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1.Abstract 

 

           This research paper investigates an intelligent control technique stabilizing a real-time 

model ofthe two-wheel inverted pendulum. The TWIP model is a highly non-linear, open-loop, 

and unstable system which makes control a challenge. Initially,a state-feedback controller that 

uses the dynamical system states and control signals to construct the precise control decision is 

used to stabilize the system. Later, Supervised Feed-Forward Neural Networks (SFFNN) based 

on back propagation Levenberg-Marquardt optimization algorithm are trained by using real-time 

measurements of system states and motors control signals from state-feedback controller 

stabilization. SFFNN control the two-wheel inverted pendulum better than a state-feedback 

controller. 

Keywords—TWIP, State-feedback controller, Supervised Feed-forward neural network, 

Levenberg-Marquardt Optimization Algorithm 

 

2. Introduction 

 

             The research on inverted pendulum 

has acquired momentum over the last decade 

in a lot of global control laboratories [1-4]. 

The inverted pendulum is regarded as a 

famous and exclusive benchmark for many 

researchers in both fields of control and 

robotics [5, 6]. Researchers employ inverted 

pendulum for testing control theories and 

algorithms such as (PID controller, neural 

networks, fuzzy control, and genetic 

algorithms)[7]. As for TWIP, it is 

considered to be an under-actuated 

mechanical system that is open-loop 

unstable with highly nonlinear dynamics. 

This property is considered a challenging 

control problem that has made researchers 

interested in solving this problem over 

recent years [8, 9]. It has become essential to 

investigate the possibilities of implementing 

a control system to keep the system in 

equilibrium. The basics of the control 

system are the two-wheel inverted pendulum 

balancing at certain set point by applying a 

suitable control signal (PWM_L and 

PWM_R) to the model actuators (left and 

right dc motors). The TWIP mobile robot is 

an extremely nonlinear, open-loop and 

unstable system. This indicates that standard 

linear techniques are unable to model the 

nonlinear dynamics of the system. When the 

model is simulated it falls over quickly. The 

characteristics of the TWIP model make 

control more interesting and challenging. 

The TWIP model is also known as a self-

balancing mobile robot and this self-

balancing bot is a developed version of a 

self-balancing platform, which makes use of 

data from accelerometer and gyroscope. It 

includes the essential signal processing part 

which uses Kalman filter and compensatory 

filter for estimating the correct angle out of 

noise or disturbance (a sudden hit). The 

system model used in this study consists of 

two geared DC motors with encoders, data 

acquisition card (DAQ (Arduino UNO)), 

and balancing shield holds the inertia 

measurement unit (IMU) which contains 

system sensors (accelerometer and 

gyroscope). Additionally, this shield 

contains a motor driver (L298N) and two 

wheels. To build a self-balancing robot, it is 

necessary to get to the bottom of the 

inverted pendulum problem or get to the 

bottom of an inverted pendulum on a cart. 

When the robot begins to tilt in one 

direction, the wheels should go in the 
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inclined or tilt direction with a speed relative 

to angle and acceleration of tilt to correct the 

inclination angle. When the divergence from 

the equilibrium point is small, the move 

should be slow or gentle and vice versa. The 

two-wheel inverted pendulum derived from 

the inverted pendulum model is developed 

or designed as a platform to investigate a 

Kalman filter used for sensor fusion[10]. A 

real-world application based on inverted 

pendulum system is the Segway vehicle that 

is designed to carry a human. Recently the 

commercial Segway vehicle was used to 

transport a robonaut in some NASA 

projects. 

The purpose of this work is to investigate a 

neural network controller which determines 

and calculates the precise control action 

needed to stabilize the system and learn 

from experience how to regulate the wheels’ 

position so that the inclination angle remains 

stable within a predetermined value[11, 12]. 

Research on neural-network based control 

systems has had great attention over the past 

several years. This is simply because of the 

neural networks approximation’s ability for 

nonlinear function[13]. The artificial neural 

networks consist of several nonlinear 

elements and this gives them an advantage 

over linear techniques in modeling nonlinear 

systems. ANN is trained by adaptive 

learning, the network learns how to do tasks 

and perform functions for training purposes 

that are based on the data attached. The 

knowledge learned throughout the training 

process is stored in the synaptic weights. 

SFFNN is the used type of neural network in 

this study, used to stabilize the TWIP model. 

Training SFFNN requires an existing 

controller; training the neural network to 

emulate an existing controller requires a 

vector of inputs and outputs from the 

controller. The supervised control allows the 

neural network to be trained to imitate a 

robust controller like a state-feedback 

controller[14]. The robust controller 

operates perfectly if the process operates 

within a certain point or set point. The 

neuro-controller operates in a similar 

manner to the robust controller but can also 

adapt if any unexpected disturbance arises in 

the system. The developed neural networks 

are a two-layerFFNN with four neurons in 

input layer which are system states, variable 

number of nodes or neurons in the hidden 

layer and two neurons in the output layer 

which represent PWM_L and PWM_R of 

two geared DC motors. This is used to study 

the system and the back propagation based 

on Levenberg-Marquardt optimization 

algorithm is used to train and update the 

neural network weights. The hyperbolic 

tangent activation function was used in the 

hidden layer and in the output layer; it was 

the pure-line function. Figure (1) shows the 

over all TWIP system structure. 

A lot ofresearchers present the controlling 

two-wheel inverted pendulum using 

artificial neural network controller. J. S. 

Noh, G. H. Lee, and S. Jung for instance, 

presented a position control of mobile 

inverted pendulum system by utilizing the 

radial basis function (RBF) and successfully 

controlled the pendulum angle and 

postion[15].S. Jung and S. S. Kim 

introduced and implemented control 

experiment using neural network control of  

a wheel-driven mobile inverted pendulum 

based on encoders and a gyro sensor[13].As 

for C. Yang, Z. Li, R. Cui, and B. Xu they 

suggested studying the wheel inverted 

pendulum as an underactuated system 

controlled by using neural network[16].C.-

C. Tsai, H.-C. Huang, and S.-C. Lin studied 

controlling a self-balancing two-wheeled 

known as a scooter based on the adaptive 

neural network[17].Z. Li and C. Yang 

presented a study about controlling real-time 

application derived from wheeled inverted 

pendulum systems[18].C. Yang, Z. Li and J. 

Li also introduced the Trajectory planning 

and optimized adaptive control applied to a 

kind of  wheeled vehicle models based on 

inverted pendulum [19]. Jung and S. Su Kim 

implementedan intelligent controller based 

onthe neural network with a field 

programmable gate array (FPGA) and a 

digital signal processing (DSP) board to get 

to the bottom of control problems ofthe 

nonlinear system, they successfully 

controlled pendulum angle and position[20]. 
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This paper is arranged as follows: (1) An 

introduction about the two-wheel inverted 

pendulum system and the previous work in 

controlling TWIP using neural networks. (2) 

The mathematical equations describing the 

TWIP system which were developed based 

on Newtonian mechanics is presented in 

section “TWIP mathematical description.” 

(3) A description of the controller type used 

for balancing the TWIP system before 

training neural network controllers is 

presented in the section “The state-feedback 

controller of the TWIP system.”  (4) The 

neural network optimization algorithms used 

to train the neural networks is presented in 

section “Neural network optimization 

algorithms.” (5) Finally, the neural networks 

controllers applied to the model and the 

obtained results are presented in section 

“Results.”    
 

Fig. 1 The complete diagram of two-wheel inverted pendulum mobile robot system 

 

3. TWIP Mathematical Description 
 

             The two-wheel inverted pendulum 

can adapt the direction by altering the wheel 

velocity driven by DC motors. The control 

objective is to stabilize the model’s 

equilibrium. An accelerometer and a 

gyroscope are used to estimate the correct 

angle of the model through a Kalman filter. 

Motor encoders are employed to count 

wheel rotations. The Newtonian method is 

used to explore the equations of motion of 

the TWIP model[21].Table(I) contains the 

numerical values of TWIP parameters. 

These parameters were previously estimated 

by us because the used system is a 

commercial type known as Balan Bot and 

there was a lack of information about the 

system. The Pattern search-Latin hypercube-

an active set method is used to estimate 

these parameters. The nonlinear equations 

describing the TWIP systems are, 
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TABLE I 

TWIP PARAMETERS  

Symbol  Quantity Estimated values Unit 

   Pendulum mass 0.84719 Kg 

   Wheel mass 0.068563 Kg 

   Wheel inertia 0.99999 N/m/sec 

   Body inertia 0.035229 kg.m
2
 

  COG distance 0.059023 m 

  Wheel radius 028938 m 

  Motor resistance 4.3132 Ohm 

  Acceleration constant 9.81 m/s
2
 

   Torque constant 0.6073 N.m/Amp 

   Voltage constant 0.6073 V/rad/sec 
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4.The State-Feedback Controller of the 

TWIP System 

State-feedback control was chosen in this 

work as a principal control technique since 

concurrent control of several degrees of 

freedom can only be ensured if they are all 

taken into consideration at the same time as 

shown in the figure below[22]. The 

controller inputs are the real-time readings 

of accelerometer, gyroscope, left motor 

encoder and right motor encoder (system 

states). These values are used to produce the 

controller output signal in forms of pulse 

width modulation that will be applied to 

geared dc motors (M1 and M2) through 

Arduino pins (pin 5 and pin 6).Readings of 

left and right encoders are used to estimate 

the position and velocity of the model 

through a written MATLAB function. The 

figure below illustrates the control flow of 

TWIP mobile robot,  where  x(t) are system 

states (                 ,       are motors 

torques and  PWM_L, PWM_R are the 

control signal applied on system 

actuators(motors) . 

 
Fig.2 Block diagram of the state-feedback control of the TWIP system 

5. Neural Network Optimization 

Algorithms 

 

            Neural network architecture can be 

formed using two or more combined 

neurons to develop a multi-layer 

network[23]. Fig (3) represents an example 

of a multilayer architecture for a neural 

network[24]. The architecture of a neural 

networks consist of three layers, i.e., input 

layer which accepts system states or sensors 

real-time measurements, a hidden layer 

which is the intermediate layer of the 

network and output layer which is the model 

outputs or motors inputs. First of all, the 

input layer nodes are passive because they 

do not modify the data. The second layer is 

the hidden layer which processes and 

handles the data among the input and output 

layers of the network to enhance a 

behavioral representation of the problem. 

Finally, the output layer presents the desired 

outputs of a trained system. Different nodes 

are shown at the end of each layer in a 

neural network. These nodes emulate or 

imitate biological neurons by processing 

input data. The relationship among the 

nodes is manipulated by weights related to 

the nodes’ outputs. This denotes that each 

node corresponds to a summation value of 

all inputs that feed a certain node. Several 

transfer functions can be involved to 

manipulate the association between the 

inputs and output of each node such as 

hyperbolic tangent, pure line, Sigmoid, and 

so on. In addition, there are biases linked to 

the nodes that activate them. 
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Fig 3. A three-layer feed forward neural network 

 

The equations describing interconnection 

among network layers at each stage as 

follows:   
 

    (    ) (3) 

     (∑        
 

) (4) 

    (    ) (5) 

     (∑        
 

) (6) 

Where 

   is the weights matrix from the input layer 

to hidden layer. 

   is the weights matrix from the hidden 

layer to output layer. 

   ,   are the hidden layer and the output 

layer biases, respectively. 

 (Net)  The activation functions in both the 

hidden and output layer (linear function for 

output layer, hyperbolic tangent for the 

hidden layer). Activation functions calculate 

a layer’s output from its net input. 

Many optimization algorithms have already 

been developed for training neural-

networks[25]. The steepest descent 

optimization algorithm, also common as the 

error back propagation (EBP) algorithm 

isolated the dark clouds on the field of 

artificial neural networks and could be 

considered as one of the most significant 

penetrations for training artificial neural 

networks [26]. The EBP algorithm is still 

commonly used, however; it is also defined 

as an inefficient algorithm due to the slow 

convergence associated with it. There are 

two main reasons for the time-consuming 

convergence. The first reason is that its step 

sizes should be sufficient to the gradients. 

Logically, small or tiny step sizes should be 

chosen where the gradient is sharp so as not 

to diverge from the needed minima (due to 

oscillation). So, at a constant step size, it 

should be chosen small. Then, in the gentle 

place of the gradient, the process of training 

would be very slow. The second reason is 

the dissimilar curvature of the error surface 

in all directions such as the Rosen brock 

function. The Gauss-Newton optimization 

algorithm enhances the steepest descent 

method of slow convergence. The Gauss-

Newton algorithm can locate suitable step 

sizes for each direction and converges them 

quickly especially if the function of error 

has a quadratic surface that can converge 

quickly in the first iteration. But this 

improvement only occurs when the 

quadratic approximation error function is 

realistic. Otherwise, the Gauss-Newton 

algorithm would typically be  unlike or 

divergent[27]. 

The Levenberg–Marquardt optimization 

algorithm (LM)integrates both the steepest 

descent method and the Gauss-Newton 
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algorithm [27, 28]. Opportunely, it inherits 

the Gauss-Newton algorithm speed 

advantage and the stability of the steepest 

descent method. It’s more robust or strong 

than the Gauss-Newton algorithm, because 

of its good convergence in many cases, 

although the error surface is more complex 

than the quadratic situation. The LM 

algorithm is slower than the Gauss-Newton 

algorithm (in the convergent situation) and 

faster than the steepest descent method. 

 

The essential idea of the Levenberg–

Marquardt algorithm is that it carries out a 

combined training process about the area 

with complex curvature. The Levenberg–

Marquardt algorithm swaps to the steepest 

descent algorithm until the local curvature is 

appropriate to make a quadratic 

approximation. Then it almost becomes the 

Gauss-Newton algorithm, which can 

significantly accelerate the convergence. 

To derivate the LM algorithm, the 

subsequent four training algorithms will be 

presented;  

1    back-propagation algorithm  

2    Newton’s method 

3    Gauss-Newton’s algorithm 

4    Levenberg-Marquardt algorithm. 

The mean square error (MSE) used to 

estimate the error value in training process 

and network outputs as follows: 

 (   )  
 

 
∑ ∑     
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               (8) 

Where 

x      The vector of the ANN inputs   

w     The ANN weights matrix 

m     The output number of the ANN 

     The training process error 

     The desired output  

     The network approximation (actual 

output) 

A. Steepest Descent Algorithm (EBP) 

The EBP is an optimization algorithm from 

the first-order. It obtains the minima in error 

space by using the first-order derivative of 

the total error function. Normally, gradient g 

is described as the first-order derivative of 

total error function: 

   
  (   )

  
 [

  

   

  

   
 
  

   
]
 

 (9) 

 

The steepest descent algorithm update rule 

as follows: 
            (10) 

 

Where,  

 The learning constant (step size)  

N   the weights number 

k   the number of iterations. 

The process of training of the steepest 

descent algorithm is asymptotic 

convergence. Near the solution, all the 

gradient vector elements would be very 

small and the weights change slowly. 

B. Newton’s algorithm 

              In Newton’s method [29-31], it is 

supposed that all the gradient components,                
(i = 1, 2… N) Are functions of weights, 

these weights are linearly independent: 
     (          ) (11) 

Where Nis the weights number and   is a 

nonlinear relationship between weights and 

associated gradient components. Thus, to 

spread out each    in (11) the Taylor series 

is used and the first-order approximation is 

taken: 

        
   
   

    
   
   

      
   
   

    (12) 

By combining the definition of gradient 

vector g in (11), it could be determined that 
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By inserting (13) to (12): 

        
   

      
    

   

      
     

 
   

   
     

(14) 

So as to obtain the minima of total error 

function E, the gradient vector components 

set to zero. 

       
   

      
    

   

      
     

 
   

   
     

(15) 

 

By combining (11) with (15) up 
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(16) 

From the last equation, it is clear that there 

are N parameters for N equations. This 

denotes that all     can be estimated 

throughout the learning process and the 

weights will be updated periodically. 

Equation (16) can be written as a matrix as 

follows: 
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Where H is Hessian matrix: 
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(18) 

By combining (9) and (18) with (17) 
        (19) 

So  

         (20) 
 

Consequently  Newton’s method updates the 

rule for weights as follows : 

          
     (21) 

Where, H refers to a Hessian matrix that 

presents the second-order derivatives 

associated with total error function and 

supplies the appropriate evaluation on the 

change of gradient descent. It's noticeable 

that the inverted Hessian matrix provides 

compatible step size. 

C. Gauss-Newton Algorithm 

           In Gauss-Newton algorithm, Jacobian 

matrix J is presented to reduce the difficulty 

in the calculation process of the second-

order derivatives associated with total error 

function with Newton’s method which 

complicates calculating of Hessian matrix 

for weight updating. 
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By combining (7) and (9), elements of 

gradient descent vector can be estimated as 

follows: 
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The relationship between gradient descent 

(g) and Jacobian matrix (J) can be obtained 

by combining (23) and (22) as follows: 

 

  Je  (24) 

 

 

Where the error (e) (a vector of network 

errors) has the following form; 
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Inserting (7) into (18), the elements of 

Hessian matrix, i.e., ith row and jth column 

can be observed as 
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Where     as follows: 
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From Newton’s method  it is supposed that 

the     is a very small value near to zero[23]. 

Consequently, Jacobian matrix (J) and 

Hessian matrix (H) are linked with the 

following equation: 

      (28) 

By using (21), (24) and (28), the weights 

updating rule of the Gauss-Newton 

algorithm can be illustrated as in below: 

        (  
   )

       (29) 

It is clear that the advantage of the Gauss-

Newton algorithm, which isn't available 

through the standard Newton’s method in 

weight updating, is that the previous does 

not demand the computation of second-order 

derivatives of the total error function by 

presenting Jacobian matrix (J). But, the 

Gauss-Newton algorithm still suffers from 

the same convergent problem as the Newton 

algorithm for complex error space 

optimization. Mathematically, the problem 

lies in the inability to get the inverse of the 

matrix(  
   ). 

D. The Levenberg–Marquardt optimization 

algorithm 

          The Levenberg–Marquardt 

optimization algorithm was separately 

developed by Kenneth Levenberg and 

Donald Marquardtand presented a numerical 

solution for minimizing a nonlinear function 

problem[32, 33]. It is used to update weight 

and bias values of feed forward neural net 

due to its fast and stable convergence. In the 

scope of neural-networks, this algorithm is 

suitable to train small- and medium-sized 

problems. It is used in Matlab through a 

trainlm function which is usually the best 

Back propagation algorithm in the toolbox 

and is kindly recommended as the best 

choice supervised algorithm yet still 

requiring a larger memory than other 

algorithms. The Levenberg-Marquardt 

algorithm was investigated to arrive at the 

second-order training speed without 

computing the Hessian matrix .The 

Levenberg-Marquardt algorithm employs 

the Hessian matrix approximation in the 

following Newton-like update: 

         (30) 
        [ 

     ]      (31) 

The Levenberg–Marquardt algorithm update 

rule is described in the below equation 

        (  
      )

       (32) 

When the scalar value of combination 

coefficientµ is zero, this is Newton's 

method, using the calculated Hessian matrix. 

When µ is large, this becomes a gradient 

descent with a small learning rate (step size). 

Newton's method near an error minimum is 

faster and more precise, so the aim is to 

move towards Newton's method as quickly 

as possible. Thus, µ is reduced after each 

reduction in error function and rises only 

when a tentative step would increase the 

error or performance function. In this way, 

the performance function will continuously 

be reduced at all algorithm iterations. 

6. Results 

A. State-feedback Controller 

          A state-feedback controller is 

designed in this work to stabilize the real-

time model of TWIP. The state-feedback 

controller stabilizes the model by putting or 

moving the unstable closed-loop poles to a 

stability region. Figure (5) shows State feed 

back controller Simulink model is developed 

for the real-timework. The state-feedback 

controller provides remarkable close loop 

response of the two-wheel inverted 

pendulum and it shows that the pendulum 

angle is stable which is shown in Fig.7. 
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Fig.5 TWIP Simulink model of control using the state-feedback controller 
 

 
Fig 6. The control signal of TWIP model provided by the state-feedback controller 

 

 
Fig. 7 Two-wheel inverted Pendulum angle controlled by the state-feedback controller 

 

B. Neural Networks Controller 

           Neural networks controllers were 

developed to stabilize the real-time model of 

two-wheel inverted pendulum system. The 

feed-forward networks were able to 

precisely stabilize the model. Different 

architectures of FFNN are tested using 

MATLAB-Simulink as shown in Fig.8. 

Most of them are able to stabilize the system 

but are different in their performance 

according to the size of the hidden layer. 

The best network to stabilize the model was 
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the 4-10-2 FFNN as observed in real time 

work which takes small settling time and 

low over shoot to stabilize TWIP model. 

Figure (9) illustrates the responses of each 

tested network, indicating that the best 

performance belongs to the 4-10-2 network. 

This network gives better performance than 

each of the 4 tested networks as well as 

state-feedback as shown in Fig.9. Its hidden 

layer has ten neurons with the hyperbolic 

tangent activation function and pure line 

function in the output layer. It denotes that 

the biases number in the hidden layer is ten, 

and the weights number among the input 

layer and the hidden layer is 40. Because 

there are two neurons in the output layer, it 

denotes the weights number between the 

hidden layer and the output layer as 20 and 

we have two biases in the output layer. The 

weights and biases matrices of this network 

are written below. The mean square error of 

training versus epoch numbers is shown in 

Fig.11.  The goal is represented by a dashed 

line which equals 1e-06 as set in the nntool 

GUI window. In Fig.12, the best result 

shows when the actual output is similar to 

the desired output and that is represented by 

a dashed line. The solid line represents the 

best fit linear regression between network 

approximations (current outputs) and desired 

outputs. The 'R' value specifies the nature 

relationship between the actual outputs or 

network approximations and targets. When 

'R' = 1, this proves that there is a perfect 

linear relationship between actual outputs 

and desired outputs or targets. If 'R' is 

approximately zero, there is no linear 

relationship between actual outputs and 

desired outputs. From Fig.12 it's obvious 

that R=1 which means that there is an exact 

linear relation between the network output 

and the state-feedback output (target).Table 

(2)displays the parameters which are 

common to all tested neural networks and 

Table (3)displays the output parameters of 

the best tested network. 

 
Fig. 8  Simulink model of real-time control of TWIP using feedforward neural network controller 
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Fig.9  Comparison between the state-feedback controller and feed-forward neural networks angle 

response 

 
Fig.10 State-feedback, 4-10-2 NN and 4-15-2 NN controller response 

 
Fig.11 Training performance for 4-10-2 feed-forward NN of two-wheel inverted pendulum angle control 
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Fig.12 Regression plot for 10-4-2 feed forward NN of two-wheel inverted pendulum angle control 
 

C. The weights and biases values of the 4-10-2  feedforward neural network 
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 0.2027-0.20269-jkb  

TABLE 2 

SHARED PARAMETERS BETWEEN NETWORKS  

Parameter value 

Number of input samples 12000 

Sampling time 0.005 (s) 

Number of training data samples 8400 (70%) 

Number of validation data samples 1800(30%) 

Number of test data samples 1800 (30%) 

Goal 0.000001 

Learning rate 0.01 
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TABLE 3 

TESTED FEED-FORWARD NEURAL NETWORKS TRAINING PARAMETERS  

FF-Neural 

Network 

Architecture 

Num-

of 

Epochs 

Training 

Time (s) 

MSE of 

training data 

MSE of 

Validation 

data 

Regression 

(R) 

Gradient Momentu

m 

(Mu) 

4-5-2  685 11 9.97e-07 1.3365e-06 9.9999e-01 0.00409 0.001 

4-10-2  480 13 9.93e-07 1.5814e-06 9.9999e-01 0.368 0.0001 

4-15-2  46 2 9.87e-07 6.7093e-07 9.9999e-01 0.257 0.001 

4-25-2  804 123 9.99e-07 1.7976e-06 9.9999e-01 0.00401 0.0001 

 

7. Conclusion 

 

              In this paper, supervised feed-

forward neural networks are developed to 

real-time control of the TWIP angle. A state-

feedback controller was developed 

previously to stabilize the two-wheel 

inverted pendulum. Input-Output datasets 

were collected by using Arduino UNO board 

and Matlab-Simulink. The data was then 

used later for training neural networks. 

When the training process ended, the neural 

network was exported to MATLAB-

Simulink and the network was placed in the 

feedback loop instead of the existing state-

feedback controller as shown in Fig.8. The 

SFFNN trained with a different number of 

neurons in hidden layer stabilizing the TWIP 

model. Therefore, the results indicate that 

feed-forward networks were able to stabilize 

the TWIP model. The network response 

depends on hidden layer size (neuron 

numbers). All the SFFNN have four neurons 

in input layer (system states) and two 

neurons in the output layer (DC motors 

control signals) but different in hidden layer 

number of neurons. Figure (9) shows that 

the feed forward networks with 10 neurons 

in hidden layer give better performance 

among the tested networks and successfully 

stabilize the system better than a state-

feedback controller. The SFFNN controller 

successfully stabilizes the TWIP model 

without being knowledgeable about any 

system dynamics. 
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قيقي لمبندول المعكوس ذي العجمتينالتحكم المقود لمشبكات العصبية فيالنظام الح  
 

:الممخص العربي  

,مفتوحة الحمقة وغير المستقرة يعد البندول المعكوس ذي العجمتين من اهم الامثمة واكثرها انتشارا عمي الانظمة الغير خطية 

لمغاية مما يجعل البحث عن تقنية تحكم ذكية تعمل عمي تثبيته في وضع افقي مستقر تحديا يجذب اهتمام الباحثين في مجال 

شارات  التحكم الذكي. بداية , يتم استخدام وحدة تحكم التغذية المرتدة او الرجعية التي تستخدم حالات النظام الديناميكي وا 

تحكم في المحركات لبناء قرار التحكم الدقيق لتثبيت النظام افقيا ثم,  يتم تدريب الشبكات العصبية  الإطعامية الموجهة إلى ال

ماركوارت للانتشار الخمفي باستخدام قياسات في الوقت الحقيقي لحالات النظام  -الأمام اعتمادا عمي خوارزمية التحسين لفينبرغ

شارات التحكم في المحر  كات و اوضحت النتايج العممية ان الشبكات العصبية كانت قادرة عمي تحقيق وانجاز مهمة استقرار وا 

 البندول المعكوس ذي العجمتين بكفاءة.


