A MORE SIMPLE ALTERNATIVE FOR THE SOLUTION
OF THE SECOND ORDER DESIGN PROBLEM OF
GEODETIC NETWORKS

Kamal A. Atia*, Abo El-Hassan M. Rahil”™ and Ahmad F.Abo- Gohnim™*

* Civil Engineering Dep.,Faculty of Eng., Alexandria University, Egypt.
+* Civil Engineering Dep.,Faculty of Eng., Minufiya University, Egypt.

*** Civil Engineer
ABSTRACT

A more simple alternative for the solution of the second order design
problem of geodetic networks with respect to realization of the results has
been developed. One of the main poblemes, which can arise when solving
the SOD problem is that, the resulting weight vector may not reproduce a
cofactor matrix, which ensures the criteria requerements, in some parts of
the network, or all over the network. In this paper, this problem is treated
by modifying the resulting weight vector linearly, by its multiplication by a
scaler value . Numerical examples are given to illustrate its application. The
commercial “Matlab” program was used to solve the case studies.

1. INTRODUCTION

The optimization of the design of the geodetic networks, is accepted to
be classified to four design problem ( orders ) namely; Zero-Order Design
(ZOD), First Order Design (FOD), Second Order Design (SOD), and Third
Order Design (THOD). ZOD is the problem of definding the datum or
coordinate system, FOD is the problem of constructing the optimum shape
or configuration of the network, SOD is the problem of determining the
optimum weight of the observed quantities and finally THOD is the
problem of improving the quality of existing networks. The second- order
design (SOD) problem is défined as, the search for the optimal observationl
weights, of a given observational plan, under a given criteria, which is
usually formed as an ideal criterion matrix. The resulting weight vector may
not reproduce a covariance matrix, which ensures the required criteria in
some elements. So, in this study, the resulting weight vector can be linearly
modified, by its muitiplication by a suitable scaler to ensure the required
criteria all over the network .
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This modification is done depending on the comparison between the
resulting criteria and the adopted ones, and then, multiplying the resulting
weight vector by this scaler.The simple least - squares solution, by
approximating an inverse criterion matrix, is applied to the case - studies in
the present investigation. The unit matrix is used successfully as a criterion
matrix in all solved examples.The free network concept is used in these
examples,which is the suitable one for obtaining the properties of
homogeneity and isotropy. A more simple alternative for the solution of the
second ‘order design problem of geodetic networks with respect to
realization of the results has been developed .

2. THE GENERAL CONCEPT OF THE SOLUTON OF THE SOD
PROBLEM OF GEODETIC NETWORKS

The general concept of the solution of the SOD problem involves three

steps ( Schmitt, 1985):

1- A pure weight optimization with respect to the criterion matrix;

2- The optimum weights ( resulted from stepl ) are approximated by a
detailed plan of instruments, procedures and repetiton numbers of the
observations. ;

3- This design is analyzed; whether it fits the network requirements. Thus,
when substituting by the resulting weight matrix P, the criteria adopted
and the requirements, are obtained or not. One can see that, whether the
resulting weight vector P, is modified, until the criterion are satisfied.

2.1 FORMULATION OF THE ADOPTED CRITERIA

There are two different methods to express the required criteria,which
are adopted,when solving the SOD optimization problems. The first
minimizes or maximizes a scalar risk function,for example, the trace of the
cofactor matrix Q. trace (Qx ) = min. The second type of the adopted
criteria are the so- called criterion matrices. The determination of the
criterion matrix is considered as a central problem,when solving the SOD
problems. Generally,the geodetic networks are said to be optimum, if it has
the properties of homogeneity and isotropy. The simplest cofactor matrix
which leads to these proberties,is the unit matrix, in which the diagonal
elementsare equally sized, and the off- diagonal elements are zeros. The unit
matrix can be considered as a special case of the Taylor-Karmen structure
criterion matrices, if zero correlation functions are introduced. )

2.2 SOLUTON METHODS OF THE SECOND - ORDER DESIGN
PROBLEM

All the strategies of the solution of the optimization problems,and
especially the second-order design problems, are considered as one of two
categories
Computer simulation and analytical methods. In the analytical methods,
two basic approaches are used in the solution. The first is based on the
concept of best - fitting the user precision, in a least - squares sense. The
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other uses the techniques from the operation research called mathematical
programming. In this study, we will deal with the least squares solution.

2.2.1 THE GENERALIZED MATRIX APPROACHE ( THE SIMPLE
SOLUTIONS)

These approaches are called the simple approaches,since it depends on ;
finding the the optimal weights, from the simple relation (ATPA)" = Q, i.e
through one relation only. ( where: ( )" is used to include either the
constrained and free networks, and regular or singular criterion matrices, as
well ). The solution is obtained by formulating a redundant system of
equations in the unknown weight vector P, to be solved by the least -
squares principle, or equivalently, by using the generalized inverse of
matrices, especially the Moore Penrose g-inverse.The solution of a
redundant system of equations using the Moore Penrose g-inverse ( )", will
yield the same results as applying the least-squares principle. The two
approaches yield a solution vector with a minimum norm and also, the
residual vector with a minimum norm.The optimality of the simple least-
squares (or the pseudo-inverse approach) is achieved dependingron the fact
that, the resultig solution vector p, will have a minimum norm (p p =min.) (
Schaffrin,1981). This property of the solution vector p indicates the
minimum cost, since the weights are related inversely to the variances. So,
the minimization of the weights indicates the larger the required variances,
respectively, less precise instruments; the simpler the procedures and less
repetition numbers of the observations. The simple least-squares approaches
can be classified into three kinds, namely:
1-The direct approaches:which approximate directly the criterion matrix

or its inverse.
2-The canonical design: which uses the concept of the sigular value
decomposition of the inverse criterion matrix.
3-The iterative approach:which starts by an inital weight vector p°, then, it
is updated through an iterative manner, until reaching to the desired one.
In this study, for finding the optimal weights, from the simple relation
(ATPA)" = Q,, the direct approximation of the inverse criterion matrix have
been used as follows: Starting by the cofactor matrix equation :
A'PA= (Qx)’ )
Using the Khatri-Rao product, the system (2) can be converted to a system
of linear equations for the vector p, thus :

(AT@A ) =¢q @)

with : p = vec p and
q=vec Q'x =vecpx 4)

The solution of Equaion (3) is obtained by ( e.g. Schmitt 1978,1979,1985)
p=(AT@A")" g (%)
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3. A MORE SIMPLE ALTERNATIVE FOR THE SOLUTION OF
THE SECOND ORDER DESIGN PROBLEM OF GEODETIC
NETWORKS

In this study, A more simple alternative for the solution of the second order
design problem of geodetic networks is introduced. It is generally, based on
the least-squares principle, applied to solve the over-determined system of
equations in the unknown' vector p. Most of the solutions are depending
mainly on the precision criteria, expressed by the criterion matrices. Some
times, after obtaining the requxred weight vector, the reproduced covariance
matrix, obtained by substltutmg the resulted weight vector, may not ensure
the required criteria in some parts of the network or all over the network.

For example, the resulted semi-major axes of the absolute errors ellipses, of
some of the net points, may be worse than the adopted ones. This is because
these solutions are depending on the least-squares principle, or best-fitting
the adopted criterion matrix, and this leads to that, the resulted criteria will
be better in some parts and bad in the others. The resulted weight vector will
be called the preliminary solution, to be modified- if necessary- to another
one, to ensure the required criteria all over the network. This concept can be
applied also, if the resulted criteria are greatly better than the adopted ones,
yielding an error situation more precise than the adopted one. This will
increase the cost and the network will be not economical, for some
purposes. Usually, the modified of the preliminary resulted weight vector,
will be a linear modification. This means that, the preliminary weight vector
will be multiplied by a scaler value, yielding a new vector, which will
satisfy the requirements. The preliminary obtained weight vector will be
denoted by p; and the modified one will be denoted by p,. The covariance
matrix resulted from the vector p; will be denoted by ., the modified one
by 2\2. Considering the covariance matrix equation :

Y. = oA PA) (6)

When the weight vector (p; ) is multiplied by a factor (), it will be changed
to say (pz), such that . (p2=r.p1)
The modified covariance matrix 2., will be :

Y. coNARA) = o drp A
S. = AoNAPAN=T, Q

Thus, any linear transformation to the weight vector (p;) by a scaler (r) will
reduce the elements of the covariance matrix by (). All the elements of the

new covariance matrix 2.y, will equal to the corresponding elements of 2.,
divided by (r). Schmitt (1985) gave a procedure, to overcome the problem
of exisiting any difference between the actual variance-covariance matrix,
resulted from the optimal weights p;, and the desired criterion matrix. This
is by multiplying the resulted weight vector p, by a factor A, such that, the
square sum of the residuals d”d, will be minimum, where the vector d is the
difference between the resulted covariance matrix and the criterion one,
computed as follows:
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D= (4'pAd)y-C. ®)

d= vec (D) . then: d"d min, for p2= diag (A. p1) where A can be computed
by the operator “ trace” as:

race (A'p,A) (A p,AY)

A= S B (©)
trace [( A plA) Cx]

This modification may also not ensure that the resulted criteria will satisfy
the adopted one, since it considers all the elements of the covariance matrix,
to be closer to the corresponding adopted ones, and not consider specific
criteria, such as error ellipses.
For this reason, another two methods for the modification of the weight
vector ( or the reprouced covariance matrix), are proposed by the authers.
The two methods can be summarized as follows:
1- The first method depend on, the comparison between the elements, which
express the specific precision criteria ( as the major axis of the error ellipse),
with the corresponding ones adopted through the criterion matrix. Then, the
preliminary weight vector is multiplied by a suitable scaler, which is
determined depending on this comparison.
2- The other method uses an iterative modification of the resulted weights,
or the repetition numbers of the observations, or some of them. Thus, after
obtaining the preliminary solution py a realization is done by the available
instrument, and the repetition numbers are determined.Then, the actual
criteria are computed and compare to the specifications. If there is any weak
in any part of the network, the weights of some of the observations,which
affect the weak parts, can be achieved through the increasing of the
corresponding repetition numbers. '
Returning to the first method, it can be achieved by computing the

ratios between specific elements of criteria, with the adopted ones in the
criterion matrix ( as the major-axes of the absolute error ellipses of all points
). Then, the weight vector is multiplied by the largest value of these ratios.
This will ensure that, at least, the largest value of the elements represnting
the criteria, will equal the adopted one.

-In our discussion, the absolute error ellipses in two-dimensional
networks, and the standard deviation of the heights in levelling networks,
will be considered, when illustrating the modification methods.

USING THE ABSOLUTE ERROR ELLIPSES FOR THE SOLUTION OF
THE SOD PROBLEM :

The absolute error ellipse is defined by its elements, which are the
semi-major axis, the semi-minor axis, and the oriention of them. The
discussion will concentrated mainly on the semi-major axis, since it is the
WoTrst criteria.

- First, one computes the semi-major axis of the absolute error ellipse (a;)
for any point ().
- The corresponding semi-major axes, are computed using the criterion
matrix and denoted by (ai0).
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- Compute the ratios (3, = g—'z'—) for all points . The largest one

(rimax) Will be the factor of modification. The new weight vector will be :
p2 = rimasx . pl

- The elements of the reproduced covariance matrix will be changed by —r——‘——

and the squares of the semi-major axes, of all points will also be reduced by
the same value . This is because, the square of the semi-major axis is a
linear function of some of the elements of the covariance matrix ,without
any constant terms. So, any change to the covariance matrix by any scaler
will change the square of the semi-major axes by the same value. For
example, the semi-major axis a; is given from :

2 2 2 A A

a = o + o)+ (di-a) +4o.))
It is clear from this equation that, the square of the semi-major axis is a
linear function of the elements ozx;, czy; ,czxiyi_ Clearly, all the other semi-
major axes will be reduced by the same value, and all of them will be
smaller than the adopted ones. It is to be mentioned here that, this method
will success especially when the values of the ratios (r;) are relatively close
to each other, and there is no great difference between them. If thereis a
great difference, the largest semi-major axis will equal to the criterion one,
but the initially small axes will be reduced by the-same ratio, and will be
more smaller without any need to this high precison ,which give high cost.
So, the second method can be used in case of existing great difference
between these ratios, by increasing only the weights of some observations
which affect the weak parts. A similar discussion can be drawn, in case of
considering the relative error ellipses, as the studied criteria.

USING THE STANDARD DEVIATIONS FOR THE SOLUTION OF THE
SOD PROBLEM : '

The most used criteria for levelling networks, is the standard deviations
of the heights of the stations, extracted from the matrix :
2 2

2
Omn Ommr O i

>, = (11)

The values o%; are compared with the adopted ones, which are computed
from the criterion matrix ( say 6%, ), then find the ratios :
2
po= S (12)
O sio

Then, the weight vector (p; ) is multiplied by the largest value (ripmay ),
and the resulted weight vector will be ( p; ). After that, the new covariance
matrix is computed. Also, if the difference between the ratios is large,
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the use of the value (rimax ) will lead to some variances to be more smaller
and give a precision more greater than the required, and consequently to
high cost without any need. Here, an iterative modification to the weight
vector p; using the necessary observations, which affect the weak parts of
the network, can be done by increasing the weights of these observations or
the repetition numbers of them.

The choice of the method of the modification, will depend on the
preliminary solution vector, and the criteria reproduced by substituting by
this vector. Firstly, the actual repetition numbers according to the -
preliminary solution (p;) are evaluated. Ifit does not satisfy the required -
criteria, the modification is done using any of the methods mentioned above.

4. CASE-STUDIES

In this investigation, some case-study, used as sample examples, will be
solved, using the simple least least-squares solution, approximating an
inverse criterion matrix. The selected case-studies, in our case here, will be
concentrated on two problems, namely : the geodetic networks in one-
dimensional and two dimensional networks. The first deals with the
levelling networks, while the second deals with the horizontal two-
dimensional networks. Also, it is to be mentioned that, in the case-studies,
only, the random errors are considered, assuming that the gross errors and
the systematic errors are eliminated a priori. Thus, the realization of the
results, will depend on the random errors only .

4.1 THE ADOPTED CRITERIA

In the case-studies, the precision criteria formed as a criterion matrix
will be considered. In the case-studies, the measures of precision will be :
the absolute error ellipses in the two dimensional networks, while in
levelling networks, the precision criterion will be the standard deviations of
the heights of the points. Thus, the formulation of the criterion matrices, and
the analysis of the results, will depend on these criteria.

Recall that, the network is well designed, if the error situation fulfils the
properties of homogeneity and isotropy. In the case studies, the criterion
matrices will ensure these properties. This means that, the postulated
absolute error ellipses all over the network will be circles with equal radius.
For the levelling networks, all the standard deviations of the stations will be
equally sized. The most suitable configuration which ensures the properties
of homogeneity and isotropy, is the free network. Thus, the error
propagation will be more homogeneous in this type of networks. This is
because, the free network adjustment can be imagined as, a constrained
adjustment with fixing the center of gravity of the network. The concept of
the free network is also suitable for the general purpose network, where the
properties of homogeneity and isotropy are required.
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4.1.1 THE CRITERION MATRIX CONSIDERING THE ABSOLUTE
ERRORS ELLIPSES

The most practical choice of the criterion matrix here is the'umte matrix.

This is suitable for all networks, which have these:properties of homogeneity

and isotropy. The unit matrix will be considered as the designated cofactor

matrix, and if the requirement of the net is any scalar of variances this scaler

problem will be dueto the unit matrix, and the fmal results ( the reahzatlon)
will be obtained using o-o .The unit matrix will be denoted by Qq in the text.

4.1.2 THE CRITERION MATRIX FOR LEVELLING NETWORKS

Here, the standard deviations of heights are required to be equally sized.
So, the most suitable cofactor matrix, Which fulfils this property is the unit
matrix also, Qy. The unit matrix will be used as cofactor matrix, when
solving the example of the levelling network.

5. PRESENTATION AND DISCUSSION OF THE OBTAINED
RESULTS FROM THE SOLUTION OF SELECTED CASE-
STUDIES

The second order design problem will be solved for two case-studies.
One of them will be for levelling network, and the other for a triangulation
network. All the case-studies will be solved for the free network concept .
The criterion cofactor matrix, in all cases, will be the unit matrix, which
ensures the properties of homogeneity and isotropy. This criterion is the
suitable one, for the general purpose networks. The realization of the results
will be performed for the two case-studies . This realization will be
according to a selected actual criterion covariance matrix, and selected type
of instruments, which give specific precision of the measured quantities.
Firstly, the solution weight vector will be obtained according to the SOD
with respect to the cofactor matrix Qp, then, the realization will be done

using the constant term O'i .

5.1 CASE-STUDY NO.(1) : A LEVELLING NETWORKS

A levelling network is shown in Fig.(1) . It consists of 7 bench-marks,
to be determined from 10 levelled height differences. The desctiption of the
measured height differences, is shown in Table (1). Firstly, the unite matrix
Qy, is transformed to the free net datum, by the relation

Q.. = 440, 44 (13

The preliminary weight vector p; involves positive values only (Table
1 ) . The standard deviations resulted from p; are ranged from 1.06 at
points B, E, F to 1.26 at A (Table 2 ). The modification of the vector p;
will depend on the point A, and the factor of modification will equal (1.26
}* =1.59. The modified weight vector p; is also shown in Table ( 1). The
reproduced criteria ( standard deviations) according to the vector pz, will be
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ranged from 0.83 at points B, E to 1.00 at point A. The realization of the
results will be done using the vector p; . The actual covariance matrix
ensures that the standard deviations of the heights at all points will equal
1.00mm . It is assumed that, it is possible to level to a precision equal 1.0Vd
mm, where d is the levelled distance in km. Table (1) shows the realization
of the results . For each height difference, it shows, the variance of a single
levelling, the required variance, and the required repetition numbers. The
repetition numbers are approximated to the largest integer value. The actual
criteria ( the standard deviations of heights) are also computed in mm in
Table (2). The resulted repetition numbers (n;) lead to that, the required
criteria are fulfilled at all points except for point A, which has a standard
deviation of height equals 1.16 mm. So, the repetition numbers of the
observations, which affect A ( the levelled lines A-B and A-E) are increased
by one. The resulting repetition numbers ( n, ) are used to compute the new
criteria. The resulting standard deviation of the height at A will be 1.06. It
can be improved by the same procedure.

TABLE 1.The preliminary weight vector (p; ),the modified one ( p; ), and
the realization of the results using p;, for the SOD of the
levelling network. The variance of a single levelling is assumed to
be 1.00*d mm?, where d is the distance in km. All the standard
deviations of the heights are required to be 1.00 mm.

Obs The Length The weights The realization using p;
No. | levelle in
dlines | (Km)
o P Variance of The The The
single -required | repetiion | modifi
levelling variances | numbers ed
MMy’ nl numb
ers
: n2
1 A-B 10 0.304 | 0.486 10 3.28 4 5
2 B-C 20 0.237 | 0.379 20 4.22 5 5
3 C-D 30 0.256 | 0.409 30 3.9 8 8
4 D-E 27 0.237 | 0.379 27 4.22 7 7
5 A-E 9 0.304 | 0487 9 3.28 3 4
6 B-F 11 0.241 '} 0.385 11 4.15 3 3
7 ¥-G 5 0.254 | 0.407 5 3.93 2 2
8 G-C 6 0.251 | 0.401 6 3.99 2 2
9 G-D 12 0.251 | 0.401 - 12 3.99 4 4
10 F-E 13 0.241  0.385 13 4.185 4 4

TABLE 2. The reproduced standard deviations of the heights of
the points in the levelling network

Fom the design according to the From the realization
Points cofactor matrix Qq according to p;
From p, From p, dueton, due to n,
(unitless) (unitless) (mm) (mm)
A 1.26 1.00 1.16 1.06
B 1.06 0.83 0.98 0.94
C 1.09 0.87 1.02 1.62
D 109 0.87 1.02 1.01
E 1.06 0.83 0.97 0.95
F 106 084 0.92 0.92
G 110 0.87 0.94 0.94
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TABLE 3. The approximate coordinates

of the nef points
| X Y
1 1000.000 11000.000
10km

2°] 956183 | 1189.776

C 3 | 799682 | 1248825

4 | 560469 | 1070.177

5 | 710638 | 892845

A 30km | ¢ | sssses | 8seset

7 | 865.087 1001.337

8 1412483 | 874.315

- 9 | 1320961 | 1204293
27km D

10 | 1508.354 | 1156.785

FIG.1 A levelling Network
5.2 CASE-STUDY NO.2 : A triangulation network

Figure (2) shows a free triangulation network, with its approximate
coordinates. This network consists of 10 points (20 coordinates), and the
observational plan includes the angles, described in Table ( 4 ). The
cofactor criterion matrix is the unit matrix (Qy). Firstly, the criterion matrix
is transformed to the free net datum. Then, the SOD solution is obtained,
which is the weight vector p; (Table 4 ). All the resulting weights are
positive, except for the observation no.(13), which is the angle 4-5-7, with
negative value. This observation is discarded, and the solution vector p; is
recomputed. All the resulting weights are positive. The elements of the error
ellipses are determined ( Table 5 ). The semi-major axes are ranged from
1.29 at points 7, 9 to 2.98 at point 6. The preliminary weight vector is
modified to p; . The scaler of modification is the square of (2.98). The
criteria are recomputed ( Table 5 ).The semi-major axes are now ranged
from 1.00 at point 6 to 0.43 at points 7, 9. Figure (3 ) shows the error
situation reproduced by the modified weight vector p2

3
9
2 10

6 8
F1G.2 A triangulation network
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TABLE 4. The preliminary weight vector p; ( resulting after one discarding
step), and the modified vector ps, resulting from the SOD of
the triangulation network.

Obs. | Description The preliminary solution The
No. of the vector py modified
angle vector p;
1 9-1-8 0.7192%10% 0.7207%10° 0.6402*%10”
2 2-1-9 0.0971*10° 0.0983*10° 0.0873*10°
3 7-1-2 0.0272%10° 0.0260*%10° 0.0231*107
4 6-1-7 0.0490%107° 0.0475%10°° 0.0422*10°
5 9-2-8 0.5573*10° 0.5569%10°° 0.4947%10°
6 | 8-2-1 0.1553*10° 0.1565%10° 0.1390%10”
7 1-2-7 0.0803%10° 0.0766*10°° 0.0680*10°
3 7-2-3 0.0120%10° 0.0101*10°° 0.0090*10™
9 2-3-7 0.1815%10° 0.1837*10° 0.1632*10°
10 7-3-4 0.2234%10°° 0.2213*10° 0.1966*10”
11 3-4-7 0.4937*10° 0.4966*10° 0.4411*10°
12 7-4-5 0.5393¥10° 0.5011*10° 0.4451*10°
13 4-5-7 -0.0315%10° e ——
14 7-5-6 0.1560%10° 0.1591*10% 0.1413%10°
15 5-6-7 0.0621*10° 0.0643*10° 0.0571*10°
16 7-6-1 0.0792*%10° 0.0831*%10° 0.0739%107
17 2-7-1 0.0564*10° 0.0596*10°° 0.0530%10™
18 3-7-2 0.3318*10° 0.3328*10° 0.2956*10°
|19 4-7-3 0.3067*10° 0.3067*10° 0.2724*10°
20 5-7-4 0.3727*10°° 0.3367*10° 0.2991*107
21 6-7-5 0.0678*10° 0.0637*10° 0.0566*10°
22 1-7-6 0.0118*10° 0.0106¥10°° 0.0094*10°
23 9-8-10 0.8492%10° 0.8493*10°° 0.7543*107
24 2-8-9 0.8080*10° 0.8115%10° 0.7208*10°
25 1-8-2 0.7997%10° 0.8038*10° 0.7140%10°
26 10-9 -8 0.3202*10° 0.3199*10° 0.2842%10°
27 8-9-1 0.3473*10° 0.3453%10° 0.3067*10°
28 1-9-2 0.4804*10°° 0.4704*10°° 0.4178*107
29 8-10-9 0.0333*10° 0.0334*10° 0.0297*#10°
TABLE 5.The resulting criteria, from the SOD solution, of the
triangulation network, by the preliminary vector p; and by the
modified vector p; .
Pt The criteria reproduced by the - The criteria reproduced by the modified
preliminary weight vector py weight vector p,
Ox Sy_ a b ¢ Ox Oy a b )
| 11225 [ 202 | 227 | 200 [ 947 | 0.76 | 068 | 0.76 | 0.67 | 945
21209 | 245 1 245 ] 208 | 385 07 | 082 | 0.8 | 0.70 | 3.85
31245 1242 {251 ] 235 [3431] 082 | 081 | 08¢ | 0.79 | 3431
41 27 12771279 ] 268 [13.97] 09 | 093 | 093 | 090 | 13.97
50226 (215 (231 ] 211 [1876] 076 | 072 | 077 | 0.71 | 18.77
61295 1276 1298 | 274 [ -109] 099 | 093 | 100 | 092 | -109
70 126 | 125 | 129 ] 122 [ -325] 042 | 042 | 043 | 041 | 325
81223 | 232 1233|222 |-116] 075 ] 078 [ 078 075 | -116
(91 123 1121 [ 129] 115 | 362 | 041 [ 041 | 043 | 039 [ 362
[10]200 [ 212 1212 | 200 434 | 067 | 071 | 071 | 067 | 434
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FIG.3 The adopted circles and the resulting absolute error ellipses, from the SOD solution of the triangulation network, using
the modified weight vector p; , ,
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ox = the standard deviation of the x-coordinates

oy = the standard deviation of the y-coordinates-

a = the semi-major axis of the error ellipse

b = the semi-minor axis of the error ellipse

¢ = the oriention of the semi-major axis with respect to the y-axis

6. CONCLUSIONS

One of the main problems which may arise when solving the SOD" ’
problem, is that, the reslting weight vector may not reproduce a cofactor
matrix, which ensure the criteria requirements, in some parts of the network;
or all over the network. This problem is treated by modifying the resulting
weight vector linearly, by its multiplication by a scaler value. This scaler is
determined from the comparison between the resulted criteria and the
postulated one .

According to the results of this study, the following conclusions can be
drawn:

- The results of the solution of the second-order design problem will be the
optimal weights, which must be assigned to the observations, to satisfy the
required criteria under minimum cost ( or a specific cost). From these
weights, the required variances of the observations are evaluated. This leads
to a detailed design of the required instruments, procedures and repetition
numbers which yield the required variances ( or weights).

- If the resulting weight vector does not satisfy the required criteria (or
some of them), it can be linearly modified, by its multiplication by a suitable
scalar. This scalar is determined depending on the comparison, between the
resulting criteria, and the adopted one such that the resulting criteria- at
least-equal the adopted one.

The choice ofthe method of the modification, will depend on thr preliminary
solution vector, and the criteria reproduced by substituting by this vector.
Firstly, the actual repetition numbers according to the preliminary solution
(p1 ) are evaluated. If it does not satisfy the required criteria, the
modification i1s done using any of the proposed methods.

-The presented examples show the visibilty of the alternative approach for
the solution of the SOD problem.

-The solution of the examples has proved that, the alternative approach , is
considerably more simple and economic than using the conventional
technique.

- The mostly used criterion matrices, for the general purpose network, are
those give the properties of homogeneity and isotropy. The Taylor-Karmen
Structured criterion matrices have great success for these properties. The
unit matrix can be considered as a special case of these matrices, where zero
correlation functions are imposed for the longitudinal and transversal errors.
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