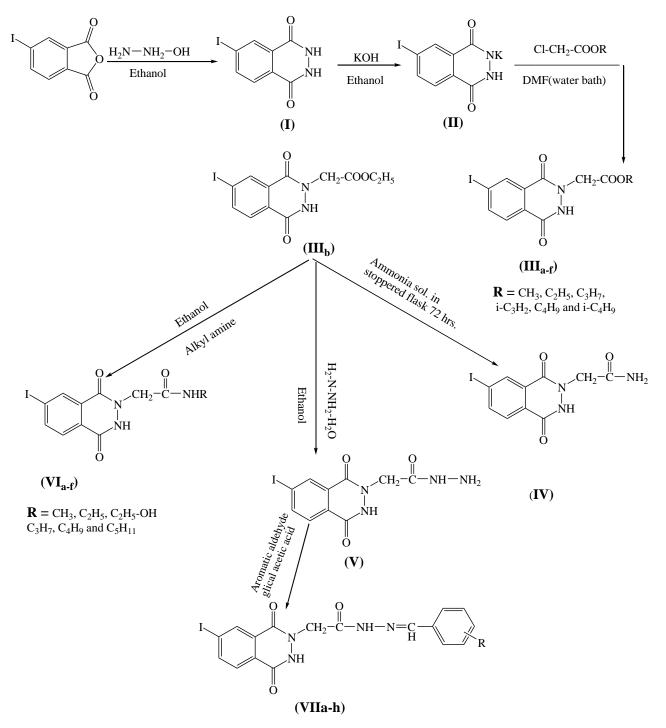
SYNTHESIS AND BIOLOGICAL EVALUATION OF NOVEL IODOPHTHALAZINEDIONE DERIVATIVES AS ANTICONVULSANT AGENTS

Rezk Rezk Ayyad

Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt

ABSTRACT:


In view of their expected anticonvulsant activity, some new derivatives of phthalazine (I, II, III_{a-f}, IV, V, VI_{a-f} and VII_{a-h}) were designed and synthesized by of Iodophthalic anhydride with hydrazine hydrate to condensation produce iodophthalazindione I which heating with Alc. KOH to give compound II. The compounds III_{a-f} resulted from condensation of compound II with different alkylcholoroacetates. Compound II_b reacted with ammonia, hydrazinehydrate and different alkyl amines resulted compounds IV, V (hydrazide) and VI respectively. Compound V (hydrazide) react with different aromatic aldehydes to produce compounds VII_{a-h} . the final compounds were structurally elucidated basis of IR, ¹HNMR, Ms Carbon, hydrogen and nitrogen analysis. The final compounds were evaluated for anticonvulsant activity using pentylenetetrazole (ptz) to induce convulsion and phenobarbital as reference standard. The compounds I, II, IV, V, VI_a, VI_b, VI_c, VI_d, VI_f, VII_a, VII_b, VII_c and VII_g were active than Phenobarbital as standard reference the remain compounds less active than Phenobarbital. To under stand the molecular significant of these results we compared the binding modes of these compounds. Acknalewlgement: Many thanks for Dr. Ahmed Mansour assist. Prof. of pharmacology and Dr. Farg Sherbiny lecturer of organic chemistry

Keywords: phthalazine, phthalazinedione and anticonvulsant agent

INTRODUCTION

Phthalazine derivatives received much attention in recent years a wing to both their biological significance and pharmaceutical applications (Napoletano, et al., 2001; Napoletano, et al., 2001; Napoletano, et al., 2000; Curia, et al., 2002; Imamura, et al., 2003). Many phthalazine derivatives have been reported as anticonvulsants (Siva, et al., 2002; Ayyad, 2008; El-Helby, et al., 2001; El-Helby, et al., 2002) Some phthalazines were reported to possess anticonvulsant activity against minimal electrical sock (MES) and exhibited significant decrease in elevated motor activity (Siva, et al., 2002). On the other hand, it has been reported that a lot of compounds containing arylidene moiety possess good anticonvulsant activity and have a big role in MAO inhibitory action (Eid, et al., 1991). On the light of these findings, we decided to design and synthesize novel derivatives of iodophthalazine containing arylidene moiety and other derivatives (ester, amide) to evaluate their anticonvulsant activity and to compare the difference in the pharmacological effects. As a result, we found that the synthesized compounds (I, II, III_{a-f}, IV, V, VI_{a-f} and VII_{a-h}) have appreciable anticonvulsant activity.

. The following scheme illustrate our experimental work.

R = H, 2-OH, 4-OH,4-NO₂, 2-NO₂, 2-CH₃,4-CH₃,4-F

Scheme

Chemistry

1) 6 – Iodophthalazine (2H, 3H) – 1, 4 – dione I.

4-Iodophthalic anhydride (2.78 gm) (0.01 mol) is refluxed with hydrazine hydrate (excess) in ethanol for 4hours. The product resulted in compound **I**. m.p. 313-315°C, yield 90% (2.63 gm), Mol wt. 292, Mol. Formula $C_8H_5IN_2O_2$. IR: showed 1598 cm⁻¹ for carbonyl group of ring 3920 cm⁻¹, NH- of ring. ¹HNMR(ppm.) (dmso) : reveled signal at 8 ppm (S, NH-) which indicate for –NH of ring. and (7.5 and 8.51) (m, 3H aromatic). Ms: (M 292, 91%), 262 ($C_8H_3IO_2,11\%$) and 206 (C_6H_3I)100%.

Calc.	C: 3.29	H: 1.71	N: 9.59
Found	3.19	2.05	9.30

2) Potassium salt of 7-iodophthalazine (2H,3H)-1,4-dione II.

In 50 ml ethanol dissolve 2.93 gm (0.01 mol) compound **I** and (0.56 gm KOH) (0.01 mol) dissolved in ethanol (10 ml) add the latter solution to the former to give the potassium salt of 6-iodophthalazine (2H,3H) 1,4-dion (**II**) which crystallized from ethanol. m.p. > 350, yield 95% (3.10 gm), mol. Formula, $C_8H_4IN_2O_2K$., mol, wt 331 and yield quantitative.

3) 2-Akyloxycarbonylmethyl-6-idophthalazine (2H,3H)-1,4-dione (III_{a-f})

In a conical flask (250 ml) (3.3 gm) (0.01 mol) of Compound **II** moistened with appropriate amount (0.01 mol) of alkylchloroacetate in 100 ml dimethylformamide (DMF) refluxed for two hours, then cooled, poor on crushed ice. The crystals collected by filtration, resrystallized from ethanol (table 1).

Comp. M.P.		Yield	Molecular formula	Eler	Elemental analyses			
No.	°C	(gm)%	M. Wt	%	Calcd.	Found		
		80%	$C_{11}H_9IN_2O_4$	C%	36.26	35.87		
III _a	195-6	(2.91)	364	Н%	2.43	2.33		
		(2.71)	504	N%	7.69	8.05		
		93%	$\begin{array}{c} 93\% \\ (3.52) \end{array} \begin{array}{c} C_{12}H_{11}IN_2O_2 \\ 378 \end{array}$	C%	38.10	37.82		
III _b	170-2			H%	2.91	2.93		
		(3.32)		N%	7.41	7.55		
		6 72% (2.82)	$\begin{array}{c} C_{13}H_{13}IN_{2}O_{2}\\ 392 \end{array}$	C%	39.80	40.11		
III _c	205-6			H%	3.32	3.01		
				N%	7.14	6.79		
		92%	$C_{13}H_{13}IN_2O_2$	C%	39.80	39.93		
III _d	201-3	(3.61)	392	H%	3.32	3.47		
		(3.01)	392	N%	7.14	6.83		
		65%	$C_{14}H_{15}IN_2O_2$	C%	41.38	40.99		
III _e	217-9	(2.64)	$C_{14}\pi_{15}\pi_{2}O_{2}$ 406	H%	3.69	3.81		
		(2.04)	400	N%	6.90	7.11		
		77%	$C_{14}H_{15}IN_2O_2$ 406	C%	41.38	41.09		
$\mathbf{III}_{\mathbf{f}}$	213-4	(3.13)		H%	3.69	3.48		
		(3.13)	400	N%	6.90	6.65		

Table1. Physical data

Spectra data of compounds III_{a-f}

IR cm⁻¹ (example **IIIa**) 3263 (NH), 3020 (CH₂-), 1717 (CO-) of the ester moiety and (1671, 1610) for carbomyl moiety of ring.

¹HNMR, ppm (dmso) **IIIa** (3.4, s,-CH₃-,(3.2-d,j=8 Hz-CH₂-), 8-s, NH- and 7.5, 8.51 m, aromatic)

- **III**_b (1.1,s,-CH₃-, (3.41, d,j=8 Hz -CH₂), (3.23,d, j=8 Hz-,CH₂-), 8.25,s-, NH, 7.53-8.45 m, aromatic)
- **III**_c (0.97, s,CH₃, (1.60-d, j =8 Hz CH₂-CH₃), (2.45,d, j=8 Hz-O-CH₂-CH₂-), (4.11-d,j=8 Hz CH₂-COO-), 8.35, NH and 7.46, 8.53, aromatic).
- **III**_f (1,s, CH₃,CH₃, 2,m,CH, (2.4d, j= 8 Hz-CH₂-CH), (4.3,d,j=8 Hz CH₂-), 9s, NH,(7-7.41), 8.3,m, aromatic).
- Ms(M/z) comp. **III**_a [M364 (6%)][349 M-CH₃,(21%), [M-OCH₃, 333(33%)] [206, C₆H₃I(100%)].
- Comp. III_b [M-378 (3%)], 349 M-C₂H₅(5%)], [287C₈H₄IN₂O₂ (51%)], [206, C₆H₃I, 100%].
- Comp. **III**_e [M-406(17%)], [376, M-2CH₃- (70%)], [C₉H₆IN₂O₂, 391, (35%)], 287 $C_8H_4IO_2N_2$ (74%)], [206-C₆H₃I, (100%)]

4. (2-Aminocarbohylmethyl)-6-Iodophthalazin (2H,3H)-1,4-dione IV.

Excess ammonia solution is added to ethanol solution of III_b (0.01 mol) (3.78 gm) in stappered flask and stirring at room, compound IV is precipitated, then recystallized from ethanol.

m.p. 231-2, yield 55% (1.92 gm), mol. Formula C₁₀H₈IN₃O₃, mol wt. 349.

Calc.	C: 34.38	H: 2.29	N: 12.03
Found	34.67	2.13	11.88

IR cm⁻¹, 3730, NH, 1610 and 590 carbonyl of ring, 1745-carbonyl of amide, 4200 NH₂. ¹HNMR. ppm. (dmso) 6, -NH₂, (4.1,d,j=8Hz-CH₂), 6,s-NH, 7.9, 8.48 m aromatic) Ms (m/z) M-349(6%), 287, $C_8H_4IN_2O_2(13\%)$,206, $C_6H_3I(100\%)$.

5) (2-Hydrazinocarbonylmethyl)-6-Iodophthalazine (2H,3H)-1,4-dion V.

A mixture of ethanolic solution from III_b (0.01 mol) (3.78 gm) and excess (1 ml) of hydrazine hydrate heated and stirring at 100C for 30 minutes, then the mixture is filtered, washed with ethanol and crystallized from ethanol the m.p. 247-9 yield 90% (3.28 gm) mol. Formula, $C_{10}H_9IN_4O_3$, mol wt. 364, elemental analyses.

Calc.	C: 32.97	H: 2.47	N: 15.38			
Found	32.61	2.63	15.3			

¹HNMR,ppm (dmso)[2,s, NH₂], [8-s,NH, side chain of ring], [4,d, j=8Hz -CH₂] and 7.9 and 8.51)m-aromatic.

 $M_{s}(m/z)[M,364 (20\%)],[M-NH_{2}, 348 (7\%)],[391 C_{9}H_{6}IN_{2}O_{2} (55\%)],[287 C_{8}H_{4}IN_{2}O_{2},(75\%),] and[206, C_{8}H_{3}I (100\%)].$

6) (2-Alkylaminocarbonylmethyl)-6-Iodophthalazin (2H,3H)-1,4-dion VI_{a-f}.

In conical flask (250 ml) have ethanolic solution of III_b (0.01 mol) (3.78 gm) and appropriate amount (0.01 mol) of different alkyl amine refluxed at 120°C for 3 hrs. The product collect by filtration crystallized by ethanol (table 2).

			Yield		Elemental ana		alyses
Comp. No.	R	M.P. oC	(gm)	Molecular formula M. Wt	%	Calcd.	Found
VIa	CH ₃	251-3	65% (2.36)	$C_{11}H_{10}IN_3O_3$ 363	C% H% N%	36.36 2.75 11.57	35.98 2.63 11.48
VI _b	-CH ₂ -CH ₃	242-3	68% (2.56)	C ₁₂ H ₁₂ IN ₃ O ₃ 377	C% H% N%	38.20 3.18 11.14	38.11 3.15 11.51
VIc	CH ₂ -CH ₂ -OH	193-5	77% (3.03)	C ₁₂ H ₁₂ IN ₃ O ₄ 393	C% H% N%	36.64 3.05 10.69	36.71 2.15 10.31
VId	n-CH ₂ -CH ₂ CH ₃	248-49	85% (3.34)	C ₁₃ H ₁₄ IN ₃ O ₃ 391	C% H% N%	39.32 3.58 10.74	39.53 3.71 10.55
VIe	n-(CH ₂) ₃ CH ₃	238-39	55% (2.28)	C ₁₄ H ₁₆ IN ₃ O ₃ 405	C% H% N%	41.48 3.95 10.37	41.77 3.98 10.33
VI _f	n-(CH ₂) ₄ CH ₃	256-8	60% (2.51)	C ₁₅ H ₁₈ IN ₃ O ₃ 419	C% H% N%	42.96 4.32 10.02	42.88 4.68 10.24

Table 2. Physical data

Spectra data of compounds VI_{a-f}.

IR cm⁻¹, 4100, NH, 3940, NH₂, 1740, C - C - NH, 1610, 1595 carbonyl of ring

¹HNMR, ppm (dmos). Comp. **VIa.** [2.5s.CH₃-NH-], [8,s-, NH], [4,d,j =8Hz CH₂] and [7.9and 8.5m, aromatic].

VI_b (1.2-s,CH₃), (3.1-q, j=7.8 Hz -CH₂-CH₃), (4-d, -CH₂-COO),(8-s,-NH), (7.7 and 8.4 m aromatic)

VI_c (2-s, OH), (3.9-q, j=7.8 Hz-CH₂-OH), (3.3-q, j=7.8 Hz CH₂-CH₂), (4.1-d, j=8 Hz CH₂-COO), (8-s,-NH) and (7.6 and 8.5-m, aromatic)

VI_d (1-s, CH₃)(2-q, j=7.8Hz-CH₂-CH₃), (3.1-q,j=7.8 Hz CH₂-CH₂), (4-d,j=8Hz CH₂-COO), (8-s,-NH) and (7.75 and 8.35-m, aromatic)

 VI_{f} (1-s, CH₃), (1.3-q, ,j=7.6Hz -CH₂-CH₃, over loped), (1.6-q, j=7.6Hz CH₂-(CH₂)2CH₃), (3.1-q, j=7.8Hz -NH-CH₂), (8-s,-NH) and (7.8 and 8.55-m, aromatic)

 $M_{s}(M/z)$ VI_{a} [M-363(11%)], [M-CH₃, 349, (32%)],[C₉H₆IN₂O₂, 391 (17%)],206 [C₆H₃I(100%)].

VI_a [417-M (21%)], [348C₁₀H₇IN₃O₃ (9%)], [291 C₉H₆IN₂O₂ (76%)], [206C₆H₃I (100%)]

$\label{eq:2.1} 7) (2-Arylidenocarbonylmethyl)-6-iodophthalazine (2H, 3H)-1, 4-dion VII_{a-h}.$

Dissolve (0.01 mol) (3.64 gm) of compound V in 100 ml of glacial acetic acid and add to acetic acid solution appropriate amount of aromatic aldehyde and refluxed at 150° C for 3hrs. Then, cooled, the crystals of compounds VII_{a-h} are collected and recrystalized from glacial acetic acid the physical data at table 3.

Comp.		M.P.	Yield	Molecular formula	Elemental analyses		
No.	R	°C	% (gm)	M. Wt	%	Calcd.	Found
			90%	$C_{17}H_{13}IN_4O_3$	C%	45.13	44.87
VII _a	Н	278-9	(4.07)	452	Н%	2.88	2.92
			(4.07)	432	N%	12.39	12.53
			75%	$C_{17}H_{13}IN_4O_4$	C%	43.69	43.83
VII _b	Orth- OH	283-5	(3.51)	468	Н%	2.78	2.43
			(3.31)	400	N%	11.97	11.62
			87%	$C_{17}H_{12}IN_4O_4$	C%	43.59	43.57
VII _C	Para-OH	297-8	(4.07)	1, 12	Н%	2.78	2.63
			(1.07)		N%	11.97	12.23
			281-2 65% (3.23)	C ₁₇ H ₁₂ IN ₅ O ₅ 497	C%	41.05	40.86
VII _d	Para-NO ₂	281-2			Н%	2.41	2.37
					N%	14.08	14.03
	Ortho-NO ₂	273-5	60% (2.98)	C ₁₇ H ₁₁ IN ₅ O ₅ 497	C%	41.05	41.10
VII _e					Н%	2.41	1.87
			(2.90)		N%	14.08	14.09
			55%	$C_{18}H_{14}IN_4O_3$	C%	46.45	46.76
VII _f	Ortho-CH ₃	268-9	(2.56)	465	Н%	3.01	2.93
			(2.50)	105	N%	12.04	11.93
			50%	$C_{18}H_{14}IN_4O_3$	C%	46.45	46.62
VIIg	Para-CH ₃	273-4	(2.32)	465	Н%	3.01	2.91
			(2.32)	-05	N%	12.04	12.27
			55% (2.59)	$C_{17}H_{12}IN_4O_3F_{470}$	C%	43.40	43.21
VII _h	Para-F	257-9			H%	2.55	2.33
					N%	11.91	11.97

Table 3. Physical data

Spectra data of compounds VII_{a-h}.

IR (cm⁻¹), 650 for CH aromatic, 4100-NH-, 1755, -CO- of amid, 1625, 1610 -CO- of ring.

¹HNMR, ppm.(dmso) VII_a (7.2-7.4,7.9 and 8.55 m, aromatic), (6. CH-C₆H₅), (5.5-s, -NH-N=), (4-d,j=8Hz CH₂-COO-), (8-NH of ring).

VII_b (7.1-7.3, 7.9 and 8.4, m of aromatic), (8-s,NH), (5.5-s, OH), (4-d, -CH₂-COO).

VII_c(7.1-7.3, 7.75 and 8.6, m, aromatic), (5-s,OH), (6-m,CH-C₆H₅), (4-d, j=8Hz CH₂-COO-), (8-s,NH).

VII_d (7.5-8.1, 7.9 and 8.6-m, of aromatic), (6-m, of CH-C₆H₅), (4-d, j=8Hz -CH₂-COO-) and (8-s,NH).

VII_e (7.5-8.15, 7.8 and 8.55-m, of aromatic), (7-m, of CH-C₆H₅), (4-d,j=8Hz -CH₂-COO-) and (8-s,NH).

VII_f (2.3-s, CH₃-C₆H₅), (7-7.2, 7.8 and 8.45-m, of aromatic), (6.9-m,CH-C₆H₅), (4-d,j=8Hz CH₂-COO-) and (8-s,NH).

VIII_g (2.33-s, CH₃-C₆H₅), (7-7.3, 7.9 and 8.55-m, of aromatic), (6.9-m,CH-C₆H₅), (4-d $,j=8Hz CH_2$ -COO-) and (8-s,NH).

VIII_h (7-7.33, 7.75 and 8.55-m, of aromatic), (6.8-m,CH-C₆H₅), (4-d,j=8HzCH₂-COO-) and (8-s,NH).

Ms M/z **VII**_a [M-452(11%)], [M+1(453),(9%)], [347 C₁₀H₆IN₃O₃(31%)], [245 C₉H₆I(73%)], [206C₆H₃I(100%)].

VII_b [M-467(23%)], [M-1(466),(27%)], 347 [C₉H₆IN₃O₃(19%)], 245 [C₉H₆I(7%)], 271[C₈H₄IN₂ (23%)], 206[C₆H₃I(100%)].

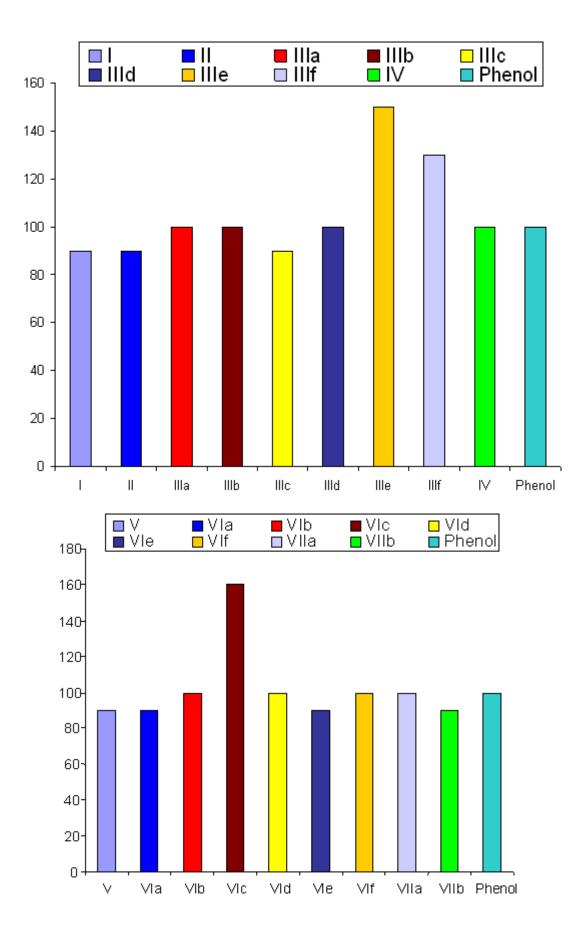
RESULTS AND DISCUSSION

The synthesized compounds $I, II, III_{a_f}, IV, V, VI_{a-f}$ and VII_{a_f} were confirmed by melting point spectral data and C, H, and N analysis. Also anticonvulsant activities of the synthesized compounds (I -VII_a) were determined using the pentylenetetrazole (ptz). Seizure threshold test (Swinyard, et al., 1982) preliminary screening results showed that all compounds (I -VII_{a f}) exhibit anticonvulsant activity the compounds are divided into two groups all of them are evaluated at three different dose levels the first at 25, 50 and the second at 50, 100 and 200 mg using Phenobarbital sodium at three different dose levels (50, 100 and 200 mg) as positive control. The test compounds were injected intrapretoneal (ip) followed by subcutaneous (sc) (ptz) at 70 mg / kg aminimal dose that produce threshold seizures in approximately 100% of control animals (the compounds I, II, III_{a-d}, VI_{d-f} and VII f_{f-h} are tested at three different dose levels (25, 50, and 100 mg) and revealed anticonvulsant activity equal to or more than Phenobarbital as positive control, while the compounds III_e, III_f, IV, V, VI_a, VI_b, VI_c, VII_d, VII_e tested at three different dose levels (50, 100 and 200mg) and revealed anticonvulsant activity less than Phenobarbital. In general, there is no one of all tested compounds less than 80% active as Phenobarbital. The activity of tested compounds due to Phormocophoric group in phthalazine nucleolus which have CO - N - N - CO which different in there positions in quinoxaline and giunazoline N - CO - CO - N and CO - N - CO- N, respectively which have anticonvulsant activity (Ossman et al., 1986; Aziza, et al., 1996). Some of the ester groups have activity less than Phenobarbital due to the ester functional group which undergo esterase enzyme but the other groups have amide which is difficult to breakage by amidase enzyme comparing with esterase enzyme.

All tested compounds showed 33.3% protection at the dose (25mg, 50mg), 66,6% protection at the dose(50mg ,100mg) and 100% protection at the dose (100mg, 200mg). This kind of protection is an indication for the potential anticonvulsant activity of the tested compounds particularly against absence seizures. Anticonvulsant activity (While, *et al.*, **1995**) could be associated with some undesirable effects such as sedation. N.B. GABA is the major inhibitory transmitter in the mammalian CNS, which controls the excitability of many central pathways. The GABA is the receptor complex mediates the flux of chloride ions across nerve membranes and may be related to the anticonvulsant action of GABA – mimetic drugs (Reddy, *et al.*, **1997; Wood,** *et al.***, 1980**) the principal mode of action of this transmitter occurs by modulation of the GABA – chloride ion channel complex as attempt explore the possible GABA- mimetic activity of the active compounds.

Anticonvulsant activity

The animals were under taken with approval from ethics committee approval (23PD/3/12/18R) of Al-Azhar University, Cairo, Egypt. All the trials were carried out according to the respective internationally valid guidelines. Anticonvulsant activity of our compounds was evaluated according to the method reported by **Soaje-Echaque and-Lim** (1962) using Swiss albino adult male mice, weighing 20-59 gm. They were obtained from an animal Facility (Animal house. Department of pharmacology and toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt. Mice were housed is stainless steel wire floored cages without any stressful stimuli. Animals were kept under well- ventilated conditions at room temperature (25-30°C). They were fed on an adequate standard laboratory chow (El-Nasr Co., Abou-Zabal, Egypt) and allowed to acclimatize with free access to food and water for 24 hrs period before testing except during the short time they were removed from the cages for testing. Albino mice were randomly arranged in groups each comprising 12 animals. Phenobarbital sodium (Sigma- Aldrich Chemical Co., Milwaukee, WI, USA) was used as a reference drug for comparison. Pentylenetetrazole (Sigma-Aldrich Chemical Co., Milwaukee, WI, USA) was used to induce convulsion in the experimental animals. All


synthesized phthalazine were tested for evolution of their anticonvulsant activities. The test compounds were suspend in normal saline with the aid of Tween 80 (Medical union Pharmaceuticals Co., Ismailia, Egypt)test compounds were intraperitoneally (i.p) injected in dose ranging from 25-200 mg/kg animal weight using the same dosing volume of (0.2 ml per 25 gm. Pentylenetetrazole was dissolved in normal saline in 2% concentration and was given (sc) in dose 50-200 mg/kg (70 mg/kg as a minimal dose that produce threshold seizure in approximately 100% of control animals) using the same dosing volume. All drugs were freshly prepared to the desired concentration for 50% of animals (ED₅₀) was calculated using INSTAT2 program (ICS Philadelphia, PA, USA) presented in table (4) the activity of test compounds in comparison to Phenobarbital or relative potency of the test compounds to Phenobarbital was calculated and used for comparison among compounds under test as shown in table (4).

Comp. No.	Dose	Protection	ED ₅₀	ED ₅₀ m ml/kg±	Relative potency
Comp. No.	(mg/kg)	%	mg/kg	S.D.	M± S.D.
	25	33.33			
Ι	50	50	90	0.288 ± 0.1	0.1 ± 0.01
	100	100			
	25	33.33			
II	50	66.66	90	0.326 ± 0.09	0.109 ± 0.008
	100	100			
	25	33.33			
III _a	50	66.66	100	0.364 ± 0.12	0.078 ± 0.02
	100	100			
	25	33.33			
III _b	50	66.66	100	0.374 ± 0.1	0.085 ± 0.02
	100	100			
	25	33.33			
III _c	50	66.66	90	0.391 ± 0.09	0.099 ± 0.03
	100	100			
	25	33.33			
III _d	50	66.66	100	0.391 ± 0.09	0.093 ± 0.02
	100	100			
	50	33.33			
III _e	100	66.66	150	0.406 ± 0.12	0.061 ± 0.01
	200	100			
	50	33.33			
III_{f}	100	66.66	130	0.406 ± 0.16	0.074 ± 0.014
	200	100			
	50	33.33			
IV	100	66.66	100	0.349 ± 0.1	0.103 ± 0.02
	200	100			
	50	33.33			
V	100	66.66	90	0.364 ± 0.13	0.104 ± 0.03
	200	100			
	50	33.33			
VIa	100	66.66	90	0.363 ± 0.1	0.101 ± 0.03
	200	100			
	50	33.33			
VI _b	100	66.66	100	0.377 ± 0.1	0.102 ± 0.02
	200	100			

Table (4): Anticonvulsant activity of synthesized compounds

Cont. table

	Dose	Protection	ED ₅₀	ED ₅₀ m ml/kg±	Relative potency
Comp. No.	(mg/kg)	%	mg/kg	S.D.	M± S.D.
	50	33.33			
VIc	100	50	160	0.393 ± 0.12	0.07 ± 0.015
	200	100			
	25	33.33			
VId	50	66.66	100	0.391 ± 0.08	0.1 ± 0.012
	100	100			
	25	33.33			
VIe	50	66.66	90	0.406 ± 0.13	0.104 ± 0.03
	100	100			
	25	33.33			
$\mathbf{VI_{f}}$	50	66.66	100	0.421 ± 0.1	0.103 ± 0.02
	100	100			
	25	33.33			
VII _a	50	66.66	100	0.451 ± 0.08	0.1 ± 0.012
	100	100			
	25	33.33			
VII _b	50	66.66	90	0.467 ± 0.08	0.120 ± 0.03
	100	100			
	25	33.33			
VII _c	50	66.66	90	0.467 ± 0.09	0.124 ± 0.02
	100	100			
	50	33.33			
VII _d	100	66.66	170	0.496 ± 0.13	0.074 ± 0.014
	200	100			
	50	33.33			
VII _e	100	66.66	200	0.496 ± 0.11	0.067 ± 0.02
	200	100			
	25	33.33			
$\mathbf{VII}_{\mathbf{f}}$	50	66.66	100	0.464 ± 0.07	0.116 ± 0.04
	100	100			
	25	33.33			
VII _g	50	66.66	90	0.464 ± 0.08	0.106 ± 0.03
	100	100			
	25	33.33			
VII _h	50	66.66	125	0.459 ± 0.11	0.0999 ± 0.03
	100	100			
	50	33.33	100		
Phenobarbital	100	66.66	100	0.403 ± 0.12	0.1 ± 0.021
	200	100			

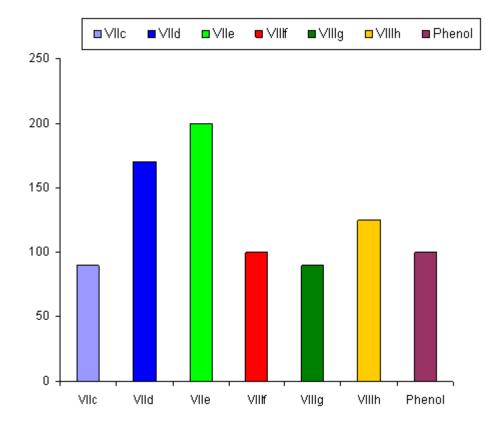


Figure 1. Compounds II, IV, V, VI_a , VI_b , VI_e , VI_f , VII_c , VII_f , and VII_g showed anticonvulsant activity more than Phenobarbital. While compounds I, VI_d , and VII_a revealed activity equal to Phenobarbital. The rest compounds are anticonvulsant activity less than Phenobarbital but not less than 80% of its activity.

Experimental Section

All melting points were measured on a griffin melting point apparatus (Griffin, Valdosta, GA, USA) and are corrected. The infrared spectra were recorded asKBr discs on a nicolet IR 200 (thermo fisher scientific, Barrington, USA) at the pharmaceutical analytical unit, Faculty of Pharmacy, Al-Azhar University, Cairo Egypt. The ¹HNMR spectra were ran using TMS as an internal standard (Aldrich Chem. CO., Milwaukee, Wi, USA) on varian Mercury VXr-300 NMR (Varian Palo., Alto, CA, USA) at the Micro Analytical Center, Faculty of Sciences Cairo, University Giza, Egypt.

Mass spectra were performed on varian MAT 311-A (70eV) (Varian, San Fernando, GA, USA) at the Micro analytical center of Cairo University Giza, Egypt, Elemental analyses (C,H,N) were performed on a Perkin-Elmer 2400.

Analyzer (Perkin-Elmer, Nor walk, C.T., USA) at the Micro analytical unit of Cairo University, Giza, Egypt. All compounds were within $\pm 0.4\%$ of the theoretical. All chemicals used for synthesis were purchased from Sigma- Aldrich Chemical Co. Milwaukee, WI, USA. **Anticonvulsant activity**

The animal were under taken with approval from ethics committee approval #23PD/3/12/18R) of Al-Azhar University, Cairo, Egypt. All the trials were carried out according to the respective internationally valid guidelines. Anticonvulsant activity of our compounds was evaluated according to the method reported by Soaje-Echaque and-Lim⁽¹¹⁾ using Swiss albino adult male mice, weighing 20-59 gm. They were obtained from an animal Facility (Animal house. Department of pharmacology and toxicology, Faculty of Pharmacy,

Al-Azhar University, Cairo, Egypt. Mice were housed is stainless steel wire floored cages without any stressful stimuli. Animals were kept under well- ventilated conditions at room temperature (25-30°C). They were fed on an adequate standard laboratory chow (El-Nasr Co., Abou-Zabal, Egypt) and allowed to acclimatize with free access to food and water for 24 hrs period before testing except during the short time they were removed from the cages for testing. Albino mice were randomly arranged in groups each comprising 12 animals. Phenobarbital sodium (Sigma- Aldrich Chemical Co., Milwaukee, WI, USA) was used as a reference drug for comparison. Pentylenetetrazole (Sigma-Aldrich Chemical Co., Milwaukee, WI, USA) was used to induce convulsion in the experimental animals. All synthesized phthalazine were tested for evolution of their anticonvulsant activities. The test compounds were suspend in normal saline with the aid of Tween 80 (Medical union Pharmaceuticals Co., Ismailia, Egypt)test compounds were intraperitoneally (i.p) injected in dose ranging from 25-200 mg/kg animal weight using the same dosing volume of (0.2 ml per 25 gm. Pentylenetetrazole was dissolved in normal saline in 2% concentration and was given (i.p) in dose 50-200 mg/kg using the same dosing volume. All drugs, were freshly prepared to the desired concentration Just before use. The percentage protection per each dose and the dose which makes protection for 50% of animals (ED₅₀) was calculated using INSTAT2 program (ICS Philadlphia, PA, USA).

REFERENCES

Ayyad R.R (2008): Az. J.Pharm. Sci., Vol., 37.

- Aziza M. A., El- Hakim A. E., El- Helby A. A., and Ghiaty A. H., (1996): AZ . J. pharma . sci., 17.
- Curia M.R.J Sanz A.M.J Maria J.R.J Yunta Gomez F.Y.J Navarro P.J Fernandez I.J Prado M.J and cano C. (2002): J Bioorganic of Medicinal chemistry., 11, 2143-2148.
- Eid A.I. Elsayed M.K. Abbas S.E. and Bakr A.Kh., (1991): Egypt J. Pharm. Sci., 32,39.
- *El-Helby A.A.J Amin M.A.J Ibrohim M.K. and Ayyad R.R.* (2001): Az.J. Pharm. Sci., 28, 125-136.
- Helby A.A.J Amin M.A.J Ibrahim M.K. and Ayyad R.R (2002): Az.J Pharm, Sci., 29, 37-44.,
- Imamura Y.J Noda T.J Imamura T.J Ono y. and Okawara T. (2003): J Hiroshi Noda like sciences., 74, 29-36,
- Napoletano M.J Norcini G.J pellacini F.J Marchini F.J Moazzoni G.J ferlenya P.J and Pradella L. (2001): J Bioorganic Medicinal chemistry letters., 11, 33-37.
- Napoletano M.J Norcini G.J pellacini F.J Marchini F.J Moazzoni G.J ferlenya P.J and Pradella L. (2000): J Bioorganic of Medicinal chemistry, 10, 2235-2238
- Napoletano M.J Norcini G.J pellacini F.J Marchini F.J Moazzoni G.J ferlenya P.J and Pradella L. (2000): J Bioorganic of Medicinal chemistry., 12, 5-8.
- Ossman A. E., Osman A. N. and EL-Helby A. A. (1986): Bull Pharma. SCI. Assiutuniversity., 9, part 1,105 118.
- Reddy, P. A. Woodhead K. E. Mellhearans. M., Hsiang. C. H, Latifi T. N. Covery D. F (1997): J. Med. chem., 40, 44-49,
- Siva Kumar R.J Kishore S.J Somasandaram G.J Joseph R.J Leonard T. J (2002): European Journal of Medicinal chemistry., 37, 793-801.,

- Soaje- Echaque E. and Lim R Ks. (1962): Anti convulsant activity of some carbinylureas pharmacol Exp ther., 138, 224-8.
- Swinyard E.A., Woodhead J.H., Woodburgy, D. M., Penny, J. K., Pippenger, C. E. (1982): Antiepileptic Drugs 2nd ed. Eds. Raven press New York, 111 126
- White H.S., Woodhead, H, J, Farmlclin M.R., Swinyard E.A., Wolf H. H. Levy R.H. Mattson R. H. Meldrum B. S (1995): Antiepileptic Drugs 4th ed, Eds Raven press New York, pp 99-121.
- Wood J.D. Russel, M.P., Kurylo E. (1980): J. Neurochem., 125-132.

تشييد وتقييم بيولوجى لمشتقات ايودو الفثالازين كمضادات للتشنجات العصبية

الدكتور / رزق رزق عبدالله عياد

من قسم الكيمياء الصيدلية - كلية الصيدلة (بنين) - جامعة الأز هر بالقاهرة

في هذا البحث تم تشييد ثلاثة وعشرون مركبا جديد من نواة الأيودو فيثالازين وتم أختبارها

بيولوجيا كمضادات للتشنجات العصبية مستخدما البنتلين تترازول كعامل يؤدى للتشنج وقد ثبت

للمركبات الجدية فاعلية كمضادة ضد التشنجات مقارنة بالفينوباربيتال كعقار مرجع