رزكٌٕ يٍ أرى رقسٛى انحٕٛاَبد انٗ  الطريقت:

 رًضم ّخ انضبَٛ. انًغًٕععٍ غشٚق انفى( 00% + رٍٕٚ  1كبسثٕكسٗ يٛضٛم سهٛهٕص يبدح عطبئٓب إظبثطخ )رى ًغًٕعخ ك

عٍ غشٚق انفى(. انًغًٕعخ  كغى\يغى050انجبساسٛزبيٕل عشعخ ٔاحذح يٍ  بعطبئٓإانًغًٕعخ انعبثطخ نهعشسانكجذ٘ )رى 

(. انًغًٕعخ عٍ غشٚق انفى سٛزٛم سٛسزٍٛٛإ-إٌيٍ يبدح ى/كغى/ٕٚو يغ 300عطبئٓب إرى ) ّانًغًٕعخ انقٛبسٛ رًضمانضبنضخ 

. كلا انًغًٕعزٍٛ ( يغى/كغى/ٕٚو يٍ عقبس انٕثٕٛسُٕٚل عٍ غشٚق انفى 50عطبئٓب إ)رى  انًغًٕعخ انعلاعٛخانشاثعخ كبَذ 

عطبئٓب عشعخ إسبعخ قجم  10 رصٕٚى انحٕٛاَبد نًذح رى ٔقذ ,يززبنٛخ ٕٚيآ14انضبنضخ ٔانشاثعخ رعبغذ انغشعبد انًحذدح نًذح 

 الاَسغخ.انذو ٔ غًع عُٛبدن انغشراٌرثح  ٔثعذ رنك رى ,سبعخ أخش٘ 24انجبساسٛزبيٕل صى رى رصًٕٚٓب نًذح 

ٔقذ دنم عهٗ رنك عٍ ظشسكجذ٘ ثٓب حذاس إدٖ انٗ أقذ  انفىعٍ غشٚق  انجبساسٛزبيٕل يبدح  إعطبء انغشراٌإٌ  النتائج:

فٙ  رٙ(-إط-سجبسرٛذ أيُٕٛرشاَسفٛشاص)إّٚأرٙ( ٔ-إل-شبغ إَضًٚٙ ألاٍَٛ أيُٕٛرشاَسفٛشاص)إّٚحقٛقٛخ فٙ َغشٚق انضٚبدح ان

يحزٕ٘ يبدح يبنٌٕ داٖ انذْٛذ َٔشبغ إَضٚى انًبٚهٕثٛشأكسٛذٚض ٔاَزبط  فٙ عْٕشٚخظبفخ انٗ صٚبدح لإبث  سبئم انجلاصيب

 دح انغهٕربصٌٕٛيبٔيحزٕٖ فٗ َشبغ اَضٚى انكزبنٛض  قٙحقٛحذس َقص  انغبَت اٜخش. ٔعهٗ كجذان أَسغخأكسٛذ انُٛزشٚك فٙ 

انعشس يٍ  بٚخ انكجذحًإنٙ  انٕثٕٛسُٕٚلعقبسأٔ اسٛزٛم سٛسزٍٛٛ-إٌ رٙعلاط انغشراٌ ثًبدقذ أد٘ . فٙ أَسغخ انكجذ أٚعآ

َشبغ إَضًٚٙ ألاٍَٛ  انغْٕش٘ فٙ الاَخفبض ٔقذ دنم عهٗ رنك عٍ غشٚق انًسزحش ثًبدح انجبساسٛزبيٕل

رٙ( فٙ سبئم انجلاصيب  ثبلإظبفخ انٗ َقص عْٕش٘ فٙ -إط-رٙ( ٔأسجبسرٛذ أيُٕٛرشاَسفٛشاص)إّٚ-إل-شاَسفٛشاص)إّٚأيُٕٛر

يحزٕ٘ يبدح يبنٌٕ داٖ انذْٛذ َٔشبغ إَضٚى انًبٚهٕثٛشأكسٛذٚض ٔاَزبط أكسٛذ انُٛزشٚك فٙ أَسغخ انكجذ. ٔعهٗ انغبَت 

 ض ٔيحزٕٖ يبدح انغهٕربصٌٕٛ فٙ أَسغخ انكجذ أٚعآ.فٗ َشبغ اَضٚى انكزبنٛ خحقٛقٛ صٚبدحاٜخش حذس 

 آٔاعذ ٚعزجشرغشٚجٛب فٗ انغشراٌ ٔ سزحشانً عشس انكجذ٘نهنّ ربصٛش ٔقبئٙ  عقبسانٕثٕٛسُٕٚل يًب سجق َسزُظ أٌ الخلاصت:

 .انسشٚشٚخنًضٚذ يٍ انزغبسة 

     


