USES OF 4,5,6,7-TETRAHYDROBENZO[b]THIOPHENE IN THE SYNTHESIS OF PYRIDAZINE, PYRAZOLE, THIAZOLE AND PYRIMIDINE DERIVATIVES TOGETHER WITH THEIR CYTOTOXICITY

Karam A. El-Sharkawy¹ and Faten I. Hamed²

¹Faculty of Biotechnology, Chemistry Department, October University of Modern Sciences and Arts (MSA), El-Wahat road, 6 October City, Egypt.

²National Organization of Drug Control and Research (NODCAR), P.O. 29, Cairo, A. R.

Egypt

ABSTRACT

The reaction of N-phenylbutanamide derivative 1 with bromine afforded compound 2 which it was directed to reacts with activated methylene groups, malononitrile (3a) and ethylcyanoacetae (3b) to produce compounds 4a and 4b respectively, on the other hand the reaction of compound 2 with either hydrazine hydrate (8a) or phenylhydrazine (8b) afforded pyridazine derivatives **10a.b** respectively, Moreover the reaction of compound 2 with either potassium cyanide (11a) or potassium thiocyanate (11b) produced compounds 12a,b respectively. Finally the reaction of compound 2 with thiourea (13a) afforded thiazole derivative 14. Compound 4b reacted with benzenediazonium chloride (5) afforded pyridazine derivative 7. The reactivity of compound 12a was introduced through the reaction with either hydrazine derivatives 8a,b or aromatic aldehydes 16, 18 then compounds 15a,b, 17, 19 were produced respectively. As extension of compound 1 reactions, malononitrile (3a) reacted with compound 1 afforded two isomeric compounds 20 and 21, the latter product 20 was reacted with either hydrazine derivatives 8a,b or thiourea and urea (13a,b) to produce pyrazole derivatives 22a,b and pyrimidine derivatives 23a,b respectively. Their cytotoxic activities were tested using three different cell lines.

INTRODUCTION

Thiophene derivatives represent a class of important and well-studied heterocycles (Eicher et al., 2003 and Gronowitz Salo, 1991). The interest in this kind of heterocycles has spread in drug design (Wu et al., 2004). Pyridazine derivatives exhibit an interesting numbers of biological properties such as kinase inhibitors (Kate et al., 2004) and antibacterial agents (Rahul et al., 2006), also pyrazolo-pyridine derivatives it has antibacterial activity (Focks et al., 2005), on the other hand thiazole derivatives has many biological properties such as antiprotozoal agents (Tapia et al., 2003) and potent anti-inflammatory agents (Pawan et al., 1997), finally pyrimidine derivatives has a wide spectrum of biological and pharmacological activities. Thus many synthetic pyrimidines are considered as antiepileptic phenobarbital (Kwan et al., 2004), dihydro-pyrimidinone unit like batzelladine alkaloids have been found to be potent HIV gp120-Human CD4 binding inhibitors (Patil et al., 1995 and Snider et al., 1996).

In this article we have synthesized some new heterocyclic compounds containing tetrahydrobenzo[b]thiophene moiety to try to improve their biological evaluations as well as their cytotoxic activity.

EXPERMENTAL

Synthetic methods, analytical and spectral data

All melting points were determined in open capillaries and are uncorrected. Elemental analyses were performed on a Yanaco CHNS Corder elemental analyzer (Japan). IR spectra were measured using KBr discs on a Pye Unicam SP-1000 spectrophotometer. ¹H NMR spectra were measured on a Varian EM 390-200 MHz instrument in CD₃SOCD₃ as solvent using TMS as internal standard and chemical shifts are expressed as δ ppm. Mass spectra were recorded on Kratos (75 eV) MS equipment (Germany).

4-Bromo-2-[(3-cyano-4,5,6,7-tetrahydro-benzo[*b*]thiophen-2-yl)-hydrazono]-3-oxo-N-phenyl-butanamide (2)

To a solution of compound 1 (3.66 g, 0.01 mol) in glacial acetic acid (40 mL) at 60 °C, bromine (0.50 ml) in acetic acid solution (10 mL) was added drop wise. The reaction mixture, after addition of all bromine solution, was kept at room temperature for 1 h with continuous stirring. The solid product, formed upon pouring onto ice/water was collected by filtration.

Compound **2**: Pale brown crystals from ethanol, yield: 88 % (3.920g); mp: 124 °C. IR (KBr): $\nu/cm^{-1} = 3479-3331$ (2 NH), 3053 (CH-aromatic), 2888 (CH₂), 2225 (CN), 1705, 1689 (2 CO), 1633 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.74-1.79$ (m, 4H, 2CH₂), 2.11-2.18 (m, 4H, 2CH₂), 3.88 (s, 2H, CH₂), 7.27-7.38 (m, 5H, C₆H₅), 8.32, 9.44 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 446, 444. Analysis for C₁₉H₁₇BrN₄O₂S Calcd: C, 51.24; H, 3.85; N, 12.58; S, 7.20. Found: C, 51.48 H, 4.02; N, 12.39; S, 7.48 %.

2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-3(bromomethyl) -4,4dicyano-N-phenylbut-3-enamide (4a) and Ethyl 4-(phenylcarbamoyl)-4-(3-cyano-2hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]-thiophene)-3-(bromomethyl)-2-cyanobut-2enoate (4b)

To a solution of compound 2 (2.22 g, 0.005 mol) in 1,4-dioxane (40 mL) containing triethylamine (0.50 mL), either malononitrile (**3a**, 0.33 g, 0.005 mol) or ethyl cyanoacetate (**3b**, 0.57 g, 0.005 mol) was added. The reaction mixture was heated under reflux for 3h then left to cool and the formed solid product, so formed was collected by filtration.

Compound **4a**: Yellow crystals from ethanol, yield: 82 % (2.03 g); mp: 288 °C. IR (KBr): $\nu/cm^{-1} = 3465-3328$ (2 NH), 3056 (CH-aromatic), 2885 (CH₂), 2227- 2220 (3 CN), 1687 (CO), 1633 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.71-1.76$ (m, 4H, 2CH₂), 2.15-2.19 (m, 4H, 2CH₂), 3.93 (s, 2H, CH₂), 7.28-7.39 (m, 5H, C₆H₅), 8.39, 9.42 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 494, 492. Analysis for C₂₂H₁₇BrN₆OS Calcd: C, 53.56; H, 3.47; N, 17.03; S, 6.50. Found: C, 53.72; H, 3.55; N, 16.82; S, 6.36 %.

Compound **4b**: Yellow crystals from ethanol, yield: 77 % (2.08 g); mp: 193 °C. IR (KBr): $\nu/cm^{-1} = 3471-3347$ (2 NH), 3058 (CH-aromatic), 2882 (CH₂), 2227, 2222 (CN), 1785, 1689 (2CO), 1634 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.13$ (t, 3H, J = 7.55 Hz, CH₃), 1.70-1.77 (m, 4H, 2CH₂), 1.97-2.05 (m, 4H, 2CH₂), 3.81 (s, 2H, CH₂), 4.22 (q, 2H, J = 7.55 Hz, CH₂), 7.29-7.41 (m, 5H, C₆H₅), 8.33, 9.40 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 541, 539. Analysis for C₂₄H₂₂BrN₅O₃S Calcd: C, 53.34; H, 4.10; N, 12.96; S, 5.93. Found: C, 53.51; H, 4.27; N, 13.07 S, 6.22 %.

2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-2-(3-bromo-5-cyano-1,6-dihydro-6-oxo-1-phenylpyridazin-4-yl)-N-phenylacetamide (7)

To a solution of compound **4b** (2.7 g, 0.005 mol) in ethanol (40 mL) containing sodium hydroxide (10 mL, 10 %), a cold solution of benzenediazonium chloride (**5**) [prepared by the addition of sodium nitrite (0.35 g, 0.005 mol) solution (in 10 mL water) to a cold solution of aniline (0.47 g, 0.005 mol) in concentrated acetic/hydrochloric acid (10:3) with continuous stirring] was added with continuous stirring. The reaction mixture was stirred for an addition 1 h at room temperature and the formed solid product was collected by filtration.

Compound 7: Pale yellow crystals from 1,4 dioxane, yield: 64 % (1.92 g); mp: 170-172 °C. IR (KBr): ν/cm^{-1} = 3477-3320 (2 NH), 3054 (CH-aromatic), 2880 (CH₂), 2224, 2221 (2 CN), 1688, 1684 (2 CO), 1636 (C=C). ¹H NMR (DMSO-d₆): δ = 1.73-1.79 (m, 4H, 2CH₂), 1.89-1.99 (m, 4H, 2CH₂), 7.24-7.43 (m, 10H, 2C₆H₅), 8.32, 9.40 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 599, 597. Analysis for C₂₈H₂₀BrN₇O₂S Calcd: C, 56.19; H, 3.37; N, 16.38; S, 5.36. Found: C, 56.05; H, 3.66; N, 16.52; S, 5.57 %.

3-Cyano-2-azo-(6-phenylamino-4-hydroxypyridazine-5-yl)-4,5,6,7-tetrahydrobenzo[*b*]thiophene (10a) and 3-Cyano-2-azo-(6-phenylamino-1-phenyl-4-hydroxy pyridazine-5-yl)-4,5,6,7-tetrahydrobenzo-[*b*]thiophene (10b)

To a solution of compound 2 (2.22 g, 0.005 mol) in ethanol (40 mL), either hydrazine hydrate (**8a**, 0.30 mL, 0.005 mol) or phenylhydrazine (**8b**, 0.60 g, 0.005 mol) was added. The reaction mixture in each case was heated under reflux for 4 h then left to cool. The solid product, formed upon pouring onto ice/water containing few drops of hydrochloric acid (till pH 6) was collected by filtration.

Compound **10a**: Yellow crystals from ethanol, yield: 68 % (1.28 g); mp: 200-202 °C. IR (KBr): $\nu/cm^{-1} = 3522-3348$ (OH, NH), 3053 (CH-aromatic), 2886 (CH₂), 2224 (CN), 1638 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.73-1.78$ (m, 4H, 2CH₂), 2.21-2.26 (m, 4H, 2CH₂), 6.83 (s, 1H, pyridazine H-3), 7.29-7.42 (m, 5H, C₆H₅), 8.28 (s, 1H, D₂O-exchangeable, NH), 9.38 (s, 1H, D₂O-exchangeable, OH). MS (relative intensity) m/z: 376. Analysis for C₁₉H₁₆N₆OS Calcd: C, 60.62; H, 4.28; N, 23.33; S, 8.52. Found: C, 60.93; H, 4.09; N, 23.59; S, 8.35 %.

Compound **10b**: Yellow crystals from ethanol, yield: 81 % (1.84 g); mp: 162-163 °C. IR (KBr): $\nu/cm^{-1} = 3555-3337$ (OH, 2NH), 3056 (CH-aromatic), 2898 (CH₂), 2223 (CN), 1632 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.64-1.72$ (m, 4H, 2CH₂), 2.06-2.14 (m, 4H, 2CH₂), 6.94 (s, 1H, pyridazine H-3), 7.28-7.42 (m, 10H, 2C₆H₅), 8.32, 8.53 (2s, 2H, D₂O-exchangeable, 2NH), 9.18 (s, 1H, D₂O-exchangeable, OH). MS (relative intensity) m/z: 454. Analysis for C₂₅H₂₂N₆OS Calcd: C, 66.06; H, 4.88; N, 18.49; S, 7.05. Found: C, 65.81; H, 4.92; N, 18.57; S, 7.32 %.

2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-4-cyano-3-oxo-N-phenylbutanamide (12a) and 2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo [*b*] thiophene)- 3-oxo-N-phenyl-4-thiocyanatobutanamide (12b)

The solution of compound **2** (4.44 g, 0.01 mol) in ethanol (50 mL) either potassium cyanide (**11a**, 1.30 g, 0.02 mol) or potassium thiocyanate (**11b**, 1.94 g, 0.02 mol) solution in water (10 mL) was added drop wise and the reaction mixture was heated in water bath at 60 $^{\circ}$ C for 1h. The whole reaction mixture was stirred at room temperature for an additional 3 h then poured onto ice/water and few drops of hydrochloric acid were added, the formed solid product was collected by filtration.

Compound **12a**: White crystals from ethanol, yield: 58 % (2.270 g); mp: 178-179 °C. IR (KBr): $\nu/cm^{-1} = 3444-3328$ (2 NH), 3055 (CH-aromatic), 2918 (CH₂), 2226, 2220 (2 CN), 1688, 1685 (2 CO), 1633 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.71-1.75$ (m, 4H, 2CH₂), 2.19-2.27 (m, 4H, 2CH₂), 3.93 (s, 2H, CH₂), 7.27-7.36 (m, 5H, C₆H₅), 8.26, 8.45 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 391. Analysis for C₂₀H₁₇N₅O₂S Calcd: C, 61.37; H, 4.38; N, 17.89; S, 8.19. Found: C, 61.58; H, 4.59; N, 17.92; S, 8.28 %.

Compound **12b**: Yellow crystals from ethanol, yield: 74 % (3.133 g); mp: 184-186 °C. IR (KBr): $\nu/cm^{-1} = 3476-3332$ (2NH), 3058 (CH-aromatic), 2916 (CH₂), 2222, 2220 (2 CN), 1636 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.62-1.70$ (m, 4H, 2CH₂), 1.98-2.09 (m, 4H, 2CH₂), 3.89 (s, 2H, CH₂), 7.28- 7.42 (m, 5H, C₆H₅), 8.34, 8.58 (2s, 2H, D₂O-exchangeable, 2NH).

MS (relative intensity) m/z: 423. Analysis for $C_{20}H_{17}N_5O_2S_2$ Calcd: C, 56.72; H, 4.05; N, 16.54; S, 15.14. Found: C, 56.82; H, 3.89; N, 16.83; S, 15.08 %.

2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-2-(2-amino-thiazol-4-yl)-N-phenylacetamide (14)

To a solution of compound 2 (4.44 g, 0.01 mol) in ethanol (50 mL), thiourea (**13a**, 0.76 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 3 h then left to cool and the formed solid product upon pouring onto ice/water containing few drops of sodium hydroxide (5 %) was collected by filtration.

Compound **14**: Yellow crystals from DMF, yield: 65 % (2.746 g); mp: 252-253 °C. IR (KBr): $\nu/cm^{-1} = 3483-3343$ (NH₂, 2 NH), 3057 (CH-aromatic), 2883 (CH₂), 2224 (CN), 1687 (CO), 1638 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.67-1.74$ (m, 4H, 2CH₂), 2.02-2.08 (m, 4H, 2CH₂), 4.22 (s, 2H, D₂O exchangeable, NH₂), 6.83 (s, 1H, thiazole H-5), 7.29-7.43 (m, 5H, C₆H₅), 8.24, 8.83 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 422. Analysis for C₂₀H₁₈N₆OS₂ Calcd: C, 56.85; H, 4.29; N, 19.89; S, 15.18. Found: C, 56.59; H, 4.42; N, 19.58; S, 15.42 %.

2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-2-(3-amino-1*H*-pyrazol-5-yl)-N-phenylacetamide (15a) and 2-(3-Cyano-2-hydrazinyl-4,5,6,7tetrahydrobenzo[*b*]thiophene)-2-(3-amino-1-phenyl-1*H*-pyrazol-5-yl)-N-phenylacetamide (15b)

To a solution of compound 12a (3.91 g, 0.01 mol) in ethanol (40 mL) either hydrazine hydrate (8a, 0.50 g, 0.01 mol) or phenyl hydrazine (8b, 1.08 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 4h then poured onto ice/water containing few drops of hydrochloric acid and the formed solid product was collected by filtration.

Compound **15a**: Yellow crystals from ethanol, yield: 76 % (3.081 g); mp: 285-287 °C. IR (KBr): $\nu/cm^{-1} = 3485-3321$ (NH₂, 3 NH), 3058 (CH-aromatic), 2884 (CH₂), 2224 (CN), 1689 (CO), 1636 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.70-1.77$ (m, 4H, 2CH₂), 2.19-2.28 (m, 4H, 2CH₂), 4.66 (s, 2H, D₂O exchangeable, NH₂), 6.82 (s, 1H, pyrazole H-4), 7.29-7.43 (m, 5H, C₆H₅), 8.34, 8.46, 9.11 (3s, 3H, D₂O-exchangeable, 3NH). MS (relative intensity) m/z: 405. Analysis for C₂₀H₁₉N₇OS Calcd: C, 59.24; H, 4.72; N, 24.18; S, 7.91. Found: C, 58.98; H, 4.61; N, 24.42; S, 8.20 %.

Compound **15b**: Yellow crystals from ethanol, yield: 73 % (3.515 g); mp: 189-191 °C. IR (KBr): $\nu/cm^{-1} = 3475-3331$ (NH₂, 2 NH), 3054 (CH-aromatic), 2897 (CH₂), 2221 (CN), 1687 (CO), 1638 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.72-1.77$ (m, 4H, 2CH₂), 2.15-2.22 (m, 4H, 2CH₂), 4.68 (s, 2H, D₂O exchangeable, NH₂), 6.80 (s, 1H, pyrazole H-4), 7.28- 7.46 (m, 10H, 2C₆H₅), 8.32, 8.44 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 481. Analysis for C₂₆H₂₃N₇OS Calcd: C, 64.85; H, 4.81; N, 20.36; S, 6.66. Found: C, 64.62; H, 4.58; N, 20.41; S, 6.48 %.

2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-4-cyano-3-oxophenyl- N-phenylpent-4-enamide (17) 5-

To a solution of compound **12a** (3.91 g, 0.01 mol) in 1,4-dioxane (40 mL) containing piperidine (0.50 mL), benzaldehyde (**16**, 1.06 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 3 h then evaporated under vacuum. The remaining product was triturated with ethanol and the formed solid product was collected by filtration.

Compound **17**: Yellow crystals from 1,4 dioxane, yield: 80 % (3.836g); mp: 183-185 °C. IR (KBr): $\nu/cm^{-1} = 3523-3322$ (2 NH), 3053 (CH-aromatic), 2877 (CH₂), 2227, 2220 (2 CN), 1718, 1684 (2 CO), 1636 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.67-1.74$ (m, 4H, 2CH₂), 2.13-

2.18 (m, 4H, 2CH₂), 5.28 (s, 1H, CH=C), 7.30- 7.38 (m, 10H, 2C₆H₅), 8.31, 8.42 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 479. Analysis for $C_{27}H_{21}N_5O_2S$ Calcd: C, 67.62; H, 4.41; N, 14.60; S, 6.69. Found: C, 67.48; H, 4.53; N, 14.88; S, 6.43 %.

2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-3-oxo-3-(2-oxo-2*H*-chromen-3-yl)-N-phenylpropanamide (19)

To a solution of compound **12a** (3.91 g, 0.01 mol) in 1,4-dioxane (40 mL) containing piperidine (0.50 mL), salicyladehyde (1.22 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 5 h then evaporated under vacuum. The remaining product was triturated with ethanol and the formed solid product was collected by filtration.

Compound **19**: Yellow crystals from 1,4 dioxane, yield: 80 % (3.972 g); mp: 215-217 °C. IR (KBr): $\nu/cm^{-1} = 3477-3342$ (2NH), 3055 (CH-aromatic), 2889 (CH₂), 2225 (CN), 1776, 1734, 1667 (3 CO), 1638 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.69-1.73$ (m, 4H, 2CH₂), 2.21-2.26 (m, 4H, 2CH₂), 6.88 (s, 1H, coumarin H-4), 7.24-7.47 (m, 9H, C₆H₅, C₆H₄), 8.33, 8.44 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 496. Analysis for C₂₇H₂₀N₄O₄S Calcd: C, 65.31; H, 4.06; N, 11.28; S, 6.46. Found: C, 65.62; H, 4.27; N, 10.99; S, 6.69 %.

2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-4,4-dicyano-3-methyl-N-phenylbut-3-enamide (20) and 5-(2-Diazenyl-3cyano-4,5,6,7-tetrahydro benzo[*b*]thiophene)-2-amino-1,6-dihydro-4-methyl-6-oxo-1-phenylpyridine-3carbonitrile (21)

To a solution of compound 1 (3.66 g, 0.01 mol) in DMF (40 mL) containing piperidine (0.50 mL), malononitrile (**3a**, 0.66 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 3 h then left to cool and the formed solid product, upon pouring onto ice/water containing few drops of hydrochloric acid was collected by filtration. The solid showed two spots through TLC, the ethanol soluble product was identified to show product **20** while the ethanol insoluble was identified to give product **21**.

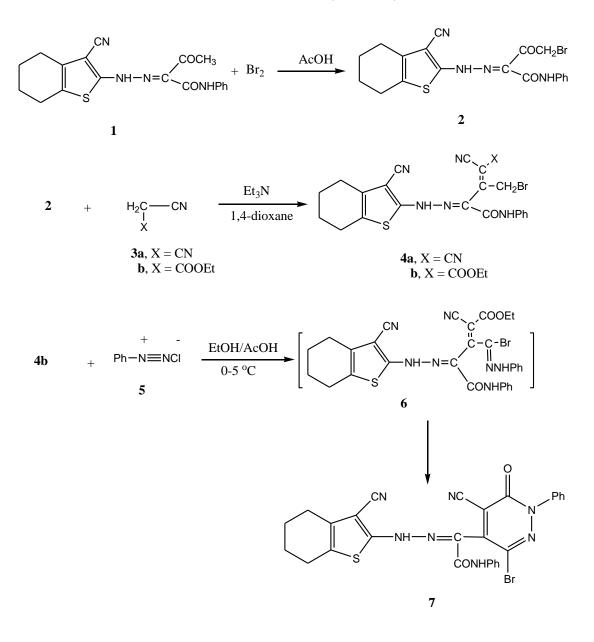
Compound **20**: Pale yellow crystals from ethanol, yield: 68 % (2.818 g); mp: >290 °C. IR (KBr): $\nu/cm^{-1} = 3449-3323$ (2 NH), 3055 (CH-aromatic), 2955(CH₃), 2227- 2220 (3 CN), 1693 (CO), 1633 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.66-1.69$ (m, 4H, 2CH₂), 2.25-2.31 (m, 4H, 2CH₂), 2.40 (s, 3H, CH₃), 7.29-7.40 (m, 5H, C₆H₅), 8.42, 9.29 (2s, 2H, D₂O-exchangeable, 2NH,). MS (relative intensity) m/z: 414. Analysis for C₂₂H₁₈N₆OS Calcd: C, 63.75; H, 4.38; N, 20.28; S, 7.74. Found: C, 63.92; H, 4.66; N, 20.32; S, 7.49 %.

Compound **21**: Pale yellow crystals from DMF, yield: 79 % (3.274 g); mp: > 300 °C. IR (KBr): $\nu/cm^{-1} = 3453-3343$ (NH₂), 3053 (CH-aromatic), 2988 (CH₃), 2226, 2220 (2 CN), 1690 (CO), 1633 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.64-1.69$ (m, 4H, 2CH₂), 2.18-2.26 (m, 4H, 2CH₂), 2.73 (s, 3H, CH₃), 4.82 (s, 2H, D₂O exchangeable, NH₂), 7.26-7.38 (m, 5H, C₆H₅), MS (relative intensity) m/z: 414. Analysis for C₂₂H₁₈N₆OS Calcd: C, 63.75; H, 4.38; N, 20.28; S, 7.74. Found: C, 64.02; H, 4.49; N, 20.11; S, 7.49 %

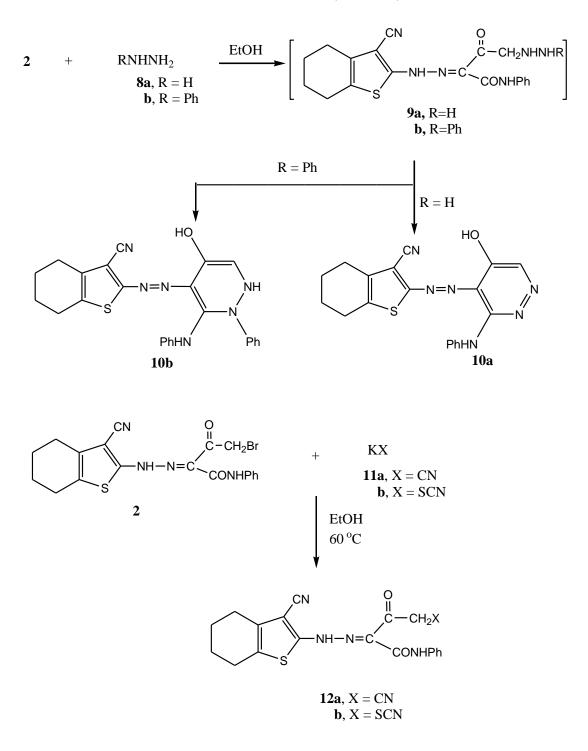
2-[2-(3-Cyano-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)hydrazono]-3-(3,5-di-4*H*-pyrazol-4-ylidene)-N-phenylbutanamide (22a) and 3-(3-Amino-5-imino-1-phenyl-1*H*-pyrazol-4(5*H*)-ylidene)-2-[2-(3-cyano-4,5,6,7-tetrahydro-benzo[*b*]thiophen-2yl)hydrazono]-N-phenylbutanamide (22b)

To a solution of compound **20** (2.07 g, 0.005 mol) in ethanol (40 mL) either hydrazine hydrate (**8a**, 0.30 g, 0.005 mol) or phenyl hydrazine (**8b**, 0.59 g, 0.005 mol) was added. The reaction mixture was heated under reflux for 3h then poured onto ice/water containing few drops of hydrochloric acid and the formed solid product was collected by filtration.

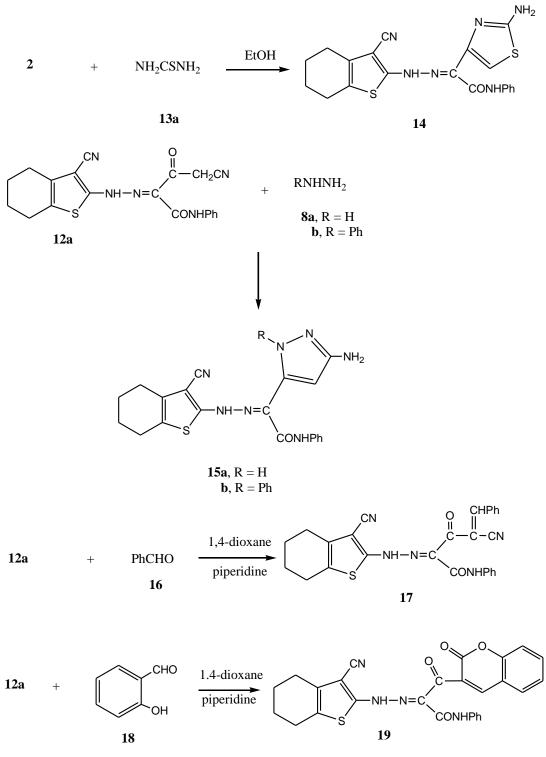
Compound **22a**: Pale yellow crystals from ethanol, yield: 68 % (1.52 g); mp: 290 °C. IR (KBr): $\nu/cm^{-1} = 3462-3338$ (2NH₂, 2NH), 3058 (CH-aromatic), 2976 (CH₃), 2224 (CN), 1688 (CO), 1638 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.62-1.65$ (m, 4H, 2CH₂), 2.25-2.32 (m, 4H, 2CH₂), 2.84 (s, 3H, CH₃), 4.66, 5.21 (2s, 4H, 2NH₂), 7.26-7.38 (m, 5H, C₆H₅), 8.38, 9.31 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 446. Analysis for C₂₂H₂₂N₈OS Calcd: C, 59.18; H, 4.97; N, 25.09; S, 7.18. Found: C, 59.37; H, 4.73; N, 24.82; S, 7.28 %.

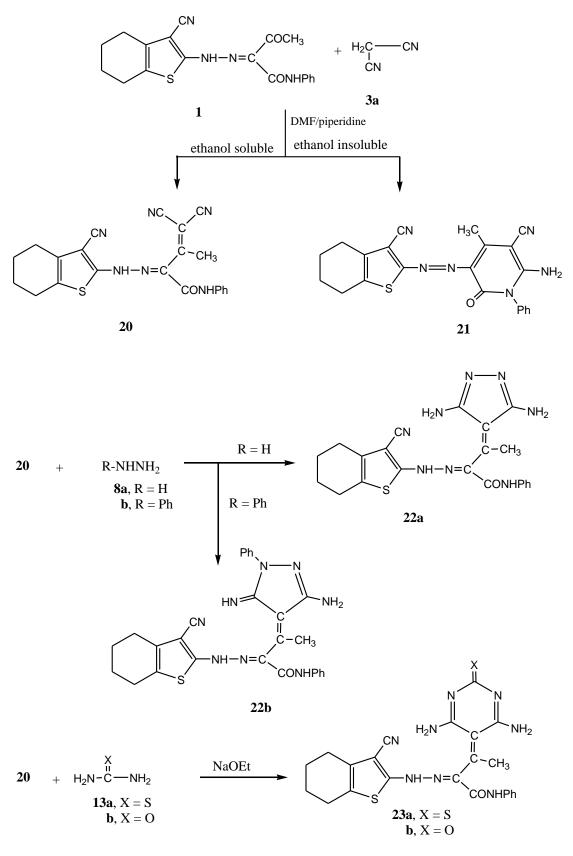

Compound **22b**: Orange crystals from ethanol yield: 62 % (1.62 g); mp: >290 °C. IR (KBr): $\nu/cm^{-1} = 3460-3328$ (NH₂, 3NH), 3054 (CH-aromatic), 2984 (CH₃), 2224 (CN), 1688 (CO), 1636 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.60-1.67$ (m, 4H, 2CH₂), 1.94-1.98 (m, 4H, 2CH₂), 2.84 (s, 3H, CH₃), 4.68 (s, 2H, D₂O exchangeable, NH₂), 7.23-7.36 (m, 10H, 2C₆H₅), 8.36, 8.62, 9.33 (3s, 3H, D₂O-exchangeable, 3NH). MS (relative intensity) m/z: 522. Analysis for C₂₈H₂₆N₈OS Calcd: C, 64.35; H, 5.01; N, 21.44; S, 6.14. Found: C, 64.29; H, 5.21; N, 21.73; S, 6.28 %.

2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-3-(4,6-diamino-2 - thioxopyrimidin-5(2*H*)-ylidene)-N-phenylbutanamide (23a) and 2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo[*b*]thiophene)-3-(4,6-diamino-2-oxo pyrimidin-5(2*H*)-ylidene)-N-phenylbutanamide (23b)


To a suspension of compound **20** (2.07 g, 0.005 mol) in sodium ethoxide {prepared by dissolving sodium metal (0.46 g, 0.02 mol) in absolute ethanol (40 mL)] either thiourea (**13a**, 0.38 g, 0.005 mol) or urea (**13b**, 0.30 g, 0.005 mol). The whole reaction mixture was heated in a boiling water bath for 3 h then poured onto ice/water containing few drops of hydrochloric acid (till pH 6) and the formed solid product was collected by filtration.

Compound **23a**: Yellow crystals from ethanol, yield: 58 % (1.42 g); mp: >290°C. IR (KBr): $\nu/cm^{-1} = 3469-3312$ (2NH₂, 2NH), 3058 (CH-aromatic), 2978 (CH₃), 2222 (CN), 1684 (CO), 1632 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.58-1.66$ (m, 4H, 2CH₂), 1.88-1.93 (m, 4H, 2CH₂), 2.89 (s, 3H, CH₃), 4.69, 5.44 (2s, 4H, 2NH₂), 7.23-7.38 (m, 5H, C₆H₅), 8.22, 9.33 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 490. Analysis for C₂₃H₂₂N₈OS₂ Calcd: C, 56.31; H, 4.52; N, 22.84; S, 13.07. Found: C, 56.07; H, 4.72; N, 22.63; S, 12.78 %.


Compound **23b**: White crystals from ethanol, yield: 73 % (1.73 g); mp:>290°C. IR (KBr): $\nu/cm^{-1} = 3473-3348$ (2 NH₂, 2 NH), 3056 (CH-aromatic), 2966 (CH₃), 2220 (CN), 1690, 1686 (2CO), 1635 (C=C). ¹H NMR (DMSO-d₆): $\delta = 1.60-1.67$ (m, 4H, 2CH₂), 1.91-1.97 (m, 4H, 2CH₂), 2.86 (s, 3H, CH₃), 4.68, 5.40 (2s, 4H, 2NH₂), 7.25-7.40 (m, 5H, C₆H₅), 8.28, 9.38 (2s, 2H, D₂O-exchangeable, 2NH). MS (relative intensity) m/z: 474. Analysis for C₂₃H₂₂N₈O₂S Calcd: C, 58.21; H, 4.67; N, 23.61; S, 6.76. Found: C, 57.92; H, 4.81; N, 23.88; S, 7.03 %.


Scheme (1)

Scheme (2)

Scheme (3)

Scheme (4)

RESULTS AND DISCUSSION

Recently, we were involved through comprehensive program involving the uses of 4,5,6,7-tetrahydrobenzo[b]thiophene derivatives (Mohareb et al., 2009) together with their further reactions with chemical reagents to give heterocyclic and fused heterocyclic derivatives with antitumor activities, In continuation of this program, we report here the reactivity of the 2-(3-Cyano-2-hydrazinyl-4,5,6,7-tetrahydrobenzo-[b]thiophene)-3-oxo-Nphenylbutanamide (1) with some chemical reagents. Thus, reaction of 1 with bromine in acetic acid solution to give the α -bromocarbonyl compound 2. The structure of compound 2 was based on analytical and spectral data. Thus, the ¹H NMR spectrum showed two multiplets at δ 1.74-1.79 & 2.11-2.18 ppm indicating to the four CH₂ groups, a singlet at δ 3.88 ppm corresponding to the CH₂ group, multiplet at δ 7.27-7.38 ppm for the C₆H₅ group and two singlets, D_2O -exchangeable, at δ 8.32 & 9.44 ppm for the two NH groups. The reaction of compound 2 with either malononitrile (3a) or ethyl cyanoacetate (3b) in refluxing 1,4-dioxane containing a catalytic amount of triethylamine gave the condensate products 4a and 4b respectively. The structures of the latter products were based on analytical and spectral data. Thus, the ¹H NMR spectrum of **4a** showed two multiplets at δ 1.71-1.76 & 2.15-2.19 ppm indicating the four CH₂ groups, a singlet at δ 3.93 ppm corresponding to CH₂ group, a multiplet at δ 7.28-7.39 ppm for C₆H₅ group and two singlets, D₂O-exchangeable, at δ 8.39 & 9.42 ppm for the two NH groups. Moreover, the reaction of compound **4b** with benzenediazonium chloride at 0-5 °C gave the pyridazine derivative 7, its formation is explained in terms of the intermediate formation of the arylhydrazo derivative 6 (Scheme1).

The reaction of α -oxobromo derivative **2** with either hydrazine hydrate (**8a**) or phenylhydrazine (**8b**) gave the pyridazine derivatives **10a** and **10b** respectively. Formation of the latter products was based on the intermediate formation α -hydrazinoxo derivatives **9a**, **b** followed by water elimination. The structural elucidations were based on the obtained analytical and spectral data. Thus, the ¹HNMR spectrum of **10a** showed two multiplets at δ 1.73-1.78 & 2.21-2.26 ppm indicating to the four CH₂ groups, a singlet at δ 6.83 ppm corresponding to the pyridazine H-3 group, a multiplet at δ 7.29-7.42 ppm for the C₆H₅ group, a singlet, D₂O-exchangeable at δ 8.28 ppm for the NH group and a singlet at δ 9.38 ppm for the OH group.

The reaction of compound 2 with either potassium cyanide (11a) or potassium thiocyanate (11b) gave either α -oxonitrile derivative 12a or the α -oxothiocyanate derivative 12b respectively (Scheme2).

On the other hand, the reaction of compound 2 with thiourea (13a) in refluxing ethanol gave the thiazole derivative 14. The analytical and spectral data were in agreement with the assigned structure. Next, we moved towards studying the reactivity of the α oxonitrile derivative 12a in order to form new heterocyclic compounds derivatives with potential biological activities. Thus, the reaction of 12a with either hydrazine hydrate (8a) or phenylhydrazine (8b) gave pyrazole derivatives 15a,b. On the other hand, the reaction of 12a with benzaldehyde (16) in refluxing 1,4-dioxane containing a catalytic amount of piperidine gave the benzal derivative 17. Moreover, the reaction of 12a with salicylaldehyde (18) gave the coumarin derivative 19 (Scheme3). The analytical and spectral data of the latter product were in agreement with the assigned structure.

The reaction of compound 1 with malononitrile (3a) in DMF/piperidine solution gave two isomeric products with the same molecular formula $C_{22}H_{18}N_6OS$, the ethanol soluble product assigned the acyclic structure 20 while the ethanol insoluble product is the pyridine derivative 21. The structures of compounds 20 and 21 were based on analytical and spectral data. The dicyanomethino group present in compound **20** showed interesting reactivity towards the reaction with diamino reagents. Thus, the reaction of compound **20** reacted with either hydrazine hydrate (**8a**) or phenylhydrazine (**8b**) gave the pyrazole derivatives **22a** and **22b** respectively. On the other hand the reaction of compound **20** with either thiourea (**13a**) or urea (**13b**) in sodium ethoxide solution to give the pyrimidine derivatives **23a** and **23b** respectively (**Scheme4**).

Antitumor activity tests

Reagents: Fetal bovine serum (FBS) and L-glutamine from Gibco Invitrogen Co. (Scotland, UK). RPMI-1640 medium from Cambrex (New Jersey, USA). Dimethyl sulfoxide (DMSO), doxorubicin, penicillin, streptomycin and sulforhodamine B (SRB) were from Sigma Chemical Co. (Saint Louis, USA).

Cell cultures: Three human tumor cell lines, MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), and SF-268 (CNS cancer) were used together with the normal cell lines the normal fibroblast cells (WI 38). MCF-7 was obtained from the European Collection of Cell Cultures (ECACC, Salisbury, UK) and NCI-H460 and SF-268 were kindly provided by the National Cancer Institute (NCI, Cairo, Egypt). They grow as monolayer and routinely maintained in RPMI-1640 medium supplemented with 5% heat inactivated FBS, 2 mM glutamine and antibiotics (penicillin 100 U/mL, streptomycin 100 μ g/mL), at 37°C in a humidified atmosphere containing 5% CO₂. Exponentially growing cells were obtained by plating 1.5 X 10⁵ cells/mL for MCF-7 and SF-268 and 0.75 X 10⁴ cells/mL for NCI-H460, followed by 24 h of incubation. The effect of the vehicle solvent (DMSO) on the growth of these cell lines was evaluated in all the experiments by exposing untreated control cells to the maximum concentration (0.5%) of DMSO used in each assay.

Tumor cell growth assay: The effects of **2–23a,b** on the in vitro growth of human tumor cell lines were evaluated according to the procedure adopted by the National Cancer Institute (NCI, USA) in the '*In vitro* Anticancer Drug Discovery Screen' that uses the protein-binding dye sulforhodamine B to assess cell growth. Briefly, exponentially, cells growing in 96-wellplates were then exposed for 48 h to five serial concentrations of each compound (**Skehan** *et al.*, **1990**), starting from a maximum concentration of 150 μ M. Following this exposure period adherent cells were fixed, washed, and stained. The bound stain was solubilized and the absorbance was measured at 492 nm in a plate reader (Bio-Tek Instruments Inc., Power wave XS, Wincoski, USA). For each test compound and cell line, a dose–response curve was obtained and the growth inhibition of 50% (GI₅₀), corresponding to the concentration of the compounds that inhibited 50% of the net cell growth, was calculated as described elsewhere (**Monks** *et al.*, **1991**). Doxorubicin was used as a positive control and tested in the same manner.

normal cell line				
Compound	$\operatorname{GI}_{50}(\mu \bmod l^{-1})$			
	MCF-7	NCI-H460	SF-268	WI 38
2	42.6 ± 12.2	36.6 ± 8.6	62.4 ± 14.8	22.3 ± 6.0
4 a	32.4 ± 10.6	26.1 ± 2.7	28.9 ± 6.8	40.1 ± 6.0
4b	22.2 ± 1.2	32.6 ± 1.4	36.4 ± 0.6	32.1 ± 4.8
7	14.6 ± 2.4	12.9 ± 0.8	11.8 ± 0.6	44.2 ± 10.2
10a	20.6 ± 0.4	24.3 ± 0.8	32 ± 0.8	4.2 ± 1.8
10b	38.4 ± 1.8	42.0 ± 0.8	22.5 ± 1.1	64.2 ± 12.6
12a	33.1 ± 0.6	27.3 ± 1.4	24.3 ±1.5	62.5 ± 22.6
12b	0.6 ± 0.2	0.2 ± 0.02	0.2 ± 0.05	22.6 ± 8.0
14	22.0 ± 0.6	28.0 ± 0.4	30.5 ± 8.0	56.2 ± 12.9
15a	33.9 ± 17.5	40.2 ± 12.8	52.0 ± 9.0	46.5 ± 8.0
15b	34.0 ± 1.8	46.0 ± 0.8	22.5 ± 1.1	12.3 ± 2.6
17	0.01 ± 0.004	0.02 ± 0.002	0.01 ± 0.001	66.5 ± 14.7
19	0.03 ± 0.007	0.02 ± 0.008	0.01 ± 0.004	> 100
20	26.7 ± 17.8	24.2 ± 12.6	36.0 ± 6.0	72.1 ± 22.3
21	28.7 ± 11.5	$22.2 \pm 10.$	22.0 ± 8.0	20.7 ± 8.3
22a	22.4 ± 0.2	22.6 ± 1.4	33.4 ± 0.6	40.3 ± 10.6
22b	10.2 ± 0.4	12.1 ± 0.6	18.3 ± 0.5	66.4 ± 16.7
23a	2.0 ± 1.0	3.6 ± 1.4	2.4 ± 0.8	70.4 ± 22.6
23b	20.0 ± 0.6	22.0 ± 0.4	31.5 ± 8.0	80.3 ± 18.4
Doxorubicin	0.04 ± 0.008	0.09±0.007	0.09 ± 0.007	> 100

 Table 1. Effect of compounds 2–23a,b on the growth of human tumor cell lines and a normal cell line

 GI_{50} mean value ± standard error of mean of 3 independent experiments performed in duplicate.

Effect on the Growth of Human Tumor Cell Lines

The effect of compounds **2-23a,b** was evaluated on the *in vitro* growth of three human tumor cell lines representing different tumor types, namely, breast adenocarcinoma (MCF-7), non-small cell lung cancer (NCI-H460) and CNS cancer (SF-268) and the normal fibroblast cells (WI 38) after a continuous exposure for 48h.The results are summarized in **Table 1**. All of the tested compounds were able to inhibit the growth of the tested human tumor cell lines in a dose-dependent manner. The results indicated through **Table 1** revealed that "compounds **17** and **19** showed the highest inhibitory effect against all the three tumor cell lines", such activity is higher than the reference doxorubicin.

While compounds **12b** and **23a** showed high inhibitory effects against non-small cell lung cancer (NCI-H460) and breast adenocarcinoma (MCF-7) and CNS cancer (SF-268) respectively, which are less than the reference doxorubicin. Compounds **2, 4a, 10b, 12a, 15a** and **15b** showed the lowest inhibitory effect. The rest of the compounds showed a moderate growth inhibitory effect. Comparing of **12a** with **12b** it is obvious that the presence of SCN group in **12b** is responsible for the greater inhibitory effect towards the three cell lines than

that of **12a**. Similarly comparing compound **23a** and **23b**, it is obvious that the presence of the sulpher atom in compound **23a** is responsible for their reactivity over **23b**.

ACKNOWLEDGMENT

The authors would like to thank the research group working at both the National Research Center and the National Cancer Institute for recording the antitumor evaluation for the synthesized products. Moreover, the effort of Prof Dr. Amany El-Barairy, MSA University, Pharmacology Department, is greatly appreciated for her kind revisions for the pharmacological data.

REFERENCES

- *Eicher, T.; Hauptmann, S.; Speicher, A. (2003)*: The Chemistry of Heterocycles: Chapter 5, Five-Membered Heterocycles, Section 5.6 Thiophene; Wiley-VCH:New York, NY.
- Foks, H., Pancehowska-Ksepko, D., Kedzia, A., Zwolska, Z., Janowiec, M., Augustvnowicz-Kopec, E. (2005): Synthesis and antibacterial activity of 1Hpyrazolo [3,4-b] pyrazine and –pyridine derivatives, II Farmaco., Volume, 60(6-7), Pages 513-517.
- Gronowitz, S. (1991): The Chemistry of Heterocyclic Compounds: Thiophene and its Derivatives; Vol. 44, Part 4, Chapter 2. Wiley: New York, NY.
- Kate, F.B.; Nicola, C.; Janet, D.C.; David, W.H.; Sandra, E.O.; Claire, A.M.; Richard, A.P.; Julie, A.T.; Jason, B.; Andrew, P.; Sian, R.; Judith, S.; Anna, L.V. and Andrew, P.T. (2004): Imidazo[1,2-b]pyridazines: a potent and selective class of cyclin-dependent kinase inhibitors, Bio. & Med. Chem. Lett., Volume 14(9), Pages 2249-2252.
- *Kwan, P., Brodie, M.j. (2004):* Phenobarbital for the treatment of epilepsy in the 21st century: a critical review. Epilpesia, Volume 45(9), Pages 1141-1149.
- Mohareb, R.M., Sherif, S.M. and Moustafa, H. E. (2009): The Reaction of Cyclohexan-1,3-dione with Cyanomethylenes: Synthesis of Thiophenes and Their Fused Derivatives with Antifungal Activities, Phosphorous, Sulfur & Silicon, Volume 184, Pages 2078-2096.
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langl, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J. and Boyd, M.J. (1991): Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines, Natl. Cancer Inst. Volume 83, Pages 757-766.
- Patil, A.D., Kumar, N.V., Kokke, W.C., Bean, M.F., Freyer, A.J., De Brosse, C., Mai, S., Truneh, A. and Carte, B. (1995): Novel Alkaloids from the Sponge Batzella sp.:Inhibitors of HIV gp120-Human CD4 Binding. J. Org. Chem., Volume 60(5), Pages 1182-1188.
- Pawan, K.S. and Sawhney, S.N. (1997): Potent antiinflammatory 3-thiazole-4(5)-acetic acids of 1,2-benzisothiazole, Bio. & Med. Chem. Lett., Volume 7, Pages 2427-2430.

- Rahul, R. N.; Vijary, V. K.; Sachin, S. B. and Devanand, B. S. (2006): Synthesis of new series of 1-Aryl-1,4-dihydro-4-oxo-6-methyl-pyridazine-3-carboxylic acid as potential antibacterial agents, Eur. J. Med. Chem., Volume 40(12), Pages 1325-1330.
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch H.; Kenney, S. and Boyd, M. R. J. (1990): New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening, Natl. Cancer Inst. Volume. 82, Pages 1107-1112.
- Snider, B.B., Chen, J., Patil, A.D., Freyer, A.J. (1996): Synthesis of the tricyclic portions of batzelladines A, B and D. Revision of the stereochemistry of batzel; ladines A and D, Tetrahedron Lett., Volume 37, Pages 6677-6680.
- Tapia, R.A.; Alegria, L.; Pesson, D.C. and Cristian, S. (2003): Synthesis and antiprotozoal activity of naphthofuranquinones and naphthothiophene-quinones containing a fused thiazole ring, Bio. & Med. Chem., Volume 11, Pages 2175-2182.
- Wu, C.; Decker, E.R.; Blok, N.; Bui, H.; You, T.J.; Wang, J.; Bourgoyne, A.R.; Knowles, V.; Berens, K.L.; Holland, G.W.; Brock, T.A. and Dixon, R.A. F. (2004): Discovery, Modeling, and Human Pharmacokinetics of N-(2-Acetyl- 4,6-dimethyl- phenyl)-3-(3,4-dimethyl- isoxazol-5-ylsulfamoyl) thiophene-2-carboxamide (TBC3711), a Second Generation, ET_A Selective, and Orally Bioavailable Endothelin Antagonist, J. Med. Chem., Volume 47, Pages 1969–1986.

```
تطبيقات على 4,5,6,7 رباعى هيدروبنزو بشيوفين فى تخليق مشتقات البيريدازين والبيرازول
والثيازول والبيريميدين مع تقييمها كمضادات للاورام
كرم احمد الشرقاه 10 وفاتن اسماعل حامد2
```

¹قسم الكيمياء - كلية التكنولوجيا الحيويه - جامعة اكتوبر للعلوم الحديثة والاداب 2³هيئة الرقابه والبحوث الدوائيه- الدقى - القاهره- ص ب : 29

يتضمن البحث تحضير مشتق مركب برومو البيوتان اميد 2 الذى تم توجيهه للتفاعل مع المالونونيتريل والايثيل سيانو اسيتات ليكون المركب المقابل 4 و 4ب ثم التفاعل مع مركب الهيدر ازين المائى وفينيل الهيدر ازين ليعطى مركبات 10 و 10 اصافة لتفاعل مركب 2 ايضا مع البوتاسيوم سيانيد والبوتاسيوم ثيوسيانيد ليعطى مركبات 12 و 12 على التوالى. اخيرا مركب 2 تفاعل مع الثيويوريا لينتج مركب 14. على الجانب الاخر تفاعل مركب 4ب مع مركب ملح الدايزونيم 5 لينتج البيريدازين 7 . نشاط مركب 12 اتم تاكيده بتفاعله مع كلا من الهيدر ازين ومشتقاته و بعض الالدهيدات الاروماتيه ليكون المركبات المقابله 15 ا و بو17 و 19 على التابع. امتداد التفاعل مركب 1 تم تفاعله مع المالونونيتريل 3 و قد اعلى مركب 2 من الثيريوريا و و 19 على التتابع. امتداد التفاعل مركب 1 تم تفاعله مع المالونونيتريل 3 و قد اعطى مركبات المقابله 15 و و 19 على التتابع. امتداد التفاعل مركب 1 م الهيدر ازين و اليوريا ليكون المركبات المقابله 15 و بو17 و 19 على التتابع. المادا لتفاعل مركب 10 مع

وقد تم فصل جميع المركبات السابقة ايضا تم اثبات تركيبها بوا سطةالتحليل العنصري الدقيق والاشعة تحت الحمراء والرنين النووي المغناطيسي ومطياف الكتله .

وبدر اسة النشاط البيولوجي تبين ان لبعض هذه المركبات نشاطا بيولوجيا تجاه بعض انواع مختلفه من اور ام بعض الخلايا المستخدمة والتي يمكن الاستفاده منها في المجالات الطبيه المختلفه .