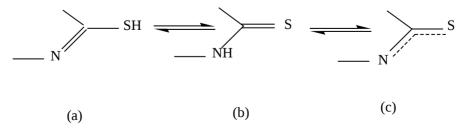
# SYNTHESIS, CHARACTERIZATION AND THERMAL STUDIES ON SOME TRANSITION METAL COMPLEXES OF TETRAHYDRO-2-THIOXO-1H—CYCLOPENTA[b] PYRIDINE-3-CARBONITRILE.

# ALI.M.A. HASSAN, MOSTAFA M.M. OMARA, ABD ELAZIZ ELSID, GALAL E. EL GEMEIE and TAREK H. ALY.


Department of Chemistry, Faculty of Science, Al-Azhar University, Egypt

# Abstract

A series of Cr(III), Co(II), Cu(II) and Zn(II) complexes of two types (ML,ML) Where L is 2, 5, 6, 7 – tetrahydro – 2 –thioxo – 1H- cyclopenta[b] pyridine- 3-carbonitrile are synthesized and confirmed by their elemental microanalysis, IR, electronic absorption spectra, magnetic moment and HNMR spectra. The various decomposition steps are determined from thermal analysis and determined the numbers of water molecules in the complexes. Kinetic parameters of the thermal decomposition have been evaluated and the data was refined using the least square method. Values of the activation energy, correlation coefficient and order of decomposition reaction were computed and discussed. Also Entropy ( $\Delta$ S), enthalpy ( $\Delta$ H) and free energy ( $\Delta$ G) of activation were computed. And biological effects were studied.

# Introduction

Although many aspects of donor behavior of sulfur-containing ligands have been investigated [1-4], yet for heterocyclic systems attention has been mainly concentrated on nitrogen-containing ligand molecules [5,6]. Heterocyclic thiones are a group of ligands containing thioketonic (thiones) group directly attached to the carbon atoms of the heterocyclic molecules and thus, thione ligands possess donor behavior of both sulfur- containing systems as well as heterocyclic molecules. A common feature of all nitrogen-containing heterocyclic thiones is the thiol  $\leftrightarrow$  thione tautomerism (schems 1) where it has been established [7,8] that the thione dominates in the solid state.



Schems 1

# Experimental

## I- Materials

Metal salts: The metal salts CrCl<sub>3</sub>.6H<sub>2</sub>O, CoSO<sub>4</sub>.7H<sub>2</sub>O, CuSO<sub>4</sub>.5H<sub>2</sub>O and ZnSO<sub>4</sub>.7H<sub>2</sub>O used for the preparation of complexes were of general grade reagents ( prolabo chemicals ).

# **II-Preparation Of The Ligand [9]:**

Ligand (HL<sup>1</sup>): 2,5,6,7-tetrahydro-2-thioxo-1H-cyclopenta[b]pyridine-3carbonitri-le. The derived from heterocyclic compounds, which we are used, were prepared according to the literature procedure [9].

The ligand used in the present study has the following structures:



**Primary ligands** 

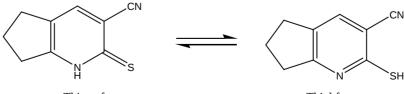
## **III-Preparation Of The Binary Complexes:**

The binary complexes were synthesized by adding a clear methanolic solution (25 ml) of the metal salt (1 mmole) dropwise to methanolic solution (25 ml) of the ligand (1 and 2 mmole) in 1:1 and 1:2 molar ratios (M : L) with constant stirring in one direction with heating for two hours. The precipitate was obtained then left at room temperature for 12-24 hour. The mixture (methanol) was permitted to evaporate slowly at room temperature until one-third its original volume, whereby a microcrystalline solid was separated. Then the solid obtained was filtered, washed with methanol and dried in vacuo over  $P_4O_{10}$ . The binary complexes were analyzed for their carbon, hydrogen, nitrogen, sulfur, and metal contents.

# **IV-COMPLEX SOLUTIONS:**

Stock solution of complexes were prepared by dissolving the accurate weight of each in the appropriate volume solvents (DMF) solutions of required concentration were prepared by accurate. Dilution with the prper solvent.

# V - IR spectra:


IR spectra of the ligand and its metal complexes were recorded on Shimadzu 140 Infrared Spectrophotometer (4000 - 400 cm ) as KBr discs. The proton HNMR spectra DMSO –d6 on a Varian FT -200 Mhz spectrometer using TMS as internal standard at Assiut university. The electronic absorption spectra were recorded with Shimadzu 2101 recording spectrophotometer. All conductance measurements reported in this study were performed using an LF Digi 550 conductance bridge with an immersion cell . The thermogravimetic analysis were detrmined using Shimadzu analyzer 50 H For TGA and DTA in a dynamic nitrogen atmosphere (100 ml/min). The antimicrobile activity of the ligand and their complexes was tested using the usual cup – plate diffusion technique. The culture media used are nutrient agar media supplemented with 1 g yeast/L.

# **Results And Discussion**

I.1 The results of elemental analyses are show in Table 1. The complexes are soluble in DMF and DMSO, but not soluble in most common organic solvents. The measured molar conductance values of dimethylformamide (DMF) solutions of Cr(III), Co(II), Cu(II) and Zn(II) complexes fall in the range 25.37-57.23 Ohm<sup>-1</sup> Cm<sup>2</sup> mol<sup>-1</sup> (Tables 1). These values indicate that those complexes are non electrolytes, since the reasonable range for 1:1 electrolytes in DMF is 65-90 Ohm<sup>-1</sup> cm<sup>2</sup> mol<sup>-1</sup> [10]. On the other hand molar conductance values of Cr(III) complex (1:1) (metal : ligand) is 77.92 Ohm<sup>-1</sup> Cm<sup>2</sup> mol<sup>-1</sup> indicate that this complex is 1:1 electrolyte [10].

## 1.2. IR SPECTRA

Infrared spectra of crystalline solid compounds have been investigated. The IR spectra of the free ligands 2,5,6,7-tetrahydro-2-thioxo 1*H*-cyclopenta[b]pyrindi-ne-3-carbonitrile (HL<sup>1</sup>) exhibit thione-thiol (HN-C=S  $\leftrightarrow$  N=C-SH) tautomerism [11] as given in scheme **2**.









11 0

The IR spectra of the free ligands 2,5,6,7-tetrahydro-2-thioxo 1*H*-cyclopenta[b]pyrindi-ne-3-carbonitrile (HL<sup>1</sup>) show the absorption band in the range 3600 - 3300 cm<sup>-1</sup>, can be assigned to stretching vibration of (NH) group [12]. The appearance an absorption band at 2950 cm<sup>-1</sup> in HL<sup>1</sup> attributed to **v** aliphatic structure of cyclic. Also The presence of an absorption band at 2185 cm<sup>-1</sup> attributed to stretching vibration of  $v C \equiv N$ . The presence of an absorption band at 1240 cm<sup>-1</sup> attributed to stretching vibration of  $v C \equiv S$ .

The IR spectra of investigated solid complexes shows disappearance the bands in the range 3500 - 3300 cm<sup>-1</sup> due to stretching vibration of (NH) group in ligand . The disappearance of these band is due to the displacement of the hydrogen ion from the NH group [11,13,14] through the coordination moiety. This result confirmed by <sup>1</sup>H NMR data.

The band at 2185 cm<sup>-1</sup> in  $HL^1$  is att1ributed to stretching C=N are shifted to lower frequencies due to coordination in all investigated complexes, in the range 2220-2200 cm<sup>-1</sup> for  $HL^1$  complexes.

The band at 1280 cm<sup>-1</sup> in HL<sup>1</sup> which corresponding to stretching vibration of C=S are shifted tor lower frequencies due to coordination with metal ions [15] in the range 1150-1260 cm<sup>-1</sup> for all complexes.

The appearance of a broad band in range  $3450 - 3650 \text{ cm}^{-1}$  is due to  $\nu\text{OH}$  of coordinated water complexes [14-16].

Also the two new bands appear for all chelates at 500-540 cm<sup>-1</sup> region corresponding to stretching [M-S] [16-17] metal-sulphur bond or M –O bond [17] and at 430-470 cm<sup>-1</sup> due to stretching [M  $\leftarrow$  N] [16] metal-nitrogen bond. The important IR bands are listed in (Tables 2) and (Figs 1,2)

# 1.3. <sup>1</sup>H NMR

The <sup>1</sup>H NMR spectrum of the ligand [9] HL<sup>1</sup> show characteristic signal at 2.2 ppm due to appearing the (–NH) proton and Moreover the appearance of the band located at 2.8 ppm may be assigned to the (–SH) proton. The band observed at 7.95 ppm may be assigned to (–CH–pyridine–) proton. The important <sup>1</sup>H NMR spectrum bands are listed in (Table 3) for ligand HL<sup>1</sup> and its complexes.

| Compounds                                                                                                  | Colour           |         | Foi    | und (Calc | d %)    |         | m.p.                      | Conductance<br>Ohm <sup>-1</sup>  |
|------------------------------------------------------------------------------------------------------------|------------------|---------|--------|-----------|---------|---------|---------------------------|-----------------------------------|
| Compounds                                                                                                  | Colour           | С       | Н      | N         | S       | М       | <sup>о</sup> С<br>Decomp. | cm <sup>2</sup> mol <sup>-1</sup> |
| $\frac{HL^1}{C_9H_8N_2S}$                                                                                  | Reddish<br>brown | 59.79   | 4.44   | 15.64     | 18.02   | -       | 190                       | -                                 |
| M.Wt =176.24                                                                                               | biowii           | (61.34) | (4.57) | (15.89)   | (18.19) |         |                           |                                   |
| [CrCl(L <sup>1</sup> )<br>(H <sub>2</sub> O) <sub>3</sub> ] <sup>•</sup> Cl <sup>•</sup> 5H <sub>2</sub> O | Dark             | 22.76   | 5.36   | 6.12      | 7.4     | 12.92   | >330                      | 77.92                             |
| $C_9H_{23}CrCl_2N_2O_8S$<br>M.Wt= 443.26                                                                   | brown            | (24.36) | (5.18) | (6.31)    | (7.2)   | (11.73) |                           |                                   |
| [CrCl(L <sup>1</sup> ) <sub>2</sub> (H <sub>2</sub> O)] <sup>.</sup> 7H <sub>2</sub><br>O                  | Dark             | 35.09   | 5.17   | 9.49      | 11.05   | 8.50    | >330                      | 57.23                             |
| $C_{18}H_{30}CrClN_4O_8S_2$<br>M.Wt= 584                                                                   | brown            | (37.00) | (5.13) | (9.58)    | (10.95) | (8.93)  |                           |                                   |
| $[Co(SO_4) (L^1)(H_2O)_2]$                                                                                 | Dark             | 3297    | 3.42   | 8.70      | 15.00   | 18.22   |                           |                                   |
| $C_9 H_{11} Co N_2 O_4 S_{1.5}$                                                                            | brown            |         |        |           |         |         | >330                      | 30.24                             |
| M.Wt= 318.23                                                                                               | brown            | (33.96) | (3.48) | (8.80)    | (15.12) | (18.52) |                           |                                   |
| $[Co(L^1)_2(H_2O)_2]$                                                                                      | Dark             | 48.44   | 4.07   | 12.11     | 13.78   | 13.11   |                           |                                   |
| $C_{18}H_{18}CoN_4O_2S_2$                                                                                  | brown            |         |        |           |         |         | >330                      | 28.45                             |
| M.Wt= 445.43                                                                                               |                  | (48.54) | (4.07) | (12.58)   | (14.40) | (13.23) |                           |                                   |
| $[Cu(SO_4) (L^1)]$                                                                                         | Dark             | 36.96   | 2.31   | 9.85      | 15.85   | 7.30    |                           |                                   |
| $C_9H_7CuN_2O_2S_{1.5}$                                                                                    | Green            |         |        |           |         |         | >330                      | 25.37                             |
| M.Wt=286.81                                                                                                |                  | (37.69) | (2.46) | (9.77)    | (16.77) | (22.16) |                           |                                   |
| $[Cu(L_2^1)^{-7}H_2O$                                                                                      | Dark             | 39.72   | 5.22   | 10.60     | 11.48   | 11.03   |                           |                                   |
| C18H28CuN4O7S2                                                                                             | Green            |         |        |           |         |         | >330                      | 32.33                             |
| M.Wt=540.12                                                                                                |                  | (40.03) | (5.23) | (10.37)   | (11.87) | (11.77) |                           |                                   |
| $[Zn(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$                                                                    | Pale             | 44.22   | 4.54   | 11.46     | (12.98) | (13.00) |                           |                                   |
| $C_{18}H_{22}ZnN_4O_4S_2$                                                                                  | yellow           |         | (4 ==` | (11.10)   |         | (10.40) | >330                      | 37.79                             |
| M.Wt=487.92                                                                                                |                  | (44.31) | (4.55) | (11.48)   | (13.15) | (13.40) |                           |                                   |

 Table 1: Colour, elemental analyses, melting point and conductance value of the complexes.

| Compounds                                              | υ(H <sub>2</sub> O) | Y NH | υ SH | υ alphatic<br>St. of<br>cyclic | Y<br>C≡N | δNH  | δ (H <sub>2</sub> O) | Y<br>C=S | M-S | M←<br>N |
|--------------------------------------------------------|---------------------|------|------|--------------------------------|----------|------|----------------------|----------|-----|---------|
| $HL^1$                                                 | -                   | 3300 | 3200 | 2950                           | 2185     | 1510 | -                    | 1240     | -   | -       |
| [CrCl(L <sup>1</sup> )                                 | 3500                | -    | -    | 2950                           | 2220     | -    | 1360                 | 1260     | 510 | 460     |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{.}7H_{2}O$                 | 3600                | -    | -    | 2950                           | 2210     | -    | 1360                 | 1260     | 510 | 460     |
| [Co (L <sup>1</sup> )(H <sub>2</sub> O) <sub>2</sub> ] | 3550                | -    | -    | 2950                           | 2205     | -    | 1360                 | 1250     | 510 | 470     |
| [Co(L1)2(H2O)2]                                        | 3600                | -    | -    | 2950                           | 2200     | -    | 1360                 | 1250     | 520 | 470     |
| [Cu (L1)]                                              | -                   | -    | -    | 2950                           | 2215     | -    | -                    | 1250     | 500 | 450     |
| [Cu(L1)2].7H2O                                         | 3600                | -    | -    | 2950                           | 2200     | -    | 1365                 | 1250     | 510 | 450     |
| [Zn(SO4) (L1)].3H2O                                    | 3600                | -    | -    | 2950                           | 2205     | -    | 1380                 | -        | 510 | 460     |
| [Zn(L1)2(H2O)2].2H2                                    | 3550                | -    | -    | 2950                           | 2190     | -    | 1380                 | -        | 500 | 470     |

| Complexes                               | m, 2H,          | M, 4H,    | S, 1H, pyridine | S, br, 1H, | S, br, 1H, | S, nH, |
|-----------------------------------------|-----------------|-----------|-----------------|------------|------------|--------|
| Complexes                               | CH <sub>2</sub> | $2CH_2$   | 4H              | NH         | SH         | $H_2O$ |
| $HL^1$                                  | 1.91            | 2.61-2.95 | 7.95            | 2.2        | 2.8        | -      |
| $[Co(L^1)(H_2O)_2]$                     | 0.6             | 2.6-2.8   | 8.4             | -          | -          | 3.6    |
| $[Co(L^1)_2(H_2O)_2]$                   | 0.9             | 2.5-2.85  | 8.4             | -          | -          | 4.4    |
| $[Zn((L^{1}))]^{3}H_{2}O$               | 1.8             | 2.7-3.05  | 8.4             | -          | -          | 4.2    |
| $[Zn(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$ | 1.8             | 2.4-2.7   | 8.5             | -          | -          | 5.6    |

Table 3: <sup>1</sup>H NMR spectrum data of ligand (HL<sup>1</sup>) and its metal complexes (ppm).

#### 1.4. Electronic Spectra And Magnetic Susceptibility Measurements.

The obtained spectral characteristic data (mainly  $\upsilon_{max}$  in cm<sup>-1</sup> and  $\varepsilon_{max}$  in cm<sup>2</sup> mol<sup>-1</sup>) of the different band displayed by the free ligand and their binary complexes are given in (Tables 4, 5) and (Fig. 3-8)

#### Cr(III) COMPLEXES

The electronic spectra of the Cr(III) complexes exhibits tow sets of bands. The first set of bands with  $v_{max}$  at 30.581 cm<sup>-1</sup> and 29.940 cm<sup>-1</sup> could be attributed to intra-ligand charge transfer transitions in N\_----C\_---S moiety [18]. The second set having  $v_{max}$  at 21.598 Cm<sup>-1</sup> and 21.141 cm<sup>-1</sup> attributed to the d-d electronic transition which may be assigned  ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{2g}(F)$  transition. Octahedral geometry is proposed [19-21].

At room temperature magnetic moment value of the complexes  $[CrCl(L^1) (H_2O)_3]$ ·Cl<sup>-</sup>5H<sub>2</sub>O and  $[CrCl(L^1)_2(H_2O)]$ ·7H<sub>2</sub>O are 3.82 and 3.97 B.M. respectively, indicating the presence of three unpaired electrons [21-24].

## Co(II) COMPLEXES

The electronic spectrum of Co(III) complexes exhibits tow sets of bands. The first set of bands with  $v_{max}$  at 30.674 and 30.120 cm<sup>-1</sup>, could be attributed to intraligand charge transfer transitions. The second set include a shoulder bands having  $v_{max}$  at 21.413 and 21.739 Cm<sup>-1</sup> for [Co((L<sup>1</sup>)(H<sub>2</sub>O)<sub>2</sub>] and [Co(L<sup>1</sup>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] respectively attributed to the d-d electronic transition which may be attributed to (<sup>4</sup>T<sub>1g</sub>  $\rightarrow$  <sup>4</sup>T<sub>1g</sub>) (P), suggesting octahedral geometries [25-26].

At room temperature magnetic moment value of the complexes  $[Co(SO_4)_{0.5}(L^1)(H_2O)_2]$  is 3.74 indicating the presence of three unpaired electrons. And  $[Co(L^1)_2(H_2O)_2]$  is 6.95 B.M., characteristic of high-spin octahedral [21,27,28] Co(II) complexes.

# Cu(II) COMPLEXES

The electronic spectra of complex  $[Cu(SO_4)_{0.5}(L^1)]$  display two sets of bands. The first set of band at  $v_{max}$  30.120 cm<sup>-1</sup> could be attributed to intra-ligand charge transfer transitions. The second set having  $v_{max}$  at band 21.881 cm<sup>-1</sup> attributed to the

d-d electronic transition which attributed to  ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$  transition, suggesting square planer geometries [29,30].

At room temperature magnetic moment value of the complex  $[Cu(SO_4) (L^1)]$  is diamagnetic.

# **Zn(II) COMPLEXES**

The electronic spectrum of Zn(II) complex exhibits two sets of bands. The first set of bands with  $v_{max}$  at 33.670 cm<sup>-1</sup> and 34.602cm<sup>-1</sup> could be attributed to intraligand charge transfer transitions. The second set includes a shoulder bands having  $v_{max}$  at 24.509 cm<sup>-1</sup> and 26.178 cm<sup>-1</sup> attributed to the L  $\rightarrow$  MCT transition.

Zn(II) complex are found to be diamagnetic as expected for d<sup>10</sup> configuration. On the basis of elemental analysis, infrared spectra, magnetic measured, thermal analysis and known coordination preferences, tetrahedral geometry [31,32] is suggested for [Zn(SO<sub>4</sub>) (L<sup>1</sup>)]<sup>3</sup>H<sub>2</sub>O, while octahedral structure [33,34] is suggested for [Zn(L<sup>1</sup>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2</sup>H<sub>2</sub>O.

| Complexes                                   | λ <sub>max</sub> | υ <sub>max</sub>    | ε <sub>max</sub>                 | Assignment              |
|---------------------------------------------|------------------|---------------------|----------------------------------|-------------------------|
| 1                                           | (nm)             | (cm <sup>-1</sup> ) | $(\text{cm}^2 \text{ mol}^{-1})$ | U                       |
| $HL^{1}$                                    | 400              | 25.000              | 1100                             | $n \rightarrow \pi^*$   |
|                                             | 313              | 31.948              | 8400                             | $\pi \rightarrow \pi^*$ |
| $[CrCl(L^1)(H_2O)_3]$ ·Cl·5H <sub>2</sub> O | 463              | 21.598              | 150                              | $d \rightarrow d$       |
|                                             | 327              | 30.581              | 890                              | Intraligand             |
|                                             |                  |                     |                                  | transition              |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{-7}H_{2}O$      | 473              | 21.141              | 300                              | $d \rightarrow d$       |
|                                             | 334              | 29.940              | 2100                             | Intraligand             |
|                                             |                  |                     |                                  | transition              |
| $[Co(SO_4)(L^1)(H_2O)_2]$                   | 467              | 21.413              | 1700                             | $d \rightarrow d$       |
|                                             | 326              | 30.674              | 10900                            | Intraligand             |
|                                             |                  |                     |                                  | transition              |
| $[Co(L^1)_2(H_2O)_2]$                       | 460              | 21.739              | 150                              | $d \rightarrow d$       |
|                                             | 332              | 30.120              | 430                              | Intraligand             |
|                                             |                  |                     |                                  | transition              |
| $[Cu(SO_4) (L^1)]$                          | 457              | 21.881              | 500                              | $d \rightarrow d$       |
|                                             | 332              | 30.120              | 7400                             | Intraligand             |
|                                             |                  |                     |                                  | transition              |
| $[Zn(SO_4) (L^1)]^{-3}H_2O$                 | 382              | 26.178              | 4800                             | CT                      |
|                                             | 297              | 33.670              | 10200                            | Intraligand             |
|                                             |                  |                     |                                  | transition              |
| $[Zn(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$     | 408              | 24.509              | 7500                             | CT                      |
|                                             | 289              | 34.602              | 23500                            | Intraligand             |
|                                             |                  |                     |                                  | transition              |

Table 4 : Electronic spectral data of the complexes.

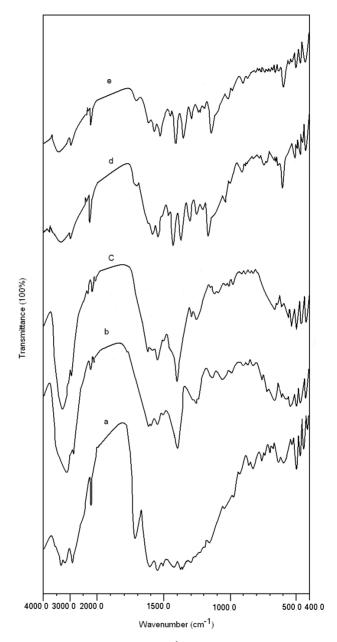
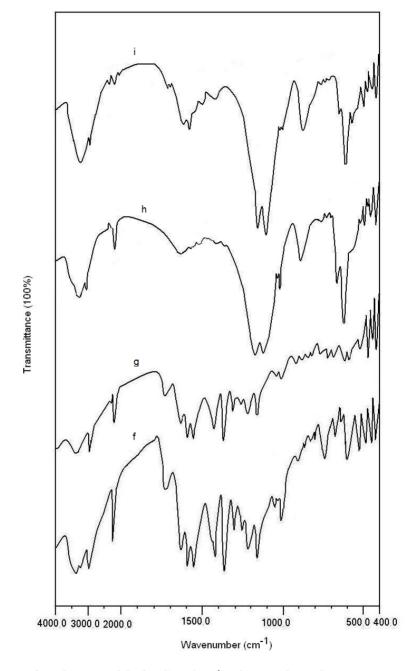
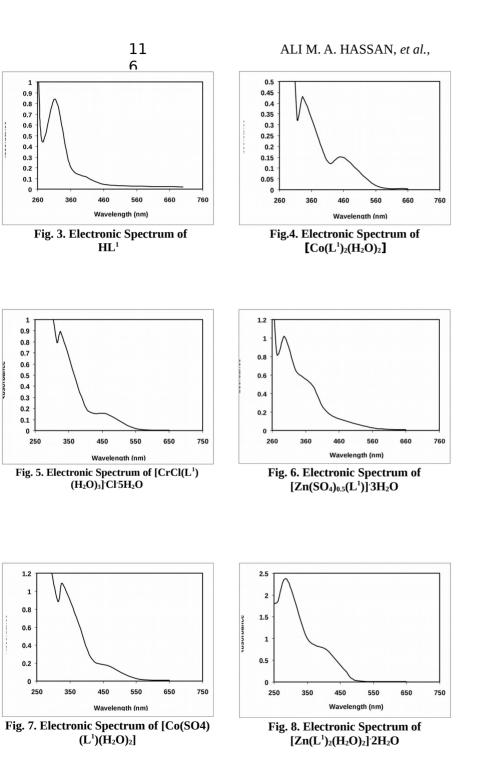
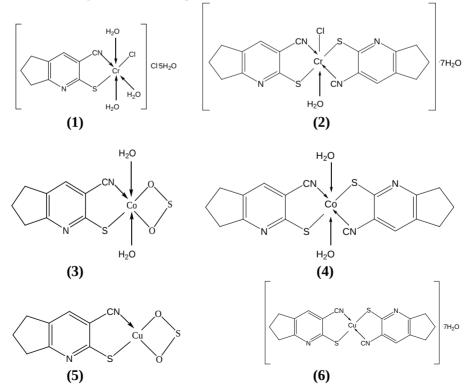





Fig. 1. Infrared spectra of the free ligand HL<sup>1</sup> and its metal complexes.

 $\begin{array}{ll} (a) = Free \ ligand \\ (b) = [CrCl(L^1)(H_2O)_3] \cdot Cl \cdot 5H_2O \\ (c) = [CrCl(L^1)_2(H_2O)] \cdot 7H_2O \\ (d) = [Co(L^1)(H_2O)_2] \\ \end{array}$ 



 $\begin{array}{ll} \mbox{Fig. 2. Infrared spectra of the free ligand HL^1 and its metal complexes.} \\ (f) = [Cu(\ (L^1)] & (g) = [Cu(L^1)_2]^7H_2O \\ (h) = [Zn(L^1)]^3H_2O & (i) = [Zn(L^1)_2(H_2O)_2]^2H_2O \end{array}$ 



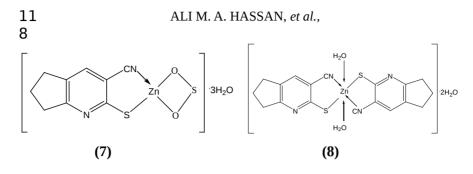


| Complexes                                   | $X_g$   | $\mu_{eff}$ |
|---------------------------------------------|---------|-------------|
| $[CrCl(L^1)(H_2O)_3]$ ·Cl·5H <sub>2</sub> O | 0.01368 | 3.82        |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{-}7H_{2}O$      | 0.01128 | 3.97        |
| $[Co(SO_4)_{0.5}(L^1)(H_2O)_2]$             | 0.01828 | 3.74        |
| $[Co(L^1)_2(H_2O)_2]$                       | 0.04507 | 6.95        |
| $[Cu(SO_4)_{0.5}(L^1)]$                     | 0       | D           |
| $[Zn(SO_4)_{0.5}(L^1)]^{-}3H_2O$            | 0       | D           |
| $[Zn(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$     | 0       | D           |

Table 5 : The molar magnetic susceptibility ( $\chi_g$ ) and magnetic moment ( $\mu_{eff}$ ) of the complexes.

# 1.5. Tentative Structures

Based on the above results gained from elemental analysis, IR, <sup>1</sup>HNMR and electronic spectra, the following tentative structures show the coordination sites of the ligands in the complexes (1-8) [11].





# 1.6. THERMAL STUDIES [35,36]

The complex of  $[CrCl_2(L^1)(H_2O)_2]^6H_2O$ , show the decomposition in three steps in the temperature range 40-267, 226-360 and 362-607°C. The first step corresponds to the evolution of 8 crystalline and coordinate water molecules, the second step corresponds to decomposition  $C_8H_7N$  with amount 26.47%. The third step amounted to 16.18%, attributed to the removal of 2Cl, while the final product is CrS and CN with amount 25%.

For the complex  $[CrCl(L^1)_2(H_2O)].7H_2O$ , the pyrolysis curves exhibit almost, the same TGA pattern, namely three decomposition steps in the range 40-120°C, 200-107°C and 350-700. The first step corresponds to the evolution of 8 crystalline and coordinate water molecules, the second step corresponds to decomposition  $2C_8H_7N$  with amount 40.29%. The third step amounted to 14.93%, attributed to the removal of Cl and 2CN, while the final product is  $CrS_2$  with amount 20.15%.

While the complex  $[Co(SO_4) (L^1)(H_2O)_2]$  decompose in two step, the first step in the range 200-333°C which corresponds to the evolution of 2 coordinate water molecules. The second step corresponds decomposition C<sub>5</sub>HN & (SO4), CN and S with amount 56.82%, while the final product is Co with amount 18.38%.

For the complex  $[Co (L^1)_2(H_2O)_2]$  show the decomposition in two steps in the temperature range 226-333 and 400-616°C. The first step corresponds to the evolution of two coordinate water molecules, the second step corresponds to decomposition C<sub>8</sub>H<sub>7</sub>NS, CN and S with amount 45.76%, while the final product is CoS with amount 20.34%.

While the complex [Cu(SO<sub>4</sub>) (L<sup>1</sup>)] decompose in three steps, the first step in the range 200-320°C which corresponds to the decomposition  $C_3H_6$ . The second step in the range 358-483°C corresponds decomposition  $C_5HN$  and CN with amount 35.07%, and the third step in the range 665-780°C corresponds decomposition (SO<sub>4</sub>) with amount 16.42%, while the final product is CuS with amount 33.58%.

## SYNTHESIS, CHARACTERIZATION AND THERMAL STUDIES ... 119

For the complex  $[Cu (L^1)_2]$  7H<sub>2</sub>O show the decomposes in three steps in the temperature range 40-110, 200-341 and 645-729°C. The first step corresponds to the evolution of 7 crystalline water molecules, the second step corresponds to decomposition 2C<sub>8</sub>H<sub>7</sub>N with amount 43.19%, and the third step corresponds to decomposition 2CN with amount 9.85%, while the final product is CuS<sub>2</sub> with amount 23.48%.

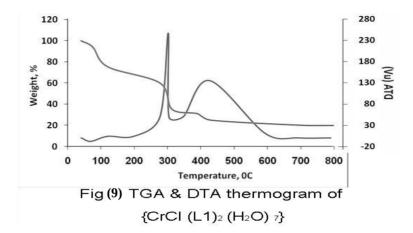
While the complex  $[Zn(So_4) (L^1)]$ ·3H<sub>2</sub>O decompose in three steps, the first step in the range 40-131°C which corresponds to the evolution of 3 crystalline water molecules. The second step in the range 223-360°C corresponds decomposition  $C_8H_7N$  with amount 34.33%, and the third step in the range 400-650°C corresponds decomposition CN, (SO<sub>4</sub>) and S with amount 30.60%, while the final product is Zn with amount 19.40%.

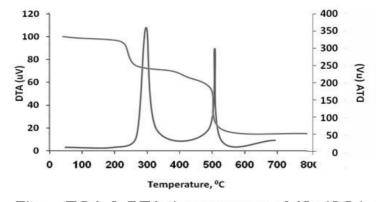
For the complex  $[Zn(L^1)_2(H_2O)_2]^2H_2O$  show decomposes in two steps in the temperature range 232-322 and 330-697°C. The first step corresponds to the evolution of 4 crystalline and coordinate water molecule, the second step corresponds to decomposition  $2C_8H_7N$ , 2CN and 2S with amount 71.64%, while the final product is Zn with amounts 13.61%.

The TGA and DTA data are presented in (Table 6) and (Figs. 9-11).

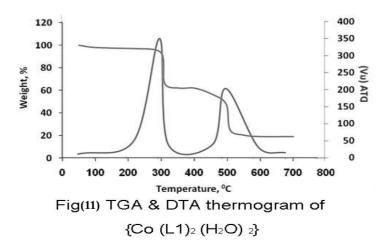
# Kinetic data of the complexes

The coats-redfern and Horowitz-Metzger equations were used for evaluating the kinetic parameters [37,38]. (Table 7) reports the computed values of activation energy for the various decomposition steps which are given in (Table 6).


Entropy ( $\Delta$ S), enthalpy ( $\Delta$ H) and free energy ( $\Delta$ G) of activation [39-46] were computed using equations (1), (2), (3).


| $\Delta S = 2.303 (\log zh/kT_s) R$  | (1) |
|--------------------------------------|-----|
| $\Delta H = E-RT_s$                  | (2) |
| $\Delta G = \Delta H - T_s \Delta S$ | (3) |

Where k and h are Boltzman and Plank constants, respectively. The data are compiled in (Table 8)


| $ \begin{array}{ c c c c c c } \hline \textbf{Compounds} & \textbf{M. wt.} & \textbf{Step} & \textbf{Decomp.} \\ \hline \textbf{Temp. °C} & \textbf{M. wt.} & \textbf{Step} & \textbf{Decomp.} \\ \hline \textbf{Temp. °C} & \textbf{M. wt.} & \textbf{M. wt.} & \textbf{Temp. °C} & \textbf{M. wt.} & \textbf{M. wt.} & \textbf{M. wt.} & \textbf{Temp. °C} & \textbf{M. wt.} & M. wt$ | N <sub>2</sub> S  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                 |
| HL <sup>1</sup> 176.24         2 <sup>nd</sup> 400-700         76.12         76.25         Loss of C <sub>6</sub> H <sub>2</sub> L           -         -         No residue           [CrCl(L <sup>1</sup> )(H <sub>2</sub> O) <sub>3</sub> ]·Cl <sup>-</sup> 5H <sub>2</sub> O         442.26         2 <sup>nd</sup> 226-360         26.49         26.47         Loss of C <sub>8</sub> H <sub>2</sub> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                 |
| 112         1301 1         2         1301 10         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         701 2         70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                 |
| $ \begin{bmatrix} 1^{st} & 40-167 & 32.59 & 32.35 & Loss of 8H_2O \\ [CrCl(L^1)(H_2O)_3] \cdot Cl \cdot 5H_2O & 442.26 & 2^{nd} & 226-360 & 26.49 & 26.47 & Loss of C_8H_7D \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| $[CrCl(L^1)(H_2O)_3]Cl^{-}5H_2O  442.26  2^{nd}  226-360  26.49  26.47  Loss of C_8H_7 = 26.47  C_8H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                 |
| 3 <sup>rd</sup> 362-607 16.03 16.18 Loss of 2Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| 24,89 25.00 Residue Cr&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S&CN              |
| 1 <sup>st</sup> 40-120 24.63 24.63 Loss of 8H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{3}TH_{2}O \qquad 582.04 \qquad 2^{nd} \qquad 200-307 \qquad 40.29 \qquad 40.29 \qquad Loss of 2(C_{8}H_{2}O)^{3}H_{2}O \qquad 200-307 \qquad 40.29 \qquad 40.29 \qquad Loss of 2(C_{8}H_{2}O)^{3}H_{2}O \qquad 40.29 \qquad Loss of 2(C_{8}H_{2}O)^{3}H_{2}O \qquad 40.29 \qquad 40.29 \qquad Loss of 2(C_{8}H_{2}O)^{3}H_{2}O \qquad 40.20 \qquad Loss of 2(C_{8}H_{2}O)^{3}H_{2}O \qquad 40.20 \qquad Loss of 2(C_{8}H_{2}O)^{3}H_{2}O \qquad 40.20 \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I <sub>7</sub> N) |
| 3 <sup>rd</sup> 350-700 14.93 14.93 Loss of Cl&2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CN                |
| 20.15 20.15 Residue CrS <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1 <sup>st</sup> 200-333 24.55 25.00 Loss of 2H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_3H_6$          |
| 2 <sup>nd</sup> 335-533 56.93 56.82 Loss of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| $\begin{bmatrix} Co(SO_4) & (L^1)(H_2O)_2 \end{bmatrix} = 318.23 \\ C_5HN\&0.5(S) \\ C_5HNW&0.5(S) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04) &             |
| 18.52 18.38 CN&S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| Residue Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| 1 <sup>st</sup> 226-333 34.39 33.90 Loss of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | т                 |
| $\begin{bmatrix} 2^{nd} & 400-616 & 45.18 & 45.76 & 2H_2O\&C_8H_7N \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                 |
| $\begin{bmatrix} Co (L^{1})_{2}(H_{2}O)_{2} \end{bmatrix} \qquad 445.43 \qquad \qquad 20.42  20.34  Loss of \\ C_{8}H_{7}NS\&CN \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8-5               |
| Residue CoS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Q</b> 3        |
| 1 <sup>st</sup> 246-320 14.69 14.93 Loss of C <sub>3</sub> H <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| $[Cu(SO_4) (L^1)] \qquad 286.81 2^{nd} 358-483 35.25 35.07 Loss of C_5HN$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I&CN              |
| $\begin{array}{c c} 220001 & 2 & 355405 & 35125 & 3507 & 125801 & 25111 \\ 3^{rd} & 665-780 & 16.75 & 16.42 & Loss of 0.5(S) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| 33.33 33.58 Residue CuS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04)&              |
| 1st         40-110         23.35         23.48         Loss of 7H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| $[Cu(L^1)_2]^{.7}H_2O \qquad 540.12  2^{nd}  200-341  43.38  43.19  Loss of 2C_8H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| 645-729 9.63 9.85 Loss of 2CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /11               |
| 23.64 23.48 Residue CuSz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| 1 <sup>st</sup> 40-131 15.77 15.87 Loss of 3H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| $[Zn(SO_4 (L^1)] \cdot 3 H_2 O \qquad 342.07  2^{nd}  223-360  34.18  34.33  Loss of SH_2 O = 2000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| $\begin{bmatrix} 211(304 (L)) & 312 \\ 3^{rd} & 400-650 & 30.97 & 30.60 & Loss of \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                 |
| 19.08 19.40 CN&0.5(SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )&S               |
| Residue Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                 |
| 1 <sup>st</sup> 232-322 14.77 14.75 Loss of 4H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| $[Zn(L^1)_2(H_2O)_2]^2H_2O$ 487.92 2 <sup>nd</sup> 330-697 71.83 71.64 Loss of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 13.40 13.61 2C <sub>8</sub> H <sub>7</sub> N&2CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N&2S              |
| Residue Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |

**Table 6:** TGA. data for binary complexes of the ligand (HL<sup>1</sup>).





Fig(10) TGA & DTA thermogram of {Co(SO<sub>4</sub>) (L1)2(H<sub>2</sub>O)}



| Complexes                                                           | Step            |      | Coats         | -Redfern |           | Horowitz-Metzger |       |           |
|---------------------------------------------------------------------|-----------------|------|---------------|----------|-----------|------------------|-------|-----------|
|                                                                     |                 | n    | r             | Е        | intercept | r                | Е     | intercept |
| $[CrCl (L^{1})(H_{2}O)_{3}]^{-}$                                    | $1^{st}$        | 2.00 | <u>0.9893</u> | 0.35     | 3.5616    | <u>0.9938</u>    | 0.75  | -4.6080   |
| Cl <sup>·</sup> 5H₂O                                                | $2^{nd}$        | 2.00 | <u>1.0000</u> | 13.38    | 3.9000    | <u>0.9999</u>    | 14.70 | -23.9193  |
|                                                                     | $3^{rd}$        | 1.00 | <u>0.9992</u> | 8.37     | 2.0000    | <u>0.9996</u>    | 12.65 | -14.4863  |
|                                                                     |                 |      |               |          |           |                  |       |           |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{-}7H_{2}O$                              | $1^{st}$        | 2.00 | <u>1.0000</u> | 0.58     | 2.3075    | <u>0.9979</u>    | 0.87  | -7.3312   |
|                                                                     | $2^{nd}$        | 2.00 | <u>0.9981</u> | 19.76    | 10.000    | <u>0.9970</u>    | 20.97 | -35.4631  |
|                                                                     | 3 <sup>rd</sup> | 2.00 | <u>0.9796</u> | 21.21    | 5.5000    | <u>0.9799</u>    | 22.92 | -27.0653  |
| $[Co (L^1)_2(H_2O)_2]$                                              | $1^{st}$        | 2.00 | <u>0.9949</u> | 35.54    | 21.2000   | <u>0.9942</u>    | 36.76 | -59.6167  |
|                                                                     | $2^{nd}$        | 0.33 | <u>1.0000</u> | 15.99    | 1.3000    | <u>1.0000</u>    | 21.15 | -20.4503  |
|                                                                     |                 |      |               |          |           |                  |       |           |
| [Cu (L <sup>1</sup> ) <sub>2</sub> ] <sup>.</sup> 7H <sub>2</sub> O | $1^{st}$        | 0.33 | <u>1.0000</u> | 0.21     | 3.2913    | <u>1.0000</u>    | 0.73  | -4.9692   |
|                                                                     | $2^{nd}$        | 0.50 | <u>0.9999</u> | 4.64     | 1.7000    | <u>1.0000</u>    | 5.89  | -9.3257   |
|                                                                     | $3^{rd}$        | 1.00 | <u>0.9999</u> | 39.24    | 6.2000    | <u>0.9998</u>    | 42.11 | -30.4590  |
|                                                                     |                 |      |               |          |           |                  |       |           |
| [Zn                                                                 | $1^{st}$        | 2.00 | <u>0.9460</u> | 5.42     | 0.1000    | <u>0.9817</u>    | 1.60  | -3.2475   |
| $(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$                                | 2 <sup>nd</sup> | 2.00 | <u>0.9684</u> | 8.53     | 0.3000    | <u>0.9911</u>    | 2.67  | -3.9457   |
|                                                                     |                 |      |               |          |           |                  |       |           |

Table 7: Kinetic parameters of the thermal decomposition of the Complexes.

E (Kcal/mol)

Table 8: kinetic parameters of the thermal decomposition of the Complexes.

| Complexes                               | Step            | (                       | Coats-Redfern |        |          |       | Horow  | itz-Metzg  | ger      |
|-----------------------------------------|-----------------|-------------------------|---------------|--------|----------|-------|--------|------------|----------|
|                                         |                 | Z                       | ΔS            | ΔH     | ΔG       | Z     | ΔS     | $\Delta H$ | ΔG       |
| $[CrCl(L^{1})(H_{2}O)_{3}]Cl^{5}H_{2}O$ | $1^{st}$        | 86.941×10 <sup>3</sup>  | -0.113        | -2.746 | 39.749   | 0.858 | -0.209 | -2.348     | 75.892   |
|                                         | 2 <sup>nd</sup> | 71.558×10 <sup>5</sup>  | -0.081        | 8.450  | 56.555   | 0.856 | -0.213 | 9.769      | 136.457  |
|                                         | 3 <sup>rd</sup> | 56.341×10 <sup>3</sup>  | -0.123        | 2.274  | 92.550   | 0.898 | -0.215 | 6.558      | 164.153  |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{-7}H_{2}O$  | $1^{st}$        | 7.891×10 <sup>3</sup>   | -0.133        | -2.274 | 43.409   | 0.787 | -0.209 | -1.982     | 699.720  |
|                                         | 2 <sup>nd</sup> | 13.303×1012             | 0.039         | 15.037 | -7.262   | 1.112 | -0.211 | 16.247     | 136.152  |
|                                         | 3 <sup>rd</sup> | 45.146×10 <sup>7</sup>  | -0.048        | 15.360 | 49.153   | 0.969 | -0.214 | 17.073     | -133.383 |
| $[Co(L^1)_2(H_2O)_2]$                   | $1^{st}$        | 33.917×10 <sup>23</sup> | 0.258         | 30.730 | -118.631 | 1.415 | -0.209 | 31.958     | 152.899  |
|                                         | 2 <sup>nd</sup> | 21.478×10 <sup>3</sup>  | -0.131        | 9.396  | 113.937  | 1.017 | -0.214 | 14.554     | 184.748  |
| $[Cu(L^1)_2]$ ·7H <sub>2</sub> O        | $1^{st}$        | 27.657×10 <sup>3</sup>  | -0.122        | -2.683 | 40.078   | 0.988 | -0.208 | -2.163     | 70.224   |
|                                         | 2 <sup>nd</sup> | 15.670×10 <sup>3</sup>  | -0.234        | -0.244 | 137.841  | 1.023 | -0.212 | 1.005      | 125.714  |
|                                         | 3 <sup>rd</sup> | 41.865×10 <sup>8</sup>  | -0.032        | 31.146 | 62.535   | 0.985 | -0.216 | 34.016     | 244.759  |
| $[Zn(L^1)_2(H_2O)_2]^2H_2O$             | $1^{st}$        | 459.793                 | -0.160        | 0.868  | 88.943   | 0.955 | -0.212 | -2.954     | 113.266  |
|                                         | 2 <sup>nd</sup> | 11.46×10 <sup>2</sup>   | -0.154        | 3.146  | 103.275  | 0.949 | -0.213 | -2.714     | 135.646  |
| Z $(s^{-1})$ .                          |                 |                         |               |        |          |       |        |            |          |

 $\begin{array}{l} Z \quad ( \ s^{\text{-1}} ), \\ \Delta S \ (Jk^{\text{-1}}mol^{\text{-1}}) \\ \Delta H \ (kJmol^{\text{-1}}) \\ \Delta G \ (kJmol^{\text{-1}}) \end{array}$ 

# **1.7. MICROBIOLOGICAL SCREENING**

Tests were directed towards bacteria. The tested bacteria species some of them are pathogenic, namely *Staphylococcus aureus* (Gram +ve) *Eicoli* and *Klebsilla*. These species were cultivated on nutrient agar (N.A) media. The synthesized compounds were dissolved in DMF. Sterilized filter paper discs were added to dissolve compounds until saturation. Then the saturated discs put on the surface of agar plates. The plates were incubated at 28 °C for 24 hours. The inhibition zones around the discs were measured in mm. (Table 9) indicates the antmicrobiological activity of each compound.

|                                                       | Bacteria            |        |           |  |  |  |  |
|-------------------------------------------------------|---------------------|--------|-----------|--|--|--|--|
| Complexes                                             | Staphylococcus      | Eicoli | Klebsilla |  |  |  |  |
|                                                       | A ureus<br>Gram +ve |        |           |  |  |  |  |
|                                                       | Giaili +ve          |        |           |  |  |  |  |
| $[CrCl(L^1)(H_2O)_3]$ ·Cl·5H <sub>2</sub> O           | -                   | -      | +         |  |  |  |  |
|                                                       |                     |        |           |  |  |  |  |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{-}7H_{2}O$                | +                   | -      | -         |  |  |  |  |
| $[Co(SO_4)_{0.5}(L^1)(H_2O)_2]$                       | +                   | _      | +         |  |  |  |  |
|                                                       |                     | _      |           |  |  |  |  |
| $[Co(L^1)_2(H_2O)_2]$                                 | +                   | -      | -         |  |  |  |  |
|                                                       |                     |        |           |  |  |  |  |
| $[Cu(SO_4)_{0.5}(L^1)]$                               | +                   | -      | -         |  |  |  |  |
|                                                       |                     |        |           |  |  |  |  |
| $[Cu(L^1)_2]$ ·7H <sub>2</sub> O                      | +                   | +      | -         |  |  |  |  |
|                                                       |                     |        |           |  |  |  |  |
| $[Zn(SO_4)_{0.5}(L^1)]$ <sup>3</sup> H <sub>2</sub> O | +                   | -      | +         |  |  |  |  |
| $[Zn(L^1)_2(H_2O)_2]^2H_2O$                           | +                   | +      | _         |  |  |  |  |
| $[2\Pi(L)_{2}(\Pi_{2}\cup)_{2}]^{2}\Pi_{2}\cup$       |                     |        | -         |  |  |  |  |

Table 9: Microbiological screening of the complexes.

- No activity
- + Activity

## References

- 1. H. Vahrenkamp, Agnew. Chem., Int. Ed. Engl., 14, 322 (1975).
- 2. E.W. Ainscough and A.M.Brodie, Coord. Chem. Rev., 27, 59 (1978).
- 3. C.G.Kuehn and S.S.Isied, Prog.Chem., 27, 1953 (1980).
- 4. A. Mueller, W.Jaegerman and J.H.Enemark, Coord. Chem. Rev., 46, 245 (1982).
- 5. M.Inoue and M.Kubo, Coord. Chem. Rev., 21, 1(1978).

- 6. D.K.Hodgson, Prog. Inorg. Chem., 23, 211 (1977).
- 7. C.Preti and G.Tosi, Can. J. Chem., 54, 1558 (1976).
- L.M.Butler, J.R. Creigton, R.E.Oughtred, E.S.Raper and I.W.Nowel, Inorg. Chim. Acta., 75, 149 (1983).
- 9. Galal E. H. Elgemeie and Badria A. W. Hussain, Tetrahedron, 50(1), 199-204 (1994).
- 10. Geary, W. J, coord. Chem. Rev., 7, 81 (1971).
- 11.Ragab R. Amin and Galal E. H. Elgemeie, Synth. React. Inorg. Met. Org. Chem., 31(3), 431-440 (2001).
- 12.M. Abd-El-Mottalb, S.M. Abo-El-Wafa and Y. Z. Ahmed, Egypt. J. Chem., 28 (5), 367-374 (1985).
- 13.Saxena S. B, Agarwal Y. K, Spectrophotometric Determination of the Stability Constant of 4-Substituted Thiosemicarbazides with Co<sup>2+</sup>, Ni<sup>2+</sup> and Cu<sup>2+</sup> Systems. J. Ind. Inst. Sci, 66, 13-19 (1986).
- 14.Khalifa M. E, Rakha T. H, M. M. Bekheit, M. M. ligational Behaviour of 1-Picolinoyl-4phenyl-3-tiosemicarbazid (H2PTS) Towards some Transition Metal Ions, Synth. React. Inorg. Met.-Org. Chem., 26(7), 1149-1161 (1996).
- 15.El-Asmy A. A, Al-Ansi T. Y, Amin R. R, Physicochemical Studies on Transition Metal Complexes of 1-Oxalylbis(4-phenylthiosemicarbazide). Bull. Soc. Chim. Fr, 127, 39-42 (1991).
- 16.El-Asmy A. A, Mabrouk H E, Al-Ansi T. Y, Amin R. R, El-Shahat M. F, Binuclear Complexes of Some Transition Metal Ions with 1,1',3,3'-Propanetetracarbohydrazide. Synth. React. Inorg. Met.-Org. Chem., 23(10), 1709-1726 (1993).
- Amin R. R, Coordination Compounds of Quadridentate Thiosemicarbazone: Their Preparation, Characterization and Structural Investigation, Asian J. Chem., 12(2), 349-354 (2000).
- 18. Macias B, Villa V. M, Gallego R. R, Tran. Met. Chem., 20, 347 (1995).
- 19. Sanyal G. S, Nath P. K. and Ganguly R, J Indian Chem Soc., 79, 54 (2002).
- 20. Thaker, B.T., Patel, A., Thaker, P., J. Indian Chem., A 35, 483-488 (1996).
- Deepak Shukla, Lokesh Kumar Gupta, Sulekh Chandra. Spectrochimica Acta, Part A 71, 746–750 (2008).
- 22.B. N. Figgis, Introduction to Ligand Field Theory, Wiley, New York, (1978).
- 23.S. Chandra, K. Gupta, Trans. Met. Chem., 27, 196 (2002).
- 24.S. Chandra, K. Gupta, S. Sharma, Synth. React. Inorg. Met.-Org. Chem., 31, 1205 (2001).
- 25.Krishna C. H, Mahapatra C. M. and Dush K. C, J. Inorg. Nucl. Chem., 39 1253 (1977).
- 26.N RAMAN, S RAVICHANDRAN And C. THANGARAJA, J. Chem. Sci., Vol. 116, No. 4, July, Pp. 215–219 (2004).

#### SYNTHESIS, CHARACTERIZATION AND THERMAL STUDIES ... 125

- 27.A. A. Razik, A. K. A. Hadi, Trans. Met. Chem., 19, 84 (1994).
- 28.F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry. The Elements of First Transition Series A, Wiley-Interscience Publication, New York, 1988.
- 29. Dubey S. N. and Kaushik B, Indian J. Chem., 24A, 950 (1985).
- 30.Liver A. B. P. Inorganic Electronic Spectroscopy, Elsevier Amsterdam, 4<sup>th</sup>, Ed., 1984.
- 31.Lotf A. Saghatforoush, Ali Aminkhani, Sohrab Ershad, Ghasem Karimnezhad, Shahriar Ghammamy and Roya Kabiri, Molecules, 13, 804-811 (2008).
- 32.Majumder A, Rosair G. M, Mallick A, Chattopadhyay N, Mitra S, Synthesis, structures and fluorescence of nickel, zinc and cadmium complexes with the N, N,O-tridentate Schiff base N-2- pyridylmethylidene-2-hydroxy-phenyl-amine Polyhedro -n, 25, 1753-1762 (2006).
- 33. Chohan Z. H. and Parvez H. H. Synth. React. Inorg. Met.-Org. Chem., 23, 1061 (1993).
- 34. Sekerci M, and Tas E. Heteroatom Chem., 11, 254 (2000).
- 35. S. Goel, O. P. Pandey and S. K. Sengupta, Thermochim. Acta, 133, 359-364 (1988).
- 36.P. B. Maravalli and T. R Goudar, Thermochim Acta, 325, 35-41 (1999).
- 37.A. W. Coats and J. P. Redfern, Nature, 20, 68 (1964).
- 38.H. H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963).
- 39.S. Glasston, Text Book of Physical Chemistry, 2<sup>nd</sup> ed., Macmillan, Indian, 1103 (1974).
- 40.R. K. Agrawal, S. C. Rastogi, Thermochim. Acta, 63, 363 (1983).
- 41.V. V. Savant, P. Ramamurthy, C. C. Patel, J. Less Common Metals, 22, 479 (1970).
- 42.A. K. Srivastava, S. Sharma, R. K. Agrawal, Inorg. Chim. Acta, 61, 235 (1982).
- 43.K. Arora, Asian J. Chem., 7, 508 (1995).
- 44.N. S. Bhave, V. S. Iyer, J. Therm. Anal., 32, 1369 (1987).
- 45.N. Calu, L. Odochian, G. L. Brinzan, N. Bilba, J. Therm. Anal., 30, 547 (1985).
- 46.H. S. Bhojya Naik, Siddaramaiah, P. G. Ramappa, Thermochim. Acta, 2998 (1996