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Abstract: 

In the paper, transient s t a b w  analysis of an N-machine power system is carried 
out using the decomposition-aggregation via vector Lyapunov fimction method. It is 
considered in the anatysis, transfer conductances, non-uniform mechanical damping, 
and generators flux decay effect. Each of the system generators 1s represented by a 
more sophisticated model, that is, the one-axis model in which the generator internal 
voltage component Elq is assumed to be changed with time. Note that, using the sta- 
bility direct methods the voltage Elq is usually assumed, for simplicity, constant. The 
I I I & ~ & c ~  model of the whole system is derived and is decomposed into [(N-1) 1 
3 ] eleventh-order interconnected subsystems, each of them includes tbree machines in 
addition to the reference machine. The system aggregation is carried out using a const- 
ructed vector Lyapunov fimction whose elements are scalar Lygunov functions, each 
in the form of" quadratic form + sum of thc integrals of six noniincar fimctions". It is 
obtained a square aggregation matriv of the order [(N-1) 131, and s t a b i i  of this mat- 
rix implies asymptotic stabiity of the system equilibrium. 

In a numerical example, the developed stabihty approach is used to cany out 
transient stability studies of a 10-machine,ll-bus power system The stablhty compu- 
tations are canied out assuming occurrence of a 3 - phase short circuit fault near a 
bus, and also for connection of a pulsating load to one of the system buses. In addition 
it is assumed two composite faults defined as, disconnection of two tie-lines (due to 
false openRion of circuit breakers near fault location), or addition of a pulsating load, 
just after clearing a 3-phase short circuit fault (the faulted line is switched off) at two 
different locations. It is found that the developed stability approach is suitable and can 
be easily used for practical, and on-line stability studies of large- scale power systems 
(number of machincs may be more than 10) 

The numerical integration methods used for power systeni stability analysis, alt- 
hough vety effective in handling different models, are vety expensive in terms of com- 
putation requirement For fbis reason the research for a direct method has continued 
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The scalar Lyspunov function method appeared one of the most powcrfi4 methods 
for stability studies of power systems [I]. However, this method did not seem suitable, 
owing to the continuous increase in size and complexity of power systems, and in part- 
icular when the problem of the stability domain estimate of the system is attacked [2]. 
-4ttempts to overcome the drawbacks of the scalar Lyapunov approach have led to the 
decomposition-eggregation via vector Lyapunov function method The expected adva- 
ntages of the decomposition-aggegation method are, however, manifold [3] . On the 
one hand, the Lyapunov function of a disconnected ( free ) low-order subsystem can 
handle more sophisticated generator and transmission models. Further, an analytic ex- 
pression of transient stability index may be derived, which can be a good basis for 
f i e r  investigations such as sensitivity analysis. 

In thc last two dccades, the decomposition-aggregation method has been used 
for stability analysis of large-scale power systems 14-13]. It is to be noted that. the 
power system stability analysis was canied out inthe papers [4-121 considering the 
generator classical model (the internal voltage E' is a s sbed  constant). However, this 
is  equivalent to neglecting the effect of generators flux decays. 

In the papers[l4-171. the transient stability analysis of mnltirnachine power systems 
was canied out considering the flux decay effect. However. the authors introduced 
different forms for the used scalar Lyapunov functions,which were constn~cted under 
the assumption that transfer conductawes Gj . KC all ne#@ble. 
In the work (131, each generator was reps&enied by the two-mis model gld 

transfer conductances were considered. 'The system decompositionwas canied out 
using the "two- machine" decomposition. The develo-ped approach was applied to a 
3-machine, 4-bus power system 

Now. in the present paper an N-machine power system is considered. and the flux 
decay effect is talien into consideration ( the generator voltage component is ass- 
umed to be changed with time). The system loads are represented by constant m~p- 
edances to ground, and then the system network is simplified by eliminating all the 
nodes. except generators internal nodes. The system mathematical model (non-unif- 
o m  mechanical damping case is assumed and the transfer conductances are included) 
is obtained, and is decomposed so that each free subsystem contains six ( the largest 
number) nonlinearities. FlnaUy, asymptotic stability of the system equili'briuin is imp- 
lied by stability of an obtained (square ) aggregation matrix of thc ordcr [(N - 1) ! 3 ]. 

Consider an N-machine power system (the generator stator resistances are nee- 
lected) with mechanical damping. Representing each maddne by the one-axis model 
[IS], in which the voltage component Kq is assumed to be changed with the time, the 
absolute motion of the i-th machine is described by the foUowingequations ( ~ c c  

Notation) 
2 .  

M ,  F ; + D ,  i i , = ~ , , , - Y + ,  
. I ~ ' ~ ~ , E *  4 1 = E ~ ~ - E ' ~ ~  4 ( Y ~ , - X ' ~ ,  ) I d ,  (1) 

where. M , and P,, , are assumed constant. and P e l  is @ven in the form. 

II is to he noted that, the voltage Efdi , is equal to its prc-Wmsient value E' . since 
the effect ofthe autoniatic voltape reflator (AVR) has been neglected in thc paper. 



Under the assumption XI,, = X' , . f generators with rulitl cylindrical rotors m consi- ' 
dercd) we ~et[18]. 

Now, selecting the Nth machine as a comparison machine, and introd~~cing the 
following (3N-1) state variables 

0 f i = 6 ~  - 6Ofi , i  t N - 
Oi = Si E Qi = E' . .-. E ....... 

lil ;i' 
i =1,2 N (4) 

the overall system motion is governed by the state eqnntions, 

E~~ =-Ti E F i + Y  c N . .  Y i j [E dj f ' i j  ( o i j ) - e  ,jgij (u i j )+EQj  
1" 

sin(eij  - ?jij)] j=1,2 ........... N ( 5 )  
where 

f . . ( D . . )  = cos (u i j  + ? j o i j - ~ i j ) - C o s ( 6 0 i j -  O i j )  
" '1 'I 

0 0 

g . . ( o . .  ) =  sin ( ~ . . + 6 . . - @ . . ) -  sin(& } '1 11 'I 11 '1 '1 ' I  (6) 
3. Poww svstcm dccomoosition 

The considered N-machine system is decomposed, in the paper, as follows: 
1- All the system loads are represented by constant impedances to ground ( those 

impedances are obtained &om the pre-Wansient conditions in thc svsteml. 
2- Eliminating the systcm nodcs, exccpt the generators internal nodes, it is 

obt&ed the system Nth-order reduced admittance 6 Y. 
3- Referring to the obtained Y-matrix, the system is decomposed into [ (N -1) ! 3 ] 

interconnected subsystems, each consisting of four machines one of them is the com- 
parison machine [ll] . 

Now. deffning tfie state vector X 1 in the form 

I = i1,N ) iI+l M * (r ilt2,N I Wil ) iI+l + iH2 ' N ' E9i ' E Q i ~ t I  ., t T 
EFiltz . EQ,] = [ X ,, . X ,, . X ,, ,. .............. .., X~~~ 1 (7) 

we can decompose the mathematical model of the whole system (eqn. 5) into S =[( N 
-1)/3], elevcrrth-order interconnected subsystems, each can be writtcn in the general 
form 

T 
X ~ = P , X , + B , F , ( ~ ~ ) + ~ , ( X )  , o I = C  , X ,  .I=l,Z. .... S (8) 



where P, . B, and C, are constant matrices with appropriate dimensions, and FI ( a I ) 
is a no&e& vector function, whose elements are u r b i i  chosen. It is to be noted 
that each subsystem of JIq. (8) , can be decomposed - into the free subsystem 

and the mtcrconnectons h l (X) . 
Refening to Eqs. 5 and 7, the maOix P is derived in the form 

- p  13 (10) 

where, 0 and I are zero and identity (square) matrices, respectively, of the indicated 
dimensions, and where 

T 
b = [ 1.0 , 1.0 , 1.0 I ; P  ,, = diag [AiI . h a+l  , h il+z . A I 
'12 = di%[pil p i l + l  . p i H 2  . P N ]  

P I, = dia~ ri, , riI+! . riIt2 . rN I (11) 

Now, after expanding the free subsystem twenty-four fnnctions, it is found that 
there are at most six nonlinearities which satisfy the L i e ' s  sector condition, and these 
bctions nre given as, 

Note carefUay that the six kctions given by Eq.(12) . satisfy the following conditions 
2 

ffi(0)=O ; O l e f i  f , (Cf f i )5e ,Cf i  ,k=1,2  ,....., 6 (13) 

on bounded intexvals, where the positive constants Ck may be determined as 

<&= I d & ~ ( c ~ k ) / ~ c .  I cfi=o k = 1 , 2  ,...., 6 (14) 

Now, assuming the six nonlinear h c t i o n s  of Eq.(l2) to be the elements of FI 
we define the following matrices, 

T 
F I ( a  1 )  = VIl(Ofl ) .f12 W12 ...-.-.... .fra (Of6) I (1 5 )  



where, 0 and 0' are zero matrices ofthe indicated dimer~sims and the follo, 
wing constants are defined, 

d , = ( ~ , ~  B~~ - A k N ~ k N ) / ~ N  , k s J 1  

d k j  = ( A k j B k j + i k j  G k j ) i ~ ,  , k t j  ; k c J 1  . j c J , ,  

q .  ~k = K . ( E ~ ~ B ~ , - E ~ ~ G ~ ~ )  J , k ? ~ j  . k , j ~ J [ ~ ,  
Using Eqs. (10,15 -17), the fkee subsystem of eqn. 9 is completely defined. 

Now, the interconnection (vector ) matrix h I( X ) is obtained in the form 

h , ( x ) =  [ ~ . O . O . ~ ~ ~ ( X ) . ~ ~ ~ ( X )  .................... h l l l ( ~ ) ~ T  (18) 
where. 



Notc that is givm a s x  N - and the following constants are dchcd 
J @  Jl 

As the first step, we accept for each free subsystem of eqn.9 a Lyapunov limction 
in lhe form [4-7,9 -13 1, 

ul 
yIm I f , ( ( r l a ) d a ,  ,1=1.2, ...., s (22) 

0 

whcrc HI is an ckvcnth-ordcr symmetric positivc dcfinitc matrix, Yh arc arbitrary 
positivc numbcrs , and the nonlincar functions fi, arc givcn by Eq. (12) . 
Following thc aggregation procedure in [19], it is constructed an aggrcgationmatrix, A 

=[ Ct ,, 1, the elements (red numbers) of this matrix obey the inequality 



whm $ ( X I  ), is the total t h e  derivative of thc function V  I ( X I ), along thc 
motion of the ith interconnected subsystem of cqn. 8 . It is to be noted that V,, can be 
written as 

T 
v , ( x l )  = v , ( X I ) f  + [@V, ( X I ) ]  h l ( X )  (24) 

where VI (X ,) is the totat h e  derivative of the function VI, along the motion of the 
ith B.ee subsystem. 

41 Stabilitv &&on 

According to t h e o m  1 of Ref. 19, stability of the aggregation matrix, A=(a ik], 
or equivaledy, if it is satisfied the Hick's conditions 

a .................. 
.................. 

(-1 f . ' 0 
akl ak 2 , . . . . . . .  k=1,2 ,...., S (25) 

implies asymptotic stability of the system e q u d h m  . 
4.2 Anarfipation ma~ix 

As a first s t q ,  the two t m n s  in the ri@-hand side of Eq. (24) are computed, 
then a number of majorizations are introduced and used to majorizc thc left-hand si& 

of eqn. 24. Fiudy, elements of the (squnre) aggregation matrix , A = [CX IK] , of order 
[(N-1) / 3 ] are obtained and de£ined as .' "I . K = I  

O1 IK 

Z Z ~ ( ~ ~ ;  z I )  , K * I  K , I = 1 3 .  .... S = N - 1  (26) 
* 

where is thc minimal (positive) cigmvalue of thc 14th-order symmetric matrix R I 

whosc elements arc given by eqn. (A-I), and I and 2 , are &fined by cqn. (A-2). 

5. Numerical e x w e  
The developed approach is use4 m this example, to cany out transient stability 

studies of the 10-machine, 11-bus system shown in Fig. 1. The @re-hlmsient) steady 
statc values of thc systcm angk 6 and voltages Eq, and Elfd arc computcd and 
given m Table I .  

Table L Post-fault equilibrium state results. 

0 

fdi 

1.05484 
1.15335 
1.13668 
1.06710 
1.07920 





Now. to dctcrminc an asymptotic stability domain estimate for the considered sys- 
tem, the stability computations arc canicd out as foUows : 

1- The reactance Xd of each generator is insetted, and the system loads are rtpi- 

esented by equivalent shunt admittances. Then the system nodes, except thc generat- 
ors internal nodes, are elhninatcd, and fin& thc reduced 10th-order (symmetric) ad- 
matance matrix Y ,is obtained and its elements ere given in Table IL 

Table II. Reduced admittance matrix for post-fault system. 

Arguments (deg.) Moduli @u) 

-83.151 L a  034177 029362 ODaxa O.ooce9 OlXB3 OXmU 0.OOQZD 0 h  OM@ 

o m  0 . m  o . 0 0 ~ ~  0 . m  o.mi8 o.mi8 0.00016 o m  
0 . m  om acmaa a m 0  0.00017 a m  o m  

92% 94% 97s -8120 024747 0 . W  0.KNV 0.W17 OO(XIU 0.49316 
msssau 9m m s  o m  o m  o m  o r n o  o rnuam 
9lS3 93.m %22 9277 9l8l -8l.7311M.2X) OLXE9 O m 0  OlXN4aslz;16 
941s 9.a m.73 95.4 5t5gl 9~41 -7om I om 01m o . l m  o m  
92.93 9382 9414 W56 9857 WR R71 a 
Pi78 %I0 9766 %.as 9593 w.8 9275 93xl 

2- Selecting machinc 10 as the reference machine, the system is decomposed, rcf- 
ming to the system reduced matrix Y, into three " four-machine " intcrconnccted 
subsystems. 

3- For the obtained three subsystems the following parameters ere selected: 
h i=4 .0  , ~ ' ~ ~ , = 4 . 0  , i = . 2 , 3  ,....., 9 ;  h =9.5 , ~ ' ~ ~ ~ , , = 3 . 6  
k k k k k k .lo1 

h - = h  = h  -h - 
2 3 

25 36 44- 55- h 66=1.0 , k=1,2.3 ; h ,= h ,=8.0 , h ,=7.2 
1 1 I I 

h ,,=h ,,=h lo,lo= 570, h 50.0, ell = 0.76 , el2=0.78, EI3=0.80 
2 2 2 2 

h ,,=h ,,=h 10,10=310 . h =50.0; EZ1 = 0.56, %, =0.63, %,=0.62 
3 3 3  3 

hs8=hg,=h 10,10=540 , h  11,11=46.0; &31= 0.59. 632=0.57,&33=0.55 

Using expression (26). we compute the matrix 

-1.497506 0.489385 0.274502 
A = 0.531260 - 0.790397 i 0.307347 

0.544197 0.4966n - 0.675222 

ility of thc systcm cpuih'brium. 

1 
which is a stable matrix (ii satisfies conditions (25)) . This implies the asymptotic stab- 

4- It is detumiued (see 1191, ad Appendix of IlOD h e  system asymptotic stnbili- 
ty domain cstimatc El given as, 



El = { X: [3.60 v1 (xi) + 1.25 v2 ( T )  + V, (x,)] < 17.83375 ) (27) 
where, V1 , V2 and V3 are the free subsystem Lyapunov limctions, given by eqn22. 

Now, using the developed approach, the system transient stab*ty studies are 
canied out assuming the following four stabihty cases: 

i. A sudden connection of a load of the pbwer (0.7 + j0.3) per unit to bus 9,.this 
load is removed &r a certain time intcival This case may simulitc addition of a ( 
pdsatinting) load comprising large motors of a r o h g  mill. Applying ,the dcycloped 
approach the longest timc duration for thc considercd load is determined, dim$, to 
be 0.047 sec. Note that, using the standard step-by-step mcthod, this time is comput- 
ed to be 0.059 sec. 
Now, in order to rank the duration times for thG co~~sidered load, the stability comput- 
ations arc repeated assuming thc load to be connected bt either bus 7, or bus 8. It is 
found that, the load longest duration times arc 0.053 scc and 0.05O'sec for buses 7 
and 8. respectively. . . . I 

ii. A 3-phase short circuit fault (with successful reclosure) is assumed to occur near 
bus 8 ( at 1099 of the tine length) on the tie-line connecting buses 8 and 10 . Thc;fault 
is cleared by switching off the faulted line, using 3-cycle~'ci1cuit breakers. Now it is 
assumed that, just after clearing the fault, a pulsating load of the power (0.5 + j 0.2) 
per unit is connected to bus 8. Applymg the developed approach, it is found that Eq. 
(27). can be satisfied if the open line is reconnected and m the same time the 
connected load is removed within 0..106 sec from the fault instant (note that this time 
is equal to 0.124 sec, by using the step-by-step method) . 

iii. A 3-phase short cirnit fault ( with successful'~reclos&e is assumed to be 
occurred near bus 4. at 10 %length of the tie-line bctwccn buses 4 and 10. Opening 
two 5-cycle circuit breakers, located at both ends of the faultcd~linc clears the fault. At 
the same fault clearing instant it is assumed that, due to; falsc operation of the circuit 
breakers located near the fault location, the two tie-lines'connecting bus 4 to buses 5 
and 6 are switched off. J.t is f o p &  using the developed approach, that the three lines 
can still open (Eq.27 is satisfied) ,until clapsing the lime Of.O.560 see from the fault 
instant. However, using the step-by-step method;it is foundthat the critical timc for 

, . 
reclosing the open three lines is equal' to 0.726. 

iv. It is required, in this m e ,  to determine directly the critical ihne'foy clearing a 3- 
phase short circuit fault near bus 7, at 0.05% length of the-tie-line between buses 7 
and 11. Now. as a first step for the stabdily computation the Newton-Rgphson 
mcthod is used to determine the system post-fault ( the fault is cleared) equilibrium 
state. Then, for the system un&r fault clearing condition. thc 1041 order reduced 
admittance matrix is computed. Fmally, it @determined for the system a new 
asymptotic stability domain estimate, which is w e n  as, 

E - , = { x : ( ~ . s o v ~ ( x ~ ) +  ~ ~ ( 2 2 )  +V3 @3))< 13.4230) 
. ... 

(28) 

Using Eq.(28), it is found that the criti&l k e  for clearing the considered fault is equal 
to 0.032 scc. It is to be noted that, usmg thc step-by-step method, the uitical timc cq- 
uals 0.042 see . 

Figs.2-5, show variations of the subsystem states, and referring to these figures it 
is clear that the system wiU regain its prefadt ( steady-state) condition for each of the : 
four assumed s t a b i i  cases. Note that in Fis.2-5: the time is computed just after the 
subsystem states enter the considered stability domain estimate. 

~. 



, dea. 



6. Canddons 
A new Lyapunov stability approach is developed, m the paper, and is used to ca- 

nv out transient s t a b w  studies of a 10-machine, ll-bus Dower system. It is drawn 
& following salient c o ~ o n s :  

1- The dcvclopcd approach is suitable for application to real power systcms. Notc 
that, m thc approach non-uniform mechaaical damping case is assumed, and generat- 
ors h x  decay effect is considered. 

2 - Order of the obtained aggregation mattix is equal to ( N-1) / 3, where N is nu- 
mber of system machmes. Hence, the mabix order is independent upon number of sy- 
stem buses. However, for real power systems value of N is more less than number of 
system buses, and hence it can be easily satisfy, for those systems, stability conditions 
(see Eq.25) of computed aggregation matrices. 

3 - In the dcvclopcd approach all  the system transfer conductances arc consider- 
cd, hcncc rcsistancc's of the tic-hcs can bc taken mto consideration. In addition, thc 
system network can be grcatly simplified by eliminating all system nodes, cxccpt gcnc- 
rators internal nodes. 

4 - The approach developed can be easily used to cany out transient s t a b i i  stu- 
dies of power systems. Note that, the approach is used to detennine the d e a l  time 
for demhg a 3-phase short circuit fault, the longest duration time for an added pulsat- 
mg load, the critical time for rectosing time open tie-hes, and the critical time for re- 
moving a connected load wih reclosmg an open tie-he. 

5 - The dcvelopcd approach can be uscd for ranking contingcncics according to 
thcir severity. Notc that, the approach is uscd to find, directiy, which onc of k c  co- 
nsidered buscs of the system is more suitable for connection of a given pulsating load. 

6 - The dcvclopcd approach can provide satisfacto~~ practical results. Notc that. 
values of the times obtained m the numerical example arc about 76 % - 86 % of thc 
cxact time valucs computcd by using the standard step-by-step method. 
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List of vmbds 
P, = mechanical power delivered to ith machine .- 
Pd = electrical power delivered by ith machine 

6 1 . =rotor angle, or position of the rotor q-axis from the reference 
X di , X qi = direct-axis. quadrature-axis synchronous reactances 

I('&, X'+ = d-axis, q-axis transient reactances 
E fd =exciter voltage referred to the armature circuit 

E: =voltage behind d-axis transient reactance 
Eldi, E ' ~ ~  = d-axis, q-axis components of the voltage Eli 
Eq = armature emf cotresponding to the field current 

0 0 

6 i , E fdi , k + , k &= steady state values of the angle si . and the voltages E 
,El, and E ' ~ ~ ,  respectively 



w , - rotor speed with respect to the synchronous speed 
Yil= Y ,=modulus of transfer admittance between internal nodes of ith and jth gc- 

neretors 
8 = 0 i=  phase angle of transfer admittance Y , 
Oi , = Yi , cos ei ,= transfer conductance 

Bi = Yi sin ei = transfer susceptance 
TIdoi= direct-axis transient open-circuit time constant of ith generator 
D = mechanical dampiig 

hi = (Di 1 M M mechanical damping coefficient 

J,, = {iI , iI+1, iI+2 , N ) = set introduced to denote the Ith subsystem four 
machines 

. , 

JI c JIN = { iI , iI+l, iI+2 } . . 
T 112 IIxlII = (X I  X I )  

6 . . = 6 . - 6 . = 6  - 6  ar JN o , . = 6 . . - 6 ° , . = a  11 1 l o  i j  IJ i j  it4 - " j ~  

G ~ N = Z ~ N - ~  k~ . k & J I  
A , . = + . =  g q .  g + 8 d i  g d j  11 1 1 q, " ,. - A 

A ..=- A . .= E . E 
11 j 1  9 1  d j - ' d i E q j  . i*j.i,jsJIN 

K.=(XdXd.-Xdj)/T'doj J J Tj = [l.O - (Xd - Xd ) Bj , I/ TIdoj 

p.=2,8 1 91 . G . . / M ,  11 . j & J I N  
22.23 = hvo functions, &!bed as follows: 

~ 2 c a , 9 ) = m i n { d 2 m = ( l a l , l $ I )  ; f l a l + l $ I ) }  
~ 3 ( a , $ , y ) = e {  2 m 4 l a I , I  $ 1 . 1  yI);(ld+ I$l+lrI ; z 2 [ z 2 ( a  

$ 1 ,  y l ; ~ 2 [ ~ 2 ( 9 > " I ~ a I  ; ~ 2 [ ~ 2 ( ~ , a ) > $ l }  





! 
3 -  ;I .-s t' y i a  ti ' rj  11, id 

L ... .. 
<,g :: . ;I . N y 11tl. N . - .  a.i4 g y i ; + z * ~  

I 
r 7 , 1 1 = - ~ 8 N [ d N + ~ i I + ~ ~ i l + l +  i , l + i + C ~ ' i l . j l  

2 L 1 / - fq  + E l  - G , F I P i l , i , + l j  
I 2 2 

' a , l o = . . y .  . 1- t q  + E 1 - c, .c 1 pi1,i.,+; 1) 11, ll+L .\ 
2 t - '!. 3.11 =-.y. ~ - " ~ c ~ + c ~ - - c ~ c ~ ~ ~  c u - . 

11, N V I d. 11+1 
I I - 2 

ra ,13=-c l f i  iI,il+i , I C  ; + c l  - c ~ c  1 ~ ~ ~ + ~ , i l + ~ j  
i -. L 2 I - >. 
!J,I1=-?-i1tl, )i 4 ic '"N -' 1 'N p i l + l , ? i j  . r ~ , { ? = - c [ u j [ + { , i l  

I - I I 
9 - 1 4  = - F l u  iici,i1+2 r ,o,llrn-Yi1+2, N J- i E  I t ~ t , .  .; 1 CN P~I+:, N 

I - I - 1 
1 

r 10,13=-2 u il+2,il r 10,14 =-^c 1 u d+2,ii+l . . r 1 2 , 1 2 = 2 a i S i l , i ~ + l  '2 il.il+i 
I I -. 

1 7 .  
I?,,? =' il,il+? 3 1 , 1 1 2  14,14 =:*%I il+I,iI+? ' 5 i l t l , i l+2 (A-1) 

while the other elements of this matfix are zero. 








