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ABSTRACT 

A more simple alternative for the solution of the second order design 
problem of geodetic networks with respect to realization of the results has 
been developed. One of the main poblemes, which can arise when solving 
the SOD problem is that, the resulting weight vector may not reproduce a 
cofactor matrix, which ensures the criteria requerements, in some parts of 
the network, or all over the network. In this paper, this problem is treated 
by modifying the resulting weight vector linearly, by its multiplication by a 
scaler value . Numerical examples are given to illustrate its application.The 
commercial "Matlab" program was used to solve the case studies. 

1. INTRODUCTION 

The optimization of the design of the geodetic networks, is accepted to 
be classified to four design problem ( orders ) namely; Zero-Order Design 
(ZOD), First Order Design (FOD), Second Order Design (SOD), and Third 
Order Design (THOD). ZOD is the problem of definding the datum or 
coordinate system, FOD is the problem of constructing the optimum shape 
or configuration of the network, SOD is the problem of determining the 
optimum weight of the observed quantities and finally THOD is the 
problem of improving the quality of existing networks. The second- order 
design (SOD) problem is defined as, the search for the optimal observationl 
weights, of a given observational plan, under a given criteria, which is 
usually formed as an ideal criterion matrix. The resulting weight vector may 
not reproduce a covariance matrix, which ensures the required criteria in 
some elements. So, in this study, the resulting weight vector can be linearly 
modified, by its multiplication by a suitable scaler to ensure the required 
criteria all over the network . 
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This modification is done depending on the comparison between the 
resulting criteria and the adopted ones, and then, multiplying the resulting 
weight vector by this scaler.The simple least - squares solution, by 
approximating an inverse criterion matrix, is applied to the case - studies in 
the present investigation. The unit matrix is used successfidly as a criterion 
matrix in all solved examples.The Free network concept is used in these 
examples,which is the suitable one for obtaining the properties of 
homogeneity and isotropy. A more simple alternative for the solution of the 
second order design problem of geodetic networks with respect to 
realization of the results has been developed . 

2. THE GENERAL CONCEPT OF THE SOLUTON OF THE SOD 
PROBLEM OF GEODETIC NETWORKS 

The general concept of the solution of the SOD problem involves three 
steps ( Schmitt, 1985): 
1- A pure weight optimization with respect to the criterion matrix; 
2- The optimum weights ( resulted from step1 ) are approximated by a 

detailed plan of instruments, procedures and repetiton numbers of the 
observations. 

3- This design is analyzed; whether it fits the network requirements. Thus, 
when substituting by the resulting weight matrix P, the criteria adopted 
and the requirements, are obtained or not. One can see that, whether the 
resulting weight vector P, is modified, until the criterion are satisfied. 

2.1 FORMULATION OF THE ADOPTED CRITERIA 

There are two different methods to express the required criteria,which 
are adopted,when solving the SOD optimization problems. The first 
minimizes or maximizes a scalar risk function,for example, the trace of the 
cofactor matrix Q,: trace (Qx ) = min. The second type of the adopted 
criteria are the so- called criterion matrices. The determination of the 
criterion matrix is considered as a central problem,when solving the SOD 
problems. Generally,the geodetic networks are said to be optimum, if it has 
the properties of homogeneity and isotropy. The simplest cofactor matrix 
which leads to these proberties,is the unit matrix, in which the diagonal 
elementsare equally sized, and the off- diagonal elements are zeros. The unit 
matrix can be considered as a special case of the Taylor-Karmen structure 
criterion matrices, if zero correlation functions are introduced. 

2.2 SOLUTON METHODS OF THE SECOND - ORDERDESIGN 
PROBLEM 

All the strategies of the solution of the optimization problems,and 
especially the second-order design problems, are considered as one of two 
categories 
Computer simulation and analytical methods. In the analytical methods, 
two basic approaches are used in the solution. The first is based on the 
concept of best - fitting the user precision, in a least - squares sense. The 



other uses the techniques fiom the operation research called mathematical 
programming. In this study, we will deal with the least squares solution. 

2.2.1 THE GENERALIZED MATRIX APPROACHE ( THE SIMPLE 
SOLUTIONS) 

These approaches are called the simple approaches,since it depends on 
finding the the optimal weights, from the simple relation (ATpA)'= Qx, i.e 
through one relation only. ( where: ( )' is used to include either the 
constrained and free networks, and regular or singular criterion matrices, as 
well ). The solution is obtained by formulating a redundant system of 
equations in the unknown weight vector P, to be solved by the least - 
squares principle, or equivalently, by using the generalized inverse of 
matrices, especially the Moore Penrose g-inverse.The solution of a 
redundant system of equations using the Moore Penrose g-inverse ( )', will 
yield the same results as applying the least-squares principle. The two 
approaches yield a solution vector with a minimum norm and also, the 
residual vector with a minimum norm.The optimaiity of the simple least- 
squares (or the pseudo-inverse approach) is achieved dependin on the fact % - that, the resultig solution vector p, will have a minimum norm 0, p -min.) ( 
Schaffrin,l981). This property of the solution vector p indicates the 
minimum cost, since the weights are related inversely to the variances. So, 
the minimization of the weights indicates the larger the required variances, 
respectively, less precise instruments, the simpler the procedures and less 
repetition numbers of the observations. The simple least-squares approaches 
can be classified into three kinds, namely: 
1-The direct approaches:which approximate directly the criterion matrix 

or its inverse. 
2-The canonical design: which uses the concept of the sigular value 

decomposition of the inverse criterion matrix. 
3-The iterative approach:which starts by an inital weight vector then, it 

is updated through an iterative manner, until reaching to the desired one. 
In this study, for finding the optimal weights, fiom the simple relation 
(A~PA)' = Q,, the direct approximation of the inverse criterion matrix have 
been used as follows. Starting by the cofactor matrix equation : 

A'PA= (Q, )+ (2) 
Using the Khatri-Rao product, the system (2) can be converted to a system 
of linear equations for the vector p, thus : 

( A ~  @AT )p = q (3 ) 
with . p = vec p and 

q = vec Q', = vec p, (4) 
The solution of Equaion (3) is obtained by ( e.g. Schmitt 1978,1979,1985) 

P= ( A ~  O A ~  )+ q (5) 



3. A MORE SIMPLE ALTERNATIVE FOR THE SOLUTION OF 
THE SECOND OJIDER DESIGN PROBLEM OF GEODETIC 
NETWORKS 

In this study, A more simple alternative for the solution of the second order 
design problem of geodetic networks is introduced. It is generally, based on 
the least-squares principle, applied to solve the over-determined system of 
equations in the unknown. vector p. Most of the solutions are depending 
mainly on the precision criteria, expressed by the criterion matrices. Some 
times, after obtaining the required weight vector, the reproduced covariance 
matrix, obtained by substitking the resulted weight vector, may not ensure 
the required criteria in some parts of the network or all over the network. 
For example, the resulted semi-major axes of the absolute errors ellipses, of 
some of the net points, may be worse than the adopted ones. This is because 
these solutions are depending on the least-squares principle, or best-fitting 
the adopted criterion matrix, and this leads to that, the resulted criteria will 
be better in some parts and bad in the others. The resulted weight vector will 
be called the preliminary solution, to be modified- if necessary- to another 
one, to ensure the required criteria all over the network. This concept can be 
applied also, if the resulted criteria are greatly better than the adopted ones, 
yielding an error situation more precise than the adopted one. This will 
increase the cost and the network will be not economical, for some 
purposes. Usually, the modified of the preliminary resulted weight vector, 
will be a linear modification. This means that, the preliminary weight vector 
will be multiplied by a scaler value, yielding a new vector, which will 
satisfy the requirements The preliminary obtained weight vector will be 
denoted by pl and the modified one will be denoted by pz. The covariance 
matrix resulted from the vector pl will be denoted by C,I the modified one 
by & Considering the covariance matrix equation : 

When the weight vector (pl ) is multiplied by a factor ( r ), it will be changed 
to say (pz), such that : ( pz = r. pl ) 
The modified covariance matrix & will be : 

Thus, any linear transformation to the weight vector (pl) by a staler (r) will 
reduce the elements of the covariance matrix by (f) . All the elements of the 

new covariance matrix C,q will equal to the corresponding elements of C,1, 
divided by (r) . Schmitt (1985) gave a procedure, to overcome the problem 
of exisiting any difference between the actual variance-covariance matrix, 
resulted from the optimal weights pl, and the desired criterion matrix. This 
is by multiplying the resulted weight vector pl by a factor A, such that, the 
square sum of the residuals dTd, will be minimum, where the vector d is the 
difference between the resulted covariance matrix and the criterion one, 
computed as follows: 



d= vec (D) . then: dTd min, for pz = diag (A. pl ) where h can be computed 
by the operator " trace" as: 

This modification may also not ensure that the resulted criteria will satisfy 
the adopted one, since it considers all the elements of the covariance matrix, 
to be closer to the corresponding adopted ones, and not consider specific 
criteria, such as error ellipses. 
For this reason, another two methods for the modification of the weight 
vector ( or the reprouced covariance matrix), are proposed by the authers. 
The two methods can be summarized as follows: 
1 - The first method depend on, the comparison between the elements, which 
express the specific precision criteria ( as the major axis of the error ellipse), 
with the corresponding ones adopted through the criterion matrix. Then, the 
preliminary weight vector is multiplied by a suitable scaler, which is 
determined depending on this comparison. 
2- The other method uses an iterative modification of the resulted weights, 
or the repetition numbers of the observations, or some of them. Thus, after 
obtaining the preliminary solution p~ a realization is done by the available 
instrument, and the repetition numbers are determined.Then, the actual 
criteria are computed and compare to the specifications. If there is any weak 
in any part of the network, the weights of some of the observations,which 
affect the weak parts, can be achieved through the increasing of the 
corresponding repetition numbers. 

Returning to the first method, it can be achieved by computing the 
ratios between specific elements of criteria, with the adopted ones in the 
criterion matrix ( as the major-axes of the absolute error ellipses of all points 
). Then, the weight vector is multiplied by the largest value of these ratios. 
This will ensure that, at least, the largest value of the elements represnting 
the criteria, will equal the adopted one. 

, In our discussion, the absolute error ellipses in two-dimensional 
networks, and tRe standard deviation of the heights in levelling networks, 
will be considered, when illustrating the modification methods. 

USJNG THE ABSOLUTE ERROR ELLIPSES FOR THE SOLUTION OF 
THE SOD PROBLEM : 

The absolute error ellipse is defined by its elements, which are the 
semi-major axis, the semi-minor axis, and the oriention of them. The 
discussion will concentrated mainly on the semi-major axis, since it is the 
worst criteria. 
- First, one computes the semi-major axis of the absolute error ellipse (ai) 

for any point (I). 
- The corresponding semi-major axes, are computed using the criterion 

matrix and denoted by (aio). 



a. - Compute the ratios (r, = +) for all points . The largest one 
a 

(ri,,,) will be the factor of modification. The new weight vector will be : 
p2= rimax . p1 

- The elements of the reproduced covariance matrix will be changed by -!- 
ri., 

and the squares of the semi-major axes, of all points will also be reduced by 
the same value . This is because, the square ofthe semi-major axis is a 
linear fknction of some of the elements of the covariance matrix ,without 
any constant terms. So, any change to the covariance matrix by any scaler 
will change the square of the semi-major axes by the same value. For 
example, the semi-major axis ai is given fiom : 

It is clear from this equation that, the square of the semi-major axis is a 
linear function of the elements 02fi, 6 ,&,i. Clearly, all the other semi- 
major axes will be reduced by the same value, and all of them will be 
smaller than the adopted ones. It is to be mentioned here that, this method 
will success especially when the values of the ratios (ri) are relatively close 
to each other, and there is no great difference between them. If there is a 
great difference, the largest semi-major axis will equal to the criterion one, 
but the initially small axes will be reduced by the.same ratio, and will be 
more smaller without any need to this high precison ,which give high cost. 
So, the second method can be used in case of existing great difference 
between these ratios, by increasing only the weights of some observations 
which affect the weak parts. A similar discussion can be drawn, in case of 
considering the relative error ellipses, as the studied criteria. 

USING THE STANDARD DEVIATIONS FOR THE SOLUTION OF THE 
SOD PROBLEM : 

The most used criteria for levelling networks, is the standard deviations 
of the heights of the stations, extracted fiom the matrix : 

2 
O h ,  ~ h l h 2 ' " " . " .  

The values a2hi are compared with the adopted ones, which are computed 
from the criterion matrix ( say 02h;, ), then find the ratios : 

7 

Then, the weight vector (pl ) is multiplied by the largest value (ri,,, ), 
and the resulted weight vector will be ( pz). After that, the new covariance 
matrix is computed. Also, if the difference between the ratios is large, 



the use of the value (ri,,, ) will lead to some variances to be more smaller 
and give a precision more greater than the requiied, and consequently to 
high cost without any need. Here, an iterative modification to the weight 
vector pl using the necessary observations, which affect the weak parts of 
the network, can be done by increasing the weights of these observations or 
the repetition numbers of them. 
The choice of the method of the modification, will depend on the 
preliminary solution vector, and the criteria reproduced by substituting by 
this vector. Firstly, the actual repetition numbers according to the 
preliminary solution (PI) are evaluated. If it does not satisfjl the required 
criteria, the modification is done using any of the methods mentioned above. 

4. CASE-STUDIES 

In this investigation, some case-study, used as sample examples, will be 
solved, using the simple least least-squares solution, approximating an 
inverse criterion matrix. The selected case-studies, in our case here, will be 
concentrated on two problems, namely : the geodetic networks in one- 
dimensional and two dimensional networks. The first deals with the 
levelling networks, while the second deals with the horizontal two- 
dimensional networks. Also, it is to be mentioned that, in the case-studies, 
only, the random errors are considered, assuming that the gross errors and 
the systematic errors are eliminated a priori. Thus, the realization ofthe 
results, will depend on the random errors only . 

4.1 THE ADOPTED CRITERIA 

In the case-studies, the precision criteria formed as a criterion matrix 
will be considered. In the case-studies, the measures of precision will be : 
the absolute error ellipses in the two dimensional networks, while in 
levelling networks, the precision criterion will be the standard deviations of 
the heights of the points. Thus, the formulation of the criterion matrices, and 
the analysis of the results, will depend on these criteria. 

Recall that, the network'is well designed, if the error situation hlfils the 
properties of homogeneity and isotropy. In the case studies, the criterion 
matrices will ensure these properties. This means that, the postulated 
absolute error ellipses all over the network will be circles with equal radius. 
For the levelling networks, all the standard deviations of the stations will be 
equally sized. The most suitable configuration which ensures the properties 
of homogeneity and isotropy, is the fiee network. Thus, the error 
propagation will be more homogeneous in this type ofnetworks. This is 
because, the fiee network adjustment can be imagined as, a constrained 
adjustment with fixing the center of gravity of the network. The concept of 
the free network is also suitable for the general purpose network, where the 
properties of homogeneity and isotropy are required. 



4.1.1 THE CRITERION MATRIX CONSIDERING THE ABSOLUTE 
ERRORS ELLIPSES 

The most practical choice of the criterion matrix here is the unite matrix. 
This is suitable for all networks, which have these~properties of homogeneity 
and isotropy. The unit matrix will be considered as the designated cofactor 
matrix, and if the requirement of the net is any scalar of variances, this scaler 

2 
value will be expressed as the unit variance go . The solution of the SOD 

-, , 

problem will be due to the unit matrix, and the final results ( the realization) 
will be obtained using o: The unit matrix will be denoted by QI in the text. 

4.1.2 THE CRITERION MATRIX FOR LEVELLING NETWORKS 

Here, the standard deviations of heights are required to be equally sized. 
So, the most suitable cofactor matrix,-which fulfils this property is the unit 
matrix also, QI . The unit matrix will be used as cofactor matrix, when 
solving the example of the levelling network. 

5. PRESENTATION AND DISCUSSION OF THE OBTAINED 
RESULTS FROM THE SOLUTION OF SELECTED CASE- 
STUDIES 

The second order design problem will be solved for two case-studies. 
One of them will be for levelling network, and the other for a triangulation 
network. All the case-studies will be solved for the free network concept . 
The criterion cofactor matrix, in all cases, will be the unit matrix, which 
ensures the properties of homogeneity and isotropy. This criterion is the 
suitable one, for the general purpose networks. The realization of the results 
will be performed for the two case-studies . This realization will be 
according to a selected actual criterion covariance matrix, and selected type 
of instruments, which give specific precision of the measured quantities. 
Firstly, the solution weight vector will be obtained according to the SOD 
with respect to the cofactor matrix Qr , then, the realization will be done 

2 
using the constant term 0, . 

5.1 CASE-STUDY N0.(1) : A LEVELLING NETWORKS 

A levelling network is shown in Fig.(l) . It consists of 7 bench-marks, 
to be determined fiom 10 levelled height differences. The desctiption of the 
measured height differences, is shown in Table (1). Firstly, the unite matrix 
QI, is transformed to the free net datum, by the relation 

eld = A + A Q ,  A'A (13) 

The preliminary weight vector pl involves positive values only (Table 
1 ) . The standard deviations resulted from pl are ranged fiom 1.06 at 
points B, E, F to 1.26 at A (Table 2 ). The modification of the vector pl 
will depend on the point A, and the factor of modification will equal (1.26 
)2 =1.59. The modified weight vector pz is also shown in Table ( 1 ). The 
reproduced criteria ( standard deviations) according to the vector pz, will be 



ranged from 0.83 at points B, E to 1 .OO at point A. The realization of the 
results will be done using the vector pl . The actual covariance matrix 
ensures that the standard deviations of the heights at all points will equal 
1.00mm . It is assumed that, it is possible to level to a precision equal 1 .odd 
mm, where d is the levelled distance in km. Table (I) shows the realization 
of the results . For each height difference, it shows, the variance of a single 
levelling, the required variance, and the required repetition numbers. The 
repetition numbers are approximated to the largest integer value. The actual 
criteria ( the standard deviations of heights) are also computed in mm in 
Table (2). The resulted repetition numbers (nl) lead to that, the required 
criteria are hlfilled at all points except for point A, which has a standard 
deviation of height equals 1.16 mm. So, the repetition numbers of the 
observations, which affect A ( the levelled lines A-B and A-E) are increased 
by one. The resulting repetition numbers ( n2 ) are used to compute the new 
criteria. The resulting standard deviation of the height at A will be 1.06. It 
can be improved by the same procedure. 

TABLE 1 .The preliminary weight vector (pl ),the modified one ( pz ), and 
the realization of the results using pl , for the SOD of the 
levelling network. The variance of a single levelling is assumed to 
be 1.00*d mm2 , where d is the distance in km. All the standard 
deviations of the heights are required to be 1 .OO mm. 

1 Obs ( The I Length I The weights I The realization using pl 
I No. 1 leveue 1 in 1 I 

Variance of 

levelling 
iMW2 numb 

as 

TABLE 2. The reproduced standard deviations of the heights of 
the points in the levelling network 

- 

Points - 

A -  _- 

C 
D 
E 
F - 
G 

From the realization 
according 

due to nl 
(mm) 
1.16 
0.98 
1.02 
1.02 
0.97 
0.92 - .- 
0.94 

Fom the design according to the 
cufactor matrix QI to pl 

due to nz 
(mm) 
1.06 
0.94 
1.02 
1.01 
0.95 
0.92 
0.91 

From PI 
- (unitless) 

1.26 
-- 1.06 

1.09 
1.09 
1.06 

I h m  Pz 
(unitless) 

1.00 
0.83 
0.87 
0.87 
0.83 

I 
. . --- 1.06 . - - . - - - 0.84 -. 

1.10 0.87 



TABLE 3. The appradmae coadnaies 
of the riel points 

FIG. 1 A levelling Network 

5.2 CASE-STUDY N0.2 : A triangulation network 

Figure (2) shows a free triangulation network, with its approximate 
coordinates. This network consists of 10 points (20 coordinates), and the 
observational plan includes the angles, described in Table ( 4 ). The 
cofactor criterion matrix is the unit matrix (Qi). Firstly, the criterion matrix 
is transformed to the free net datum. Then, the SOD solution is obtained, 
which is the weight vector pl (Table 4 ). All the resulting weights are 
positive, except for the observation no.(13), which is the angle 4-5-7, with 
negative value. This observation is discarded, and the solution vector pl is 
recomputed. All the resulting weights are positive. The elements of the error 
ellipses are determined ( Table 5 ). The semi-major axes are ranged from 
1.29 at points 7, 9 to 2.98 at point 6.  The preliminary weight vector is 
modified to pz . The scaler of modification is the square of(2.98). The 
criteria are recomputed ( Table 5 ).The semi-major axes are now ranged 
from 1.00 at point 6 to 0.43 at points 7, 9. Figure (3 ) shows the error 
situation reproduced by the modified weight vector pz 

4 

6 8 
FIG2 A triangulation network 



TABLE 5.The resulting criteria, from the SOD solution, of the 
triangulation network, by the preliminary vector pl and by the 
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ox = the standard deviation of the x-coordinates 
o, = the standard deviation of the y-coordinates 
a = the semi-major axis of the error ellipse 
b = the semi-minor axis of the error ellipse 
4 = the oriention of the semi-major axis with respect to the y-axis 

6. CONCLUSIONS 

One of the main problems which may arise when solving the SOD 
problem, is that, the reslting weight vector may not reproduce a cofactor 
matrix, which ensure the criteria requirements, in some parts of the network, 

' 

or all over the network. This problem is treated by modifying the resulting 
weight vector linearly, by its multiplication by a scaler value. This scaler is 
determined fiom the comparison between the resulted criteria and the 
postulated one . 
According to the results of this study, the following conclusions can be 
drawn: 
- The results of the solution of the second-order design problem will be the 
optimal weights, which must be assigned to the observations, to satisfy the 
required criteria under minimum cost ( or a specitic cost). From these 
weights, the required variances of the observations are evaluated. This leads 
to a detailed design of the required instruments, procedures and repetition 
numbers which yield the required variances ( or weights). 
- If the resulting weight vector does not satis@ the required criteria (or 
some of them), it can be linearly modified, by its multiplication by a suitable 
scalar. This scalar is determined depending on the comparison, between the 
resulting criteria, and the adopted one such that the resulting criteria- at 
least-equal the adopted one. 
The choice ofihe method of the modification, will depend on thr preliminary 
solution vector, and the criteria reproduced by substituting by this vector. 
Firstly, the actual repetition numbers according to the preliminary solution 
(pl ) are evaluated. If it does not satisfy the required criteria, the 
modification is done using any of the proposed methods. 
-The presented examples show the visibilty of the alternative approach for 
the solution of the SOD problem. 
-The solution of the examples has proved that, the alternative approach, is 
considerably more simple and economic than using the conventional 
technique. 
- The mostly used criterion matrices, for the general purpose network, are 
those give the properties of homogeneity and isotropy. The Taylor-Karmen 
Structured criterion matrices have great success for these properties. The 
unit matrix can be considered as a special case of these matrices, where zero 
correlation hnctions are imposed for the longitudinal and transversal errors. 
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