Al-Azhar Bull. Sci. Vol. 22, No. 2 (Dec.): pp. 181-192, 2011.

β-OXOANILIDE AS BUILDING BLOCKS IN HETEROCYCLIC SYNTHESIS: A NEW SYNTHESIS OF POLYFUNCTIONALLY SUBSTITUTED PYRIDINES, PYRANS AND PYRIMIDINES

ABDEL HALEEM M. HUSSEIN, AHMED A. KHAMES*, ABU-BAKR A. A. M. EL-ADASY and S. A. A. EL-TAWEEL

Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt *E-mail: a.khames@yahoo.com

Abstract

β-Oxoanilide 1 reacted with acetyl isothiocyanate and ethoxycarbonyl isothiocyanate to give pyridine derivatives $\mathbf{6 a , b}$ and pyrimidinethiol $\mathbf{8}$ respectively. While with arylidine malononitrile gave the pyran derivative 12. Similarly, treatment of $\mathbf{1}$ with arylidine cyanoacetamide or arylidine cyanothioacetamide afforded the pyridine derivatives $\mathbf{1 3 a , b}$, $\mathbf{1 4 a , b}$ respectively. Condensation of $\mathbf{1}$ with aromatic aldehyde obtained the cyclohexenones 19a-c. The reaction of $\mathbf{1}$ with a mixture of aromatic aldehyde and urea or thiourea gave the pyrimidine derivatives $\mathbf{2 3 a}, \mathbf{b}$. Treatment of compound $\mathbf{1}$ with arylidine acetophenone yield the cyclohexene derivatives $\mathbf{2 6 a}, \mathbf{b}$. Reaction of $\mathbf{1}$ with a mixture of ethyl cyanoacetate and sulfur yield the thiophene derivative 27. Which was reacted with formamide, potassium thiocyanate and hydrazine to afford the thienopyrimidines 28, 29 and the hydrazide derivative 30. respectively.

Introduction

Interest in the chemistry of azines and condensed azines has recently been revived ${ }^{1-3}$. Due to their biological activities ${ }^{4,5}$. In the last few years we have been involved in program directed for developing new approaches for the synthesis of polyfunctionally substituted azines utilizing inexpensive and readily obtainable starting materials ${ }^{6-8}$. In this work we report the use of the title reagent in several heterocyclic transformation to obtain pyridines, pyrimidines, pyrans and condensed pyrimidines.

Results and Discussion.

So it has been found that reactions of $\boldsymbol{\beta}$-oxoanilide $\mathbf{1}$ (prepared as literature procedure) ${ }^{9}$ reacted with acetyl isothiocyanate 2a in refluxing dry acetone afforded the unexpected pyridine derivative $\mathbf{6 a}$ rather than the expected pyrimidine derivative 4a. Structure $\mathbf{6 a}$ was assigned for the reaction product based on spectroscopic data (IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR). The ${ }^{1} \mathrm{H}$ NMR spectrum displayed two singlet signals at $\delta 11.42$ and 13.00 ppm for 2 NH and one singlet signal at $\delta 2.19 \mathrm{ppm}$ assigned for CH_{3} and singlet signal at $\delta 8.78 \mathrm{ppm}$ for CH -pyridine in addition to the triplet signal at $\delta 1.40 \mathrm{ppm}$ for $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and quartet signal at $\delta 4.15 \mathrm{ppm}$ for CH_{2} of $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ besides the expected signals. Also, ${ }^{13} \mathrm{C}$ NMR spectrum revealed a signal at $\delta 14.60$ for CH_{3} and $\delta 23.79$ for phenetidine $\mathrm{CH}_{3}, \delta 64.35$ for phenetidine $\mathrm{CH}_{2}, 172.55$ and 177.17 for 2(CO), in addition to the entire carbon signal assigned to $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ in the structure. From the above data we are sure that the structure $\mathbf{6 a}$ is the sole product for this compound. Similarly, interaction of $\boldsymbol{\beta}$-oxoanilide $\mathbf{1}$ with phenylacetyl isothiocyanate afforded the pyridine derivative $\mathbf{6 b}$. Compound $\mathbf{6 b}$ was established based on its spectral data, (Scheme 1).

On the other hand ethoxycarbonyl isothiocyanate $\mathbf{2 c}$ reacted with $\boldsymbol{\beta}$-oxoanilide $\mathbf{1}$ under the same condition to afford the expected pyrimidinethiol derivative $\mathbf{8}$ through the intermediate 7. The structure of compound $\mathbf{8}$ was confirmed based on its spectral data (IR and ${ }^{1} \mathrm{H}$ NMR). The ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of a singlet signal at $\delta 2.18 \mathrm{ppm}\left(\mathrm{COCH}_{3}\right)$, a singlet signal at $\delta 3.66 \mathrm{ppm}(\mathrm{SH})$, a singlet signal at $\delta 7.01 \mathrm{ppm}(\mathrm{OH})$, a multiplet at $\delta 7.28-7.62 \mathrm{ppm}$ (aromatic-H), besides the ethyl protons as triplet signals at $\delta 1.37 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$ and quartet at $\delta 4.08 \mathrm{ppm}\left(\mathrm{OCH}_{2}\right)$ group, (Scheme 1).

Scheme 1
A reaction of $\boldsymbol{\beta}$-oxoanilide $\mathbf{1}$ with electrophilic reagents under an alkaline conditions was also investigated. So, the reaction of $\mathbf{1}$ with 2-chlorobenzylidene malononitrile (9a) may afford the 4H-pyran derivative 12 or pyridine 11; structure 11 was ruled out based on the spectral data (IR, ${ }^{1} \mathrm{H}$ NMR). The ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of a singlet signal at $\delta 4.61 \mathrm{ppm}$ assigned for 4 H -pyran.
(Scheme 2).
β-OXOANILIDE AS BUILDING BLOCKS IN HETEROCYCLIC

9a, 11 and 12, $\mathrm{Ar}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$

Scheme 2

Further, $\boldsymbol{\beta}$-oxoanilide $\mathbf{1}$ reacted with arylidine ethyl cyanoacetate, arylidine cyanoacetamide and arylidine cyanothioacetamide to provide the pyridine derivatives. Reactions of $\mathbf{1}$ with arylidine ethyl cyanoacetate $\mathbf{9 b}, \mathbf{c}$ afforded the 4H pyridine 13a,b; compound 13a was established based on the spectral data (IR, ${ }^{1} \mathrm{H}$ NMR). So the IR spectrum show the disappearance of CN group and presence of CO ester at $v=1715 \mathrm{~cm}^{-1}$. Also ${ }^{1} \mathrm{H}$ NMR revealed the presence of a singlet signal at δ 5.70 ppm assigned for 4 H pyridine, singlet signal at $\delta 6.77 \mathrm{ppm}$ assigned to OH group, $\delta 8.83$ and 9.40 ppm for $2(\mathrm{NH})$ group. Also, the reaction of $\mathbf{1}$ with arylidines 9d-f afforded the pyridone derivative 14a and pyridinethione 14b,c derivatives. Establishing of compounds 14a-c based on its spectroscopic data. (Scheme 3).

Scheme 3

Condensation of $\mathbf{1}$ with aromatic aldehydes 15a-c in refluxing ethanolic triethylamine obtained the arylidine derivatives 16a-c, but under the reaction conditions we obtained the compounds which may be formulated as 4 H -pyran derivatives 22a-c or cyclohexenone derivatives 19a-c. Compounds 22a-c are the sole product based on its correct spectral data (IR, ${ }^{1} \mathrm{H}$ NMR and MS). The ${ }^{1} \mathrm{H}$ NMR of 19a revealed a singlet signal at $\delta 1.31,1.39,2.17,2.49 \mathrm{ppm}$ assigned to $4 \mathrm{CH}_{3}$, a signal at 5.80 ppm assigned to CH_{2}-cyclohexene group, a duplet at 7.59 and 7.87 ppm assigned to 2CH-cyclohexene group, a singlet at $8.71,9.31 \mathrm{ppm}$ assigned to 2NH group, besides the signal of ethyl group and aromatic group present in the structure. Also, ${ }^{13} \mathrm{C}$ NMR revealed a signal at $14.56,14.75$ assigned to $2 \mathrm{CH}_{3}$ of ethyl group, signal at $20.68,27.85$ assigned to $2 \mathrm{CH}_{3}$, signal at 62.60 assigned to CH_{2} group, signal at 166.36, 204.78 assigned to 2CO group, these signals present beside all signals of CH and $\mathrm{C}-\mathrm{C}$ in the structure.

Moreover, the mass spectrum of structure 19a revealed a molecular ion peak at $\mathrm{m} / \mathrm{z}=525\left(\mathrm{M}^{-1}\right)$ corresponding to the molecular formula $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$. We suggest that 19a-c were formed via initial condensation between methylene of $\mathbf{1}$ and aromatic aldehyde 15a-c to afford the arylidine 16a-c and subsequently addition of methylene in another molecule of $\mathbf{1}$ to the double bond of the arylidine derivatives 16a-c to give the Michael adduct 17a-c. Which underwent interamolecular cyclization to give the adduct 18a-c followed by losing of water to give the final product 19a-c,
(Scheme 4).

Scheme 4
β-OXOANILIDE AS BUILDING BLOCKS IN HETEROCYCLIC
The pyrimidine derivatives 23a,b were prepared by the one-pot synthesis via a reaction of $\boldsymbol{\beta}$-oxoanilide $\mathbf{1}$, aromatic aldehydes and thiourea or urea. Establishing of structure 23a,b was based on its elemental analysis and spectral data. (Scheme 5).

Scheme 5
Also, the reaction of $\boldsymbol{\beta}$-oxoanilide $\mathbf{1}$ with non-symmetrical double bond system was investigated. Thus, compound $\mathbf{1}$ was reacted with arylidine acetophenones $\mathbf{2 4 a}, \mathbf{b}$ in ethanolic piperidine solution to yield condensation products via elimination of water. These were formulated as the cyclohexene derivatives $\mathbf{2 6 a}, \mathbf{b}$. Formation of $\mathbf{2 6 a}, \mathbf{b}$ are assumed to proceed via Michael type addition between the methylene group in $\mathbf{1}$ and double bond in arylidine 24a,b and subsequent cyclization of the intermediate 25a,b by elimination of water. Establishing the structure of 26a,b based on their spectral data (IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR). ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 6 a}$ as example revealed a signal at $\delta 14.60$ assigned to CH_{3} of ethyl group, a signal at δ 20.94 assigned to CH_{3}, a signal at $\delta 58.90$ assigned to CH_{2} group and signals at δ 167.45, 195.44 assigned to 2CO groups, (Scheme 6).

Scheme 6
Furthermore, the utility of $\boldsymbol{\beta}$-oxoanilide $\mathbf{1}$ for synthesis of $\boldsymbol{\pi}$-excessive molecules has been investigated. Thus, reactions of a mixture of $\boldsymbol{\beta}$-oxoanilide $\mathbf{1}$, elemental sulfur and ethyl cyanoacetate gave the thiophene derivative 27 . Compound 27 was confirmed by spectral data (IR, ${ }^{1} \mathrm{H}$ NMR and MS). Thus, the mass spectrum of 27 revealed a molecular ion peak at $\mathrm{m} / \mathrm{z}=(348)\left(\mathrm{M}^{+}\right)$corresponding to molecular formula $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$. Moreover, the thiophene ring obtained possesse latent functional substituents which enable its further chemical transformation into thienoazines of an expected wide spectrum of biological activity. Treatment of thiophene 27 with formamide without solvent afforded the expected thienopyrimidinone derivative 28. Similarly, treatment of 27 with potassium thiocyanate in refluxing dioxane containing $10 \% \mathrm{HCl}$ afforded the thienopyrmidine
derivative 29. Also, treatment of $\mathbf{2 7}$ with hydrazine hydrate afforded the hydrazide derivative 30 which was confirmed by compatible spectral data. (Scheme 7).

Experimental

All melting points are uncorrected. IR spectra (KBr) were recorded on a JASCO FT/IR-480 plus spectrometer $\left(v, \mathrm{~cm}^{-1}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded in DMSO- d_{6} and CDCl_{3} at $200,300 \mathrm{MHz}$ on a Varian Gemini NMR spectrometer (δ, ppm) using TMS as an internal standard (carried out by the Micro Analytical Center, Cairo university). Mass spectra were obtained on GC Ms-QP 1000 EX mass spectrometer at 70 ev (carried out by the Micro Analytical Center, Cairo university). Elemental analysis were carried out by the Micro Analytical Research Center, faculty of science, department of chemistry, Assiut university.

Preparation of compounds $\mathbf{6 a , b}$ and 8.
 General procedure:

To a solution of acetoacetanilide $\mathbf{1}$ (0.01 mole) in dry acetone (30 mL), acetyl isothiocyanate or phenylacetyl isothiocyanate or ethoxycarbonyl isothiocyanate was added. The reaction mixture was heated under reflux for 5 h . The solvent was removed by evaporation, the solid product so formed was collected by filtration and recrystallized from ethanol to give $\mathbf{6 a , b}$ and $\mathbf{8}$ respectively.
2-Methyl-3-(2-ethoxyphenyl)aminocarbonyl-6-mercapto-4-oxo-1,4 dihydropyridine (6a).
It was obtained from acetoacetanilide 1 (0.01 mole) and acetyl isothiocyanate as yellow crystals in yield (60\%); mp. $=180^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}: 3370(\mathrm{NH}), 3191$ (NH), 1697 (C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) δ ppm: $1.40\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.19(\mathrm{~s}, 3 \mathrm{H}$,

β-OXOANILIDE AS BUILDING BLOCKS IN HETEROCYCLIC

CH_{3}), $3.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}\right.$), $4.15\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.94-7.24(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ pyridine), 11.42 (s, 1H, NH) and 13.00 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm}: 14.60$ (q); 23.79 (q); 64.35 (t); 112.21 (d); 112.21 (d); 119.75 (s); 119.75 (s); 122.12 (d); 122.12 (d); 125.25 (s); 126.26 (s); 127.25 (s); 149.40 (d); 172.55 (s, CO); 177.17 (s, CO). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (304.37): C, 59.19; H, 5.30; N, 9.20; S, 10.53. Found: C, 59.10; H, 5.30; N, 9.10; S, 10.60.

2-Benzyl-3-(2-ethoxyphenyl)aminocarbonyl-6-mercapto-4-oxo-1,4-dihydropyridine (6b).

It was obtained from acetoacetanilide 1 (0.01 mole) and phenyl- acetyl isothiocyanate as colorless crystals in yield (65\%); mp. $=135^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; 3195 (NH), 3127 (NH), 1695 (C=O), 1653 (C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) δ ppm: 1.31 (t, 3H, CH3), $2.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.05\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.92-7.35(\mathrm{~m}$, $9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.65 (s, $1 \mathrm{H}, \mathrm{CH}$ pyridine), 11.58 (s, $1 \mathrm{H}, \mathrm{NH}$) and 12.80 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). MS: $\mathrm{m} / \mathrm{z}=380\left(\mathrm{M}^{+}\right)$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (380.47): C, 66.30; H, 5.30; $\mathrm{N}, 7.36$; S, 8.43. Found; C, 66.20; H, 5.20; N, 7.30; S, 8.50.
5-Acetyl-2-hydroxy-1-(2-ethoxyphenyl)aminocarbonyl-4-mercapto-1H-pyrimidine-6-one (8).

It was obtained from acetoacetanilide 1 (0.01 mole) and ethoxy-carbonyl isothiocyanate (0.01 mole) as yellow crystals in yield (60%); mp. $>360^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; 3138 (br., OH), 1713 (C=O), 1671 (C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ ppm: 1.37 (t, 3H, CH ${ }_{3}$), $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), 4.08\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.01(\mathrm{~s}, 1 \mathrm{H}$, OH) and 7.28-7.62 (m, 4H, Ar-H). Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (306.34): C, 54.89; H, 4.61; N, 9.14; S, 10.47. Found: C, 54.70; H, 4.50; N, 9.10; S, 10.50.
2-Amino-3-cyano-4-(2-chlorophenyl)-5-(2-ethoxyphenyl)aminocarbonyl-6-methyl-4Hpyran (12).

A solution of acetoacetanilide $\mathbf{1}$ (0.01 mole), 2-chloro benzylidene malononitrile (0.01 mole) and triethylamine (0.5 mL) in ethanol (30 mL) was heated under reflux for 6 h . The solid product formed on heating was collected by filtration to give $\mathbf{1 2}$ as white crystals, recrystallized from ethanol, yield (80\%), mp. $=20{ }^{\circ} \mathrm{C}$. IR (KBr) v cm^{-1}; 3467, $3321\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 2189(\mathrm{CN}), 1644(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta \mathrm{ppm}$: 1.37 (t, 3H, CH3), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.15$ (q, 2H, CH2), 4.61 (s, 1H, 4H pyrane), 5.98 (s, 2H, NH ${ }_{2}$) and 7.05-7.65 (m, 9H, Ar-H+NH). MS: m/z=409 (M^{+}). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3}$ (409.88): C, 66.40 ; H, 4.78; N, 11.06; Cl, 9.33. Found: C, 66.40; H, 4.60; N, 11.00; Cl, 9.40.

Preparation of compounds 13a,b: General procedure:

A mixture of acetoacetanilide $\mathbf{1}$ (0.01 mole), benzylidene ethyl cyanoacetate (0.01 mole) and triethylamine (0.5 mL) was refluxed in ethanol (30 mL) for 6 h . The solid product formed on heating was collected by filtration and recrystallized from ethanol to give 13a,b.

4-(4-Chlorophenyl)-5-(2-ethoxyphenyl)carbamoyl-2-hydroxy-6-methyl-1,4-dihydropyridine-3-ethylcarboxylate (13a).

It was obtained from acetoacetanilide 1 (0.01 mole) and 4-chloro benzylidene ethyl cyanoacetate (0.01 mole) as white crystals in yield (80%), mp. $=220^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; $3418(\mathrm{OH}), 3388(\mathrm{NH}), 3373(\mathrm{NH}), 1715(\mathrm{C}=\mathrm{O}), 1674(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$
 $3.99\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.00\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.70(\mathrm{~s}, 1 \mathrm{H}, 4 \mathrm{H}$ pyridine), $6.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 6.78-7.81 (m, 8H, Ar-H), 8.83 (s, 1H, NH) and 9.40 (s, 1H, NH). Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5}$ (456.93): C, 63.09; H, 5.51; N, 6.13; Cl, 7.76. Found: C, 63.00; H, 5.40; N, 6.00; Cl, 7.80.

4-(4-Bromophenyl)-5-(2-ethoxyphenyl)carbamoyl-2-hydroxy-6-methyl-1,4-dihydropyridine-3-ethylcarboxylate (13b).

It was obtained from acetoacetanilide $1(0.01 \mathrm{~mole})$ and 4-bromo benzylidene ethyl cyanoacetate (0.01 mole) as white crystals in yield (70%); mp. $=215{ }^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; 3421 (OH), 3388 (NH), 3372 (NH), 1714 (C=O), 1672 (C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) δ ppm: $1.30\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 4.00 (q, 2H, CH $)$, 4.05 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 5.7 (s, $1 \mathrm{H}, 4 \mathrm{H}$ pyridine), 6.78 (s, $1 \mathrm{H}, \mathrm{OH}$), 6.80-7.41 (m, 8H, Ar-H), 8.79 (s, 1H, NH) and 9.38 (s, 1H, NH). Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{5}$ (501.38): C, 57.49; H, 5.03; N, 5.59; Br, 15.94. Found: C, 57.40; H, 5.00; N, 5.40; Br, 15.90.

Preparation of compounds 14a-c:

General procedure:
To a solution of acetoacetanilide $\mathbf{1}$ (0.01 mole) in ethanol (30 mL) containing triethylamine (0.5 mL), benzylidene cyanoacetamide or benzylidene cyanothioacetamide (0.01 mole) was added respectively. The reaction mixture was heated under reflux for 4 h . The solid product formed on heating was collected by filtration and recrystallized from ethanol to give 14a-c.

3-Cyano-4-(p-chlorophenyl)-5-(2-ethoxyphenyl)aminocarbonyl-6-methyl-6-oxo-1,2-dihydropyridine (14a).

It was obtained from acetoacetanilide 1 (0.01 mole) and 4-chloro benzylidene cyanoacetamide (0.01 mole) as pale yellow crystals in yield (70%); mp. $=250^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1} ; 3270(\mathrm{NH}), 3133(\mathrm{NH}), 2225(\mathrm{CN}), 1654(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ ppm: $1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.0\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.83-7.56(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}+\mathrm{NH}$) and $9.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{3}(407.86)$: C, 64.79; H, 4.45; N, 10.30; Cl, 8.69. Found: C, 64.70; H, 4.40; N, 10.30; Cl, 8.70.

3-Cyano-4-(p-chlorophenyl)-5-(2-ethoxyphenyl)aminocarbonyl-6-methyl-6-thioxo-1,2-dihydropyridine (14b).

It was obtained from acetoacetanilide 1 (0.01 mole) and 4-chloro benzylidene cyanothioacetamide (0.01 mole) as yellow crystals in yield (80%), mp. $=264{ }^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}: 3436(\mathrm{NH}), 3242(\mathrm{NH}), 2230(\mathrm{CN}), 1650(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ ppm: $1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.06\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.86-7.61(\mathrm{~m}, 8 \mathrm{H}$, Ar-H), 9.65 (s, 1H, NH), and 14.38 (s, 1H, NH). Anal Calcd. For $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$
β-OXOANILIDE AS BUILDING BLOCKS IN HETEROCYCLIC 189
(423.92): C, 62.33; H, 4.28; N, 9.91; Cl, 8.36; S, 7.56. Found: C, 62.20; H, 4.20; N, 9.90; Cl, 8.40; S, 7.60.

3-Cyano-4-(p-methoxyphenyl)-5-(2-ethoxyphenyl)aminocarbonyl-6-methyl-6-thioxo-1,2-dihydropyridine (14c).

It was obtained from acetoacetanilide $\mathbf{1}$ (0.01 mole) and 4-methoxy benzylidene cyanothioacetamide (0.01 mole) as yellow crystals in yield (80%), mp. $=260^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; $3430(\mathrm{NH}), 3273(\mathrm{NH}), 2225(\mathrm{CN}), 1651(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ ppm: $1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.0\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.79-7.43 (m, 8H, Ar-H), 9.56 (s, 1H, NH) and 14.38 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). MS: m/z=419 (M ${ }^{+}$). Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (419.51). C, 65.85; H, 5.05; N, 10.02; S, 7.64. Found: C, 65.70; H, 5.00; N, 10.00, S, 7.70.

Preparation of compounds 19a-c: General procedure:

A solution of acetoacetanilide $\mathbf{1}$ (0.01 mole), aromatic aldehyde (0.01 mole) and catalytic amount of triethylamine (0.5 mL) in ethanol (30 mL) was refluxed for 10 h . The solid product formed on heating was collected by filtration, recrystallized from the ethanol to give 19a-c.
4-Methyl-1,3-bis-[(2-ethoxyphenyl)aminocarbonyl]-6-oxo-2-p-tolyl-cyclohex-3-ene (19a).
It was obtained from acetoacetanilide $\mathbf{1}$ (0.01 mole) and 4-methyl benzaldehyde as colorless crystals in yield (80%). mp. $=218^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; 3412, 3386 (2NH), 1713, 1674 (3C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) δ ppm: 1.31 (t, 3H, CH ${ }_{3}$), 1.39 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.02\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.02(\mathrm{q}, 2 \mathrm{H}$, CH_{2}), 5.80 (s, 2H, CH ${ }_{2}$ cyclohexene), 6.77-7.17 (m, 12H, Ar-H), 7.59 (d, 1H, CH cyclohexene), 7.87 (d, 1H, CH cyclohexene), 8.71 (s, 1H, NH) and 9.31 (s, 1H, NH). ${ }^{13}$ C NMR: 14.56 (q); 14.75 (q); 20.68 (q); 27.85 (q); 44.86 (q); 54.18 (t); 62.60 (t); 64.16 (d); 72.59 (d); 72.59 (d); 112.32 (s); 112.64 (s); 120.31 (d); 121.03 (s); 123.99 (d); 127,46 (s); 127.74 (d); 128.12 (s); 128.60 (d); 135.58 (s); 135.59 (s); 137.17 (s); 147.80 (s); 166.36 (s, CO); 170.00 (s, CO); 204.78 (s, CO). MS: m/z=525 (M ${ }^{-1}$). Anal. Calcd. For $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$ (526.64): C, 72.98; H, 6.51; N, 5.32. Found: C, 72.80; H, 6.40; N, 5.20.

2-(4-(Dimethylaminophenyl)-1,3-bis-[(2-ethoxyphenyl)aminocarbonyl]-4-methyl-6-oxo-cyclohex-3-ene (19b) .

It was obtained from acetoacetanilide 1 (0.01 mole) and 4-dimethylamino benzaldehyde as colorless crystals in yield (70\%). mp. $=230^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; 3411, 3383 (2NH), 1713 (C=O), 1674 (2C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) δ ppm: 1.35 (t, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.01(\mathrm{q}, 2 \mathrm{H}$, CH_{2}), 4.28 (q, 2H, CH2), 5.65 (hump, 2H, CH2 cyclohexene), 6.54-7.14 (m, 12H, ArH), 7.68 (d, 1H, CH cyclohexene), 7.95 (d, 1H, CH cyclohexene), 8.71 (s, 1H, NH) and 9.33 (s, 1H, NH). Anal. Calcd. For $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$ (555.68): C, 71.33; H, 6.71; N, 7.56. Found: C, 71.20; H, 6.60; N, 7.60.

2-(1,3-Diphenyl-1H-pyrazol-4-yl)-1,3-bis-[(2-ethoxyphenyl)aminocarbonyl]-4-methyl-6-oxo-cyclohex-3-ene (19c).

It was obtained from acetoacetanilide 1 (0.01 mole) and 1,3 -diphenyl- 1 H -pyrazole-4-carbaldehyde as colorless crystals from ethanol in yield (80\%). mp. $=205$ ${ }^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; 3401 (NH), 3344 (NH), 1705, 1674 (3C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6}\right) \delta \mathrm{ppm}: 1.19\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.96\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.39\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ cyclohexene), 6.75-7.58 (m, 18H, Ar-H), 7.76 (d, 1H, CH cyclohexene), 7.86 (d, 1H, CH cyclohexene), 8.73 (s, 1H, CH pyrazole), 8.95 (s, 1H, NH) and 9.18 (s, 1H, NH). Anal. Calcd. For $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{5}$ (654.77): C, 73.38; H, 5.85; N, 8.56. Found: C, 73.30; H, 5.80; N, 8.50.

Preparation of compounds 23a,b:

General procedure:

To a solution of acetoacetanilide $\mathbf{1}$ (0.01 mole) in ethanol (30 mL) containing a few drops of hydrochloric acid (5 mL), thiourea or urea (0.01 mole) and aromatic aldehyde (0.01 mole) were added. The reaction mixture was heated under reflux for 4 h . The solid product which produced on hot was collected by filtration and recrystallized from ethanol to give 23a,b.

4-(4-Chlorophenyl)-5-(2-ethoxyphenyl)aminocarbonyl-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine (23a).

It was obtained from acetoacetanilide 1 (0.01 mole), 4-chloro benzaldehyde (0.01 mole) and thiourea (0.01 mole) as yellow crystals; yield (80%); mp. $=205^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 3434 (NH), 3254 (NH), 3162 (NH), 1644 (C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) δ ppm: $1.27\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.0\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.33(\mathrm{~s}$, 1H, CH pyrimidine), 6.85-7.46 (m, 8H, Ar-H), 8.57 (s, 1H, NH), 9.45 (s, 1H, NH) and $10.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. MS: m/z=401(M+), $403\left(\mathrm{M}^{+2}\right)$. Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (401.92): C, 59.77; H, 5.02; N, 10.45; Cl, 8.82; S, 7.98. Found: C, 59.60; H, 5.00; N, 10.40; Cl, 8.90; S, 7.90.

4-(4-Chlorophenyl)-5-(2-ethoxyphenyl)aminocarbonyl-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine (23b).

It was obtained from acetoacetanilide 1 (0.01 mole), 4-chloro benzaldehyde (0.01 mole) and urea (0.01 mole) as white crystals; yield (60%); mp. $=230^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$: 3418 (NH), 3269 (NH), 3131 (NH), $1696(\mathrm{C}=\mathrm{O}), 1639(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6} \delta \mathrm{ppm}: 1.07\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.96\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 5.38 (s, 1H, CH pyrimidine), 6.84-7.51 (m, 9H, Ar-H+NH), $8.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ and 8.91 (s, 1H, NH). Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3}$ (385.85): C, 62.26; H, 5.22; N, 10.89; Cl, 9.19. Found: C, 62.10; H, 5.20; N, 10.80; Cl, 9.20.

Preparation of compounds 26a,b: General procedure:

To a solution of acetoacetanilide $\mathbf{1}$ (0.01 mole) in ethanol (40 mL) containing catalytic amount of piperdine (4 drops), chalcones deriveatives 24a,b (0.01 mole) were added. The reaction mixture was heated under reflux for 10 h . The solid product formed on heating was collected by filtration, recrystallized from ethanol to give 26a,b.
β-OXOANILIDE AS BUILDING BLOCKS IN HETEROCYCLIC
6-(4-Chlorophenyl)-1-(2-ethoxyphenyl)aminocarbonyl-2-oxo-4-p-tolyl-cyclohex-3-ene (26a).

It was obtained from acetoacetanilide 1 (0.01 mole) and 3-(4-chlorophenyl)-1-(4-methylphenyl)-propenone 24a (0.01 mole) as white crystals from ethanol in yield (60\%), mp. $=170^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1} ; 3270(\mathrm{NH}), 1665(2 \mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSOd_{6}) δ ppm: $1.38\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 2.34 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.04(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}$ cyclohexene), 3.32 (d, $1 \mathrm{H}, \mathrm{CH}$ cyclohexene), 4.02 (q, 2H, CH2), 4.39 (d, 2H, CH_{2} cyclohexene), 6.54 (s, $1 \mathrm{H}, \mathrm{CH}$ cyclohexene), 6.81-7.80 (m, 12H, Ar-H) and 9.04 (s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR: 14.60 (q); 20.94 (q); 58.90 (t); 64.15 (t); 112.64 (d); 120.24 (d)); 121.67 (d); 122.81 (s); 124.42 (d); 124.42 (d); 126.51 (s); 127.41 (s); 128.32 (d); 129.52 (s); 129,64 (d); 129.64 (d); 131.38 (s); 134.51 (s), 140.55 (s); 141.43 (d); 148.38 (d); 158.48 (d); 167.45 (s, CO); 195.44 (s, CO). Anal. Calcd. For $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClNO}_{3}$ (459.98): C, 73.11; H, 5.70; N, 3.05; Cl, 7.71. Found: C, 73.00; H, 5.60; N, 3.00; Cl, 7.80.
4-(4-Bromophenyl)-6-(4-chlorophenyl)- 1-(2-ethoxyphenyl)aminocarbonyl-2-oxo-cyclohex-3-ene (26b).

It was obtained from acetoacetanilide 1 (0.01 mole) and 1-(4-bromophenyl)-3-(4-chlorophenyl)-propenone $\mathbf{2 4 b}$ (0.01 mole) as yellow crystals in yield (80%), mp . $=180^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1} ; 3374(\mathrm{NH}), 1688(\mathrm{C}=\mathrm{O}), 1653(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NR}\left(\mathrm{CDCl}_{3}\right)$: $1.52\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.00(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}$ cyclohexene), 3.93 (d, 1H, CH cyclohexene), 4.12 (q, 2H, CH2), 4.70 (d, 2H, CH2 cyclohexene), 6.59 (s, 1H, CH cyclohexene), 6.84$8.31(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $8.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. MS: m/z=523 (M^{+}), $525\left(\mathrm{M}^{+2}\right)$. Anal. Calcd. For $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{BrClNO}_{3}$ (524.85): C, 61.79; H, 4.42; N, 2.67; Br, 15.22; Cl, 6.75. Found: C, 61.70; H, 4.30; N, 2.60; Br, 15.30; Cl, 6.80.

Compound (27): Ethyl 2-amino-5-((2-ethoxyphenyl)carbamoyl)-4-methylthiophene-3-carboxylate.

A solution of acetoacetanilide $\mathbf{1}$ (0.01 mole), ethyl cyanoacetate, elemental sulfur and few drops of triethylamine (4 drops) in absolute ethanol (30 mL) was refluxed for (4-8) h. The reaction mixture left to cool, the solid which formed collected by filtration, washed with ethanol, dried and recrystallized from ethanol to give 27 as brown crystals in yield (80%), mp. $=175{ }^{\circ} \mathrm{C}$, IR (KBr) $v \mathrm{~cm}^{-1}$; 3432, $3316\left(\mathrm{NH}_{2}\right.$, NH), 1647 (C=O), $1633(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta \mathrm{ppm}: 1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40$ (t, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.09\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.14(\mathrm{q}, 2 \mathrm{H}$, CH_{2}), 6.90-8.08 (m, 4H, Ar-H), and $8.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. MS: $\mathrm{m} / \mathrm{z}=348\left(\mathrm{M}^{+}\right)$. Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (348.42): C, 58.60; H, 5.79; N, 8.04; S; 9.20. Found: C, 58.50; H, 5.70; N, 8.00; S, 9.20.

Compound (28): N-(2-ethoxyphenyl)-5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxamide.

A mixture of compound 27 (0.01 mole) and formamide (10 mL) was heated under reflux for 10 h . The solid obtained on hot was crystallized from ethanol to give 28, as brown powder in yield (65\%), mp. $=270^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; $3423(\mathrm{NH})$, 3274 (NH), 1670 (C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) δ ppm: 1.41 (t, 3H, CH3), 2.87 (s, 3H, CH_{3}), 4.12 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.93-8.01 (m, 4H, Ar-H), 8.17 (s, 1H, CH pyrimidine), 9.09
(s, 1H, NH) and 12.56 (hump, 1H, NH). Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (329.38): C, 58.35; H, 4.59; N, 12.76; S, 9.73. Found: C, 58.20; H, 4.50; N, 12.70; S, 9.80.

Compound (29): N-(2-ethoxyphenyl)-5-methyl-4-oxo-2-thioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidine-6-carboxamide.

A mixture of compound 27 (0.01 mole) and potassium thiocyanate (0.15 mole) was stirred under reflux in dioxane containing (10\%) HCl for 15 h . poured onto (200 mL) water, the solid precipitated was filtered off, and crystallized from ethanol, as brown crystals, in yield (70\%). mp. $=260{ }^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; 3423 (br., 3NH), 1627, 1686 (2C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta \mathrm{ppm}: 1.41$ (t, 3H, CH ${ }_{3}$), 2.79 (s, 3H, CH_{3}), $4.14\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 6.92-8.01 (m, 4H, Ar-H), 8.98 (s, $1 \mathrm{H}, \mathrm{NH}$), 12.49 (s, 1H, NH) and 13.49 (hump, 1H, NH). MS: m/z=361 (M^{+}). Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$ (361.44): C, 53.17; H, 4.18; N, 11.63, S, 17.74. Found: C, 53.10 ; H, 4.00; N, 11.60; S, 17.80.

Compound (30): 5-Amino-N-(2-ethoxyphenyl)-4-(hydrazinecarbonyl)-3-methylthiophene-2-carboxamide.

A mixture of compound 27 (0.01 mole) and hydrazine hydrate (5 mL) in ethanol $(20 \mathrm{~mL})$ was refluxed for 10 h . The reaction mixture was poured onto ice-cold water, filtered off, recrystallized from ethanol to give $\mathbf{3 0}$ as gray crystals in yield (60\%), $\mathrm{mp} .=190^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; 3432, $3298\left(2 \mathrm{NH}_{2}, \mathrm{NH}\right), 3160(\mathrm{NH}), 1634(2 \mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) δ ppm: $1.40\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 4.13 (q, 2H, CH2), 6.88-7.09 (m, 4H, Ar-H), 7.78 (s, 2H, NH2), 8.50 (s, 1H, NH) and 8.87 (s, 1H, NH). Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (334.40): C, 53.88; H, 5.43; N, 16.75; S, 9.59. Found: C, 53.70 ; H, 5.40; N, 16.70; S, 9.60.

References

1. L. Selic, S. G. Grdadolink and B. Slanounir, Heterocycles, 27, 49, (1998).
2. M. S. Novikov, A. A. Ozerov, O. G. Sim and R. W. Buckeit, Chemistry of Heterocyclic Compound, 40, 1, 37 (2004).
3. A. M. Hussein, Afindad Lvi, 484, 377 (1999).
4. P. B. Russel and G. H. Hiching, J. Am. Chem. Soc., 73, 3763 (1951).
5. G. R. Newkome and W. W. Paudler, Contemporary Heterocyclic Chemistry, Wily, New York, 306 (1982).
6. A. M. Hussein; F. A. Abu-Shanab; M. A. M. Abdel Raheem and M. S. A. El-Gaby, Phosphorouse, Sulfur and Silicon, 183, 1722 (2008).
7. A. M. Hussein, I. S. Abdel Hafez, E. A. Ishak, M. H. Elnagdi and A. A. Atalla; Afinidad; 65, 537 (2008).
8. A. M. Hussein; F. A. Abu-Shanab and E. A. Ishak, Phosphorouse, Sulfur and Silicon, 159, 55 (2000).
9. F. Bigi, B. Frullanti, R. Maggi, G. Sartori and E. Zambonin, J. Org. Chem., 64, 1004 (1999).
