REDUCTIONOF IRONIN INDUSTRIALWASTEWATER USINGFLOW-BY POROUS ELECTRODES

Rasha A. Hefny^{1*}; Omar E. Abdel-Salam²; Ali M. Basstawesy¹; Mohamed H. Mahmoud²

¹ chemical Engineering Department, Faculty of Engineering, Minia University, Egypt

² chemical Engineering Department, Faculty of Engineering, Cairo University, Egypt

*Contact author: rasha_hefny@yahoo.com

Abstract:

Many industries produce and discharge large quantities of dilute metal ion solutions from the acid treatment of alloys, electroplating rinses, and leaches and effluents from the manufacture of chemicals. This discharge is considered to be a serious environmental threat. Electrochemical treatment is used as a sustainable effective technology for removal of heavy metals. In this study, experiments were carried out using a bench-scale electrochemical cell incorporating flow-by porous graphite electrodes for deposition of iron. The effect of current density, feed flow rate, and initial iron concentration on removal efficiency and current efficiency were studied. Experimental results showed that the maximum removal efficiencies(99.7%) and (99.9%) were obtained at flow rate of 0.278 ml/s, for initial iron concentration of 100 ppm and 200 ppm respectively. For concentration of 50 ppm it was 99.48% at flow rate of 1.11 ml/s, current density of 0.98 mA/cm2 and pH of 4. and maximum current efficiencies were 53% at 100 ppm , 99.9% at 200 ppm ,at flow rate of 0.833 ml/s, and 38.05% at 50 ppm at flow rate of 1.11 ml/s all obtained at current density of 0.98 mA/cm². Solution pH in the range of 3 to 5 has a little effect on the deposition of iron.

Keywords: Iron removal, heavy metals, electrochemical cell, flow-by electrode, wastewater.

1. Introduction:

of One the most important environmental impacts is the presence of heavy metals in water resources. Increase and expansion of industrial activity has a great contribution in the significant rise of heavy metal pollution in water resources which threats life of living on beings[1].Heavy metals are not biodegradable and tend to accumulate in living organisms and many heavy metal ions are known to be toxic. So they should be removed from the wastewater to protect the people and the environment[2]. Many techniques have been used to remove heavy metal ions including chemical precipitation[3], ion-exchange[4], adsorption onto activated carbon[5, 6], membrane filtration including ultrafiltration[7]and osmosis[8], coagulation reverse and flocculation[9]electrochemical treatment technologies[2].

Electrochemical remediation is an economic and safe approach for long-term clean-upof metal bearing aqueous wastes because it provides a means of continuous, selective removal of metal contaminants, and offers end-of pipe processes for recovery of the metals.

The process runs at very high electrochemical efficiency and operates essentially under the same conditions for a wide variety of wastes. Operation at room temperature and atmospheric pressure

reduces the possibility of volatilization and discharge of unreacted waste[10].The removal of undesirable components from aqueous phases is based on the choice of the appropriate electrode material and potential, or by assisting membrane systems to drive the electrode processes selectively[11]. Electrochemical methods involve the plating-out of metal ions on a cathode surface and can recover it in the elemental state. Electrochemical treatment techniques of heavy metal wastewater are regarded as rapid and well-controlled that require fewer chemicals, provide good reduction yields and produce less sludge[2]. The established technologies are electrocoagulation(EC)[12],electro flotation (EF)[13]and electrode position[14].Iron ions solution were effectively in aqueous removed by electrode position on the carbon electrode.

There increasing in use of are electrochemical technologies because of using porous electrodes in the design of electrochemical reactors. Porous materials such as carbon and graphite felt have been used as electrodes in various electrolysis cells, because of their high specific surface area, high mass transfer rate and high In this study, experiments were carried out using a bench-scale electrochemical cell incorporating flow-by porous graphite electrodes for deposition of iron.

1. Materials and Experimental:

Ferrous sulphate hyptahydrate (FeSO₄.7H₂O), pure sodium chloride (NaCl),sulphuric acid with 99%purity and distilled water were used.

A schematic of the laboratory cell used for batch experiments is shown in Fig.1.It is consisted of two co-axial cylinders, one of Plexiglas material with internal diameter of 15 cm, and height of 18 cm fixed to end flanges made from PVC. The second was of stainless steel screen (mesh 5) with internal diameter of 10 cm that enclosed in a polyamide membrane and used as anode compartment. The cathode was contained in conductivity[15]. However, porous electrodes frequently operate with nonuniform reaction rates, resulting in lower extents of utilization of the bed[16].

Flow-by porous electrode works as flowthrough porous electrode but in case of flow-by the electric current flows perpendicular to that of the electrolyte and the system yieldsa greater return on investment, also offers the operational flexibility of variable flow rate and conversion[17].Electrochemical reactors incorporating flow-by porous electrodes can provide a powerful method in metal recycling. Where metal ions are reduced and deposited on the porous electrode (cathode)[18].

The current density and flow rate are the main parameters for the removal of metal ions from wastewater.

the annular space between the two cylinders. Graphite granules passing sieve no. 10 and retained on sieve no. 30 were used to fill cathode and anode compartments to a height of 13 cm. Three stainless steel rods (one of D =10 mm and two of D = 8 mm, L = 250mm) were used as current collectors. The feed entered through an opening at the bottom of the cell using a Kompact dosing pump to control the feed flow rate, while the outlet flow and the gas vents were located at the upper flange of the cell. The cell current was supplied by a laboratory DC power supply type BK PRECISION. VICIOR VC830L digital multi-metersused to measure the potential and current.pH was measured using pH meter, model OAKTON pH/°C and Iron concentration measured by using Spectrometer T80 UV/VIS.

Fig. 1 Schematic of experimental setup (1- anode current collector,2- cathode current collector, 3ammeter, 4- voltmeter, 5- D.C. power supply, 6- Plexiglas cylinder, 7- stainless steel cylinder, 8- graphite, 9- iron solution tank, 10- gas vents, 11- treated water tank, 12- dosing pump)

The investigated solutions of different iron concentrations were prepared by dissolving $FeSO_4.7H_2O$ into distilled water. Sulphuric acid was added to obtain the desired pH. Definite amounts of NaCl were added to improve the conductivity and ionic mobility through the electrolyte

3. Results and Discussion:

3.1 Effect of Feed Flow Rate on Removal Efficiency

Figure2 shows that for initial iron concentration of 50 ppm when flow rate increased the removal efficiency increased. However, for 100 and 200 ppm, the increase in flow rate from 0.278 to 0.556 ml/s was not significant as the increase in removal efficiency was very low, while increase in flow rate from 0.556 to 1.1 ml/s caused significantly decreases in removal maximum efficiency. The removal efficiencies were (99.48%).(99.7%) and (99.9%) for initial iron concentration of 50 ppm, 100 ppm and 200 ppm respectively. These values were obtained at minimum flow rate of 0.278ml/s for 100 and 200ppm,

and maximum flow rate of 1.11 ml/s for 50 ppm.

3.2 Effect of Feed Flow Rate on Removal Rate

Removal rate (R) is the rate of iron ion deposition on the surface of cathode

persecond, and it is calculated from the equation:

$$R = Q x (Ci - Co), in (gm-mol/sec)$$
(1)

where Q is the flow rate, Ci and Co are the iron concentration of influent and effluent respectively[15].Figure3 shows that the removal rate increased as the feed flow rate increased. This result explained by the fact that removal process is mass transfer controlled.

Fig.3 Effect of feed flow rate on removal rate at current density 0.98 mA/cm2 and pH 4

3.3Effect of Feed Flow Rate on Current Efficiency

From figure 4 it is clear that as the flow rate increased, the current efficiency increased. This is due to the fact that, at the same total charge consumed, the charge used in forming product will increase as the flow rate increases, and consequently the current efficiency will increase. The maximum current efficiencies were99.9% at 200 ppm, 53% at 100 ppm and. These values were obtained at flow rate of 0.833 ml/s and current density of 0.98 mA/cm².

Fig.4 Effect of flow rate on current efficiency at current density= 0.98mA/cm² and pH= 4

3.4 Effect of Initial Concentration on Removal Efficiency

As shown in figure 5an increase in initial concentration of iron from 50 to 100 ppm causes increase in the removal efficiency then as the initial concentration increases up to 300 ppm the removal efficiency decreases at all current densities. This may be due to the limited capacity of the electrode for iron removal; which is determined by the bed height and diameter.

Fig. 5 Effect of initial concentration on removal efficiency at flow rate 0.277 ml/s and pH 4

3.5 Effect of Initial Concentration on Removal Rate

The effect of the inlet concentration on the removal rate of iron at cell current density of 0.98 mA/cm2 is shown in Fig. 6. It is observed that the removal rate increases with increasing the initial concentration, as the removal rate process is mass-transfer controlled as mentioned before[19].

Fig. 6Effect of initial concentration on removal rate at flow rate 0.277 ml/s and pH 4

3.6 Effect of Applied Current Density on Removal Efficiency

As shown in Figure7for initial iron concentration of (100 and 200 ppm) ,and in figure 8 for 50 ppm, thein crease in current density above 0.98 mA/cm²wasineffective where the increase in removal efficiency was very low. The maximum efficiency was obtained at current density of 0.98mA/cm².

Fig. 8 Effect of current density on removal efficiency at flow rate 1.11 ml/s and pH 4

3.7 Effect of Applied Current Density on Current Efficiency

The deposition of iron on the cathode surface may be accompanied by a hydrogen evolution. The individual contribution of each reaction is given by its current efficiency and may be calculated by Faraday's law. The current efficiency was calculated from the following equation:

% Current efficiency = (I / I total) x 100 (2)

Where, I is the current equivalent to the deposition rate of iron and I total is the total cell current. I was calculated from following equation:

I = n. F. R. (Ci - Co) (3) Where I is the electric current, n is the number of electrons in the electrode reaction, F is Faraday's constant = 96500 coulombs/g equivalent,

R is the flow rate (mL/sec) and Ci, Co are influent and effluent concentration of iron in (gmol/mL)[15].

Figures9to 11 show that as applied current density increases the current efficiency decreases. This may be due to increase in hydrogen evolution on the surface of the cathode. Sarfarazi and Ghoroghchian, [1994], observed the same trend was for copper precipitation on flow-by porous electrode[15].At current density of 0.98 mA/cm² the current efficiency reached a maximum value of 99.9% for feed flow rate

of 0.833 mL/s and concentration of 200 mg/l and 38.05% for feed flow rate of 1.11 ml/s and concentration of 500 mg/l.

This can be explained by the fact that as the applied current density increased, iron ions are reduced so fast that they are limited on the surface of the cathode, then parallel reaction of the hydrogen gas formation increases and therefore, the cathodic current efficiency decreases[15].

3.8 Effect of pH on Removal Rate and Removal Efficiency

As illustrated in figures 12 to 14, the removal rate and removal efficiency of iron were not greatly affected by solution pH in the range of 3 to 5.

Fig.9Effect of current density on current efficiency at flow rate 0.278 ml/s and pH 4

Fig. 11 Effect of current density on current efficiency at initial concentration50 mg/l and pH 4

Fig. 12Effect of pH on removal rate at initial concentration100 mg/l and flow rate 0.278 ml/s

Fig. 13Effect of pH on removal efficiency at initial concentration200 mg/l and flow rate 0.278 ml/s

4. Conclusions

In this study experimental results showed that The maximum removal efficiency of 99.7% and 99.96% were obtained at feed flow rate of 0.278 ml/s. current density of 0.98 mA/cm² and pH 4, for iron initial concentrations of 100 and 200ppm, respectively. Foriron initial concentrations of 50 ppm it was 99.48% at feed flow rate of 1.11 ml/s, current density of 0.98 mA/cm² and pH 4.

For 100 and 200 ppm iron initial concentration, increase in feed flow rate

caused significantly decreases in removal efficiency but for 50 ppm, it caused increases in removal efficiency. However, increase in current density above0.98 mA/cm²was ineffective as increase in efficiency is very low .Removal efficiency was not greatly affected by solution pH in the range of 3 to 5.

Also increases in feed flow rate improved the current efficiency while increases of current density resulted in significant decrease in the current efficiency. The maximum current efficiencies were53% at 100 ppm ,99.9% at 200 ppm ,at flow rate of 0.833 ml/s, and 38.05% at 50 ppm at flow rate of 1.11 ml/s all obtained at current density of 0.98 mA/cm².

From these results it could be concluded that electrochemical cell incorporating flow-by porous graphite electrodes is an effective method for the treatment of wastewater containing iron.

References

- 1. SALEHZADEH, J., Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum. Leonardo Journal of Sciences(23): p. 97-104, 2013.
- Fu, F. and Q. Wang, *Removal of heavy* metal ions from wastewaters: a review. Journal of environmental management 92(3): p. 407-418, 2011.
- Ku, Y. and I.-L. Jung, Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research 35(1): p. 135-142, 2001.
- 4. Kang, S.-Y., et al., *Competitive* adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere **56**(2): p. 141-147, 2004.
- Jusoh, A., L.S. Shiung, and M. Noor, A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination 206(1-3): p. 9-16, 2007.

6. Kang, K.C., et al., Sorption of Cu2+ and Cd2+ onto acid-and base-pretreated

granular activated carbon and activated carbon fiber samples. Journal of Industrial and Engineering Chemistry **14**(1): p. 131-135, 2008.

- 7. Landaburu-Aguirre, J., et al., *The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments.* Desalination **240**(1-3): p. 262-269, 2009.
- Mohsen-Nia, M., P. Montazeri, and H. Modarress, *Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes.* Desalination 217(1-3): p. 276-281, 2007.
- El Samrani, A., B. Lartiges, and F. Villiéras, Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization. Water research 42(4-5): p. 951-960, 2008.
- 10. Mahmoud, M.H., et al., *Removal of urea from industrial wastewater using electrochemical decomposition.* Journal of Life Science **10**(3), 2013.
- Mohan, N., N. Balasubramanian, and C.A. Basha, *Electrochemical oxidation of textile wastewater and its reuse*. Journal of hazardous materials**147**(1-2): p. 644-651, 2007.
- 12. Chen, G., *Electrochemical technologies in wastewater treatment.* Separation

and purification Technology**38**(1): p. 11-41,2004.

- 13. Belkacem, M., M. Khodir, and S. Abdelkrim, *Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique.* Desalination**228**(1-3): p. 245-254,2008.
- Issabayeva, G., M.K. Aroua, and N.M. Sulaiman, *Electrodeposition of copper* and lead on palm shell activated carbon in a flow-through electrolytic cell. Desalination **194**(1-3): p. 192-201,2006.
- Abdel-Salam, O.E., et al., Removal of Lead from Industrial Wastewater Using Flow-by-Porous Electrode. Portugaliae Electrochimica Acta 32(1): p. 65-75, 2014.
- Saleh, M.M., On the effectiveness factor of flow-through porous electrodes. The Journal of Physical Chemistry B 108(35): p. 13419-13426, 2004.
- 17. Joseph, B. and S. Authur, Water and Waste Control for the Plating Shop. Gradner Publication 1994.
- 18. Daewon P, D.C., Jeh BJ. , Water Research **35**: p. 57, 2011.
- 19. Alkire, R. and P.K. Ng, Studies on Flow-By Porous Electrodes Having Perpendicular Directions of Current and Electrolyte Flow. Journal of the Electrochemical Society **124**(8): p. 1220-1227, 1977.

اختزال الحديد من مياه الصرف الصناعي باستخدام الاقطاب المسامية

رشا أحمد حفني¹، عمر الفاروق عبد السلام²، علي محمد بسطويسي¹، محمد حنفي محمود² ¹ كلية الهندسة – قسم الهندسة الكيميائية – جامعة المنيا ² كلية الهندسة - قسم الهندسة الكيميائية – جامعة القاهرة

الملخص باللغة العربية

تقوم العديد من الصناعات بإنتاج وتصريف كميات كبيرة من محاليل أيونات المعادن المخففة مثل عملية المعالجة الحمضية للسبائك ، وشطف الطلاء الكهربائي ، والنفايات السائلة الناتجة عن تصنيع المواد الكيميائية، والتي تعتبر بمثابة تهديدا خطيرا للبيئة. تستخدم المعالجة الكهروكيميائية كتكنولوجيا فعالة ومستدامة لإزالة المعادن الثقيلة. في هذه الدراسة ، أجريت التجارب العملية باستخدام خلية كهروكيميائية كتكنولوجيا فعالة ومستدامة لإزالة المعادن الثقيلة. في هذه الدراسة ، أجريت التجارب العملية باستخدام خلية كهروكيميائية تشتمل علي أقطاب مسامية من الجرافيت لترسيب الحديد عليها. وفيها تمت دراسة تأثيركثافة التيار ،معدل تدفق محلول تغذية الخلية وكذلك تركيز الحديد الأولي على كل من كفاءة الإزالة وكفاءة التيار. وقد أظهرت النتائج أن أقصى كفاءة إزالة (79.9%) و (99.9%) تم الحصول عليها بمعدل تدفق يبلغ 20.0 مل / ثانية ، لتركيز أطهرت النتائج أن أقصى كفاءة إزالة (79.9%) و (99.9%) تم الحصول عليها بمعدل تدفق يبلغ 10.0 مل / ثانية ، لتركيز الحديد الأولي على كل من كفاءة الإزالة وكفاءة التيار . وقد الحديد الأولي البالغ 100 جزء في المليون و 200 جزء في المليون على الترتيب. بالنسبة لتركيز 50 جزء في المليون كان أطهرت النتائج أن أقصى كفاءة إزالة (99.7%) و (99.9%) تم الحصول عليها بمعدل تدفق يبلغ 20.0 مل / ثانية ، لتركيز الحديد الأولي البالغ 100 جزء في المليون و 200 جزء في المليون على الترتيب . بالنسبة لتركيز 50 جزء في المليون كان 10.48% بمعدل تدفق 11.1 مل / ثانية ، وكثافة تيار 200 جزء في المليون على الترتيب . وأس هيدروجيني 4 ، وكانت كفاءة التيار القصوى 25% عند 200 جزء في المليون ، 9.99% عند 200 جزء في المليون ، معدل تدفق 33.0 مل / ثانية ، و 38.0 ملليون ، معدل تدفق 33.0 مل / ثانية ، وكثامة تيار 38.0 ملى أمبير / سم 2 وأس هيدروجيني 4 ، وكانت كناءة التيار مليون مل مليون على منيون م مايون كان 38.0 مل م ثانية ، و 38.0 مل / ثانية ، و 38.0 مليون ، معدل تدفق 33.0 مل / ثانية ، و 38.0 مليون ، معدل تدفق 33.0 مل / ثانية ، و 38.0 مل / ثانية ، م محطول عليها جميعا عندكثافة تيار 39.0 مليون ما معاليون ، معدل تدفق 33.0 مل / ثانية ، م 38.0 مليون ، معدل تدفق 33.0 مل / ثانية ، م 38.0 مليون ، معدل قدق 31.0 مل / ثانية، تم الحصول عليها جميعا عندكثافة تيار 30.0 مليول أمريو ما معايول 30.0