
Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 131 -

Hanan Nabil

 Teaching Assistant

Minia University, Faculty of Engineering

hananazowz@mu.edu.eg

1.Abstract

 This research paper investigates an intelligent control technique stabilizing a real-time

model ofthe two-wheel inverted pendulum. The TWIP model is a highly non-linear, open-loop,

and unstable system which makes control a challenge. Initially,a state-feedback controller that

uses the dynamical system states and control signals to construct the precise control decision is

used to stabilize the system. Later, Supervised Feed-Forward Neural Networks (SFFNN) based

on back propagation Levenberg-Marquardt optimization algorithm are trained by using real-time

measurements of system states and motors control signals from state-feedback controller

stabilization. SFFNN control the two-wheel inverted pendulum better than a state-feedback

controller.

Keywords—TWIP, State-feedback controller, Supervised Feed-forward neural network,

Levenberg-Marquardt Optimization Algorithm

2. Introduction

 The research on inverted pendulum

has acquired momentum over the last decade

in a lot of global control laboratories [1-4].

The inverted pendulum is regarded as a

famous and exclusive benchmark for many

researchers in both fields of control and

robotics [5, 6]. Researchers employ inverted

pendulum for testing control theories and

algorithms such as (PID controller, neural

networks, fuzzy control, and genetic

algorithms)[7]. As for TWIP, it is

considered to be an under-actuated

mechanical system that is open-loop

unstable with highly nonlinear dynamics.

This property is considered a challenging

control problem that has made researchers

interested in solving this problem over

recent years [8, 9]. It has become essential to

investigate the possibilities of implementing

a control system to keep the system in

equilibrium. The basics of the control

system are the two-wheel inverted pendulum

balancing at certain set point by applying a

suitable control signal (PWM_L and

PWM_R) to the model actuators (left and

right dc motors). The TWIP mobile robot is

an extremely nonlinear, open-loop and

unstable system. This indicates that standard

linear techniques are unable to model the

nonlinear dynamics of the system. When the

model is simulated it falls over quickly. The

characteristics of the TWIP model make

control more interesting and challenging.

The TWIP model is also known as a self-

balancing mobile robot and this self-

balancing bot is a developed version of a

self-balancing platform, which makes use of

data from accelerometer and gyroscope. It

includes the essential signal processing part

which uses Kalman filter and compensatory

filter for estimating the correct angle out of

noise or disturbance (a sudden hit). The

system model used in this study consists of

two geared DC motors with encoders, data

acquisition card (DAQ (Arduino UNO)),

and balancing shield holds the inertia

measurement unit (IMU) which contains

system sensors (accelerometer and

gyroscope). Additionally, this shield

contains a motor driver (L298N) and two

wheels. To build a self-balancing robot, it is

necessary to get to the bottom of the

inverted pendulum problem or get to the

bottom of an inverted pendulum on a cart.

When the robot begins to tilt in one

direction, the wheels should go in the

SUPERVISED NEURAL NETWORK CONTROL OF REAL-TIME TWO

WHEEL INVERTED PENDULUM

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 132 -

inclined or tilt direction with a speed relative

to angle and acceleration of tilt to correct the

inclination angle. When the divergence from

the equilibrium point is small, the move

should be slow or gentle and vice versa. The

two-wheel inverted pendulum derived from

the inverted pendulum model is developed

or designed as a platform to investigate a

Kalman filter used for sensor fusion[10]. A

real-world application based on inverted

pendulum system is the Segway vehicle that

is designed to carry a human. Recently the

commercial Segway vehicle was used to

transport a robonaut in some NASA

projects.

The purpose of this work is to investigate a

neural network controller which determines

and calculates the precise control action

needed to stabilize the system and learn

from experience how to regulate the wheels’

position so that the inclination angle remains

stable within a predetermined value[11, 12].

Research on neural-network based control

systems has had great attention over the past

several years. This is simply because of the

neural networks approximation’s ability for

nonlinear function[13]. The artificial neural

networks consist of several nonlinear

elements and this gives them an advantage

over linear techniques in modeling nonlinear

systems. ANN is trained by adaptive

learning, the network learns how to do tasks

and perform functions for training purposes

that are based on the data attached. The

knowledge learned throughout the training

process is stored in the synaptic weights.

SFFNN is the used type of neural network in

this study, used to stabilize the TWIP model.

Training SFFNN requires an existing

controller; training the neural network to

emulate an existing controller requires a

vector of inputs and outputs from the

controller. The supervised control allows the

neural network to be trained to imitate a

robust controller like a state-feedback

controller[14]. The robust controller

operates perfectly if the process operates

within a certain point or set point. The

neuro-controller operates in a similar

manner to the robust controller but can also

adapt if any unexpected disturbance arises in

the system. The developed neural networks

are a two-layerFFNN with four neurons in

input layer which are system states, variable

number of nodes or neurons in the hidden

layer and two neurons in the output layer

which represent PWM_L and PWM_R of

two geared DC motors. This is used to study

the system and the back propagation based

on Levenberg-Marquardt optimization

algorithm is used to train and update the

neural network weights. The hyperbolic

tangent activation function was used in the

hidden layer and in the output layer; it was

the pure-line function. Figure (1) shows the

over all TWIP system structure.

A lot ofresearchers present the controlling

two-wheel inverted pendulum using

artificial neural network controller. J. S.

Noh, G. H. Lee, and S. Jung for instance,

presented a position control of mobile

inverted pendulum system by utilizing the

radial basis function (RBF) and successfully

controlled the pendulum angle and

postion[15].S. Jung and S. S. Kim

introduced and implemented control

experiment using neural network control of

a wheel-driven mobile inverted pendulum

based on encoders and a gyro sensor[13].As

for C. Yang, Z. Li, R. Cui, and B. Xu they

suggested studying the wheel inverted

pendulum as an underactuated system

controlled by using neural network[16].C.-

C. Tsai, H.-C. Huang, and S.-C. Lin studied

controlling a self-balancing two-wheeled

known as a scooter based on the adaptive

neural network[17].Z. Li and C. Yang

presented a study about controlling real-time

application derived from wheeled inverted

pendulum systems[18].C. Yang, Z. Li and J.

Li also introduced the Trajectory planning

and optimized adaptive control applied to a

kind of wheeled vehicle models based on

inverted pendulum [19]. Jung and S. Su Kim

implementedan intelligent controller based

onthe neural network with a field

programmable gate array (FPGA) and a

digital signal processing (DSP) board to get

to the bottom of control problems ofthe

nonlinear system, they successfully

controlled pendulum angle and position[20].

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 133 -

This paper is arranged as follows: (1) An

introduction about the two-wheel inverted

pendulum system and the previous work in

controlling TWIP using neural networks. (2)

The mathematical equations describing the

TWIP system which were developed based

on Newtonian mechanics is presented in

section “TWIP mathematical description.”

(3) A description of the controller type used

for balancing the TWIP system before

training neural network controllers is

presented in the section “The state-feedback

controller of the TWIP system.” (4) The

neural network optimization algorithms used

to train the neural networks is presented in

section “Neural network optimization

algorithms.” (5) Finally, the neural networks

controllers applied to the model and the

obtained results are presented in section

“Results.”

Fig. 1 The complete diagram of two-wheel inverted pendulum mobile robot system

3. TWIP Mathematical Description

 The two-wheel inverted pendulum

can adapt the direction by altering the wheel

velocity driven by DC motors. The control

objective is to stabilize the model’s

equilibrium. An accelerometer and a

gyroscope are used to estimate the correct

angle of the model through a Kalman filter.

Motor encoders are employed to count

wheel rotations. The Newtonian method is

used to explore the equations of motion of

the TWIP model[21].Table(I) contains the

numerical values of TWIP parameters.

These parameters were previously estimated

by us because the used system is a

commercial type known as Balan Bot and

there was a lack of information about the

system. The Pattern search-Latin hypercube-

an active set method is used to estimate

these parameters. The nonlinear equations

describing the TWIP systems are,

 ̈

 ̇

 ̇

 ̈

(1)

 ̈

 ̇

 ̈ (2)

Where

TABLE I

TWIP PARAMETERS

Symbol Quantity Estimated values Unit

 Pendulum mass 0.84719 Kg

 Wheel mass 0.068563 Kg

 Wheel inertia 0.99999 N/m/sec

 Body inertia 0.035229 kg.m
2

 COG distance 0.059023 m

 Wheel radius 028938 m

 Motor resistance 4.3132 Ohm

 Acceleration constant 9.81 m/s
2

 Torque constant 0.6073 N.m/Amp

 Voltage constant 0.6073 V/rad/sec

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 134 -

4.The State-Feedback Controller of the

TWIP System

State-feedback control was chosen in this

work as a principal control technique since

concurrent control of several degrees of

freedom can only be ensured if they are all

taken into consideration at the same time as

shown in the figure below[22]. The

controller inputs are the real-time readings

of accelerometer, gyroscope, left motor

encoder and right motor encoder (system

states). These values are used to produce the

controller output signal in forms of pulse

width modulation that will be applied to

geared dc motors (M1 and M2) through

Arduino pins (pin 5 and pin 6).Readings of

left and right encoders are used to estimate

the position and velocity of the model

through a written MATLAB function. The

figure below illustrates the control flow of

TWIP mobile robot, where x(t) are system

states (, are motors

torques and PWM_L, PWM_R are the

control signal applied on system

actuators(motors) .

Fig.2 Block diagram of the state-feedback control of the TWIP system

5. Neural Network Optimization

Algorithms

 Neural network architecture can be

formed using two or more combined

neurons to develop a multi-layer

network[23]. Fig (3) represents an example

of a multilayer architecture for a neural

network[24]. The architecture of a neural

networks consist of three layers, i.e., input

layer which accepts system states or sensors

real-time measurements, a hidden layer

which is the intermediate layer of the

network and output layer which is the model

outputs or motors inputs. First of all, the

input layer nodes are passive because they

do not modify the data. The second layer is

the hidden layer which processes and

handles the data among the input and output

layers of the network to enhance a

behavioral representation of the problem.

Finally, the output layer presents the desired

outputs of a trained system. Different nodes

are shown at the end of each layer in a

neural network. These nodes emulate or

imitate biological neurons by processing

input data. The relationship among the

nodes is manipulated by weights related to

the nodes’ outputs. This denotes that each

node corresponds to a summation value of

all inputs that feed a certain node. Several

transfer functions can be involved to

manipulate the association between the

inputs and output of each node such as

hyperbolic tangent, pure line, Sigmoid, and

so on. In addition, there are biases linked to

the nodes that activate them.

RIGHT MOTOR

STATEFEEDBACK

CONTROLLER

TWO-WHEEL

INVERTED

PENDULUMMODEL

𝜃

𝑥

�̇�

�̇�

𝑥(𝑡)

LEFT MOTOR

PWM_R

PWM_L

𝑇𝑀

𝑇𝑀

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 135 -

Fig 3. A three-layer feed forward neural network

The equations describing interconnection

among network layers at each stage as

follows:

 () (3)

 (∑

) (4)

 () (5)

 (∑

) (6)

Where

 is the weights matrix from the input layer

to hidden layer.

 is the weights matrix from the hidden

layer to output layer.

 , are the hidden layer and the output

layer biases, respectively.

 (Net) The activation functions in both the

hidden and output layer (linear function for

output layer, hyperbolic tangent for the

hidden layer). Activation functions calculate

a layer’s output from its net input.

Many optimization algorithms have already

been developed for training neural-

networks[25]. The steepest descent

optimization algorithm, also common as the

error back propagation (EBP) algorithm

isolated the dark clouds on the field of

artificial neural networks and could be

considered as one of the most significant

penetrations for training artificial neural

networks [26]. The EBP algorithm is still

commonly used, however; it is also defined

as an inefficient algorithm due to the slow

convergence associated with it. There are

two main reasons for the time-consuming

convergence. The first reason is that its step

sizes should be sufficient to the gradients.

Logically, small or tiny step sizes should be

chosen where the gradient is sharp so as not

to diverge from the needed minima (due to

oscillation). So, at a constant step size, it

should be chosen small. Then, in the gentle

place of the gradient, the process of training

would be very slow. The second reason is

the dissimilar curvature of the error surface

in all directions such as the Rosen brock

function. The Gauss-Newton optimization

algorithm enhances the steepest descent

method of slow convergence. The Gauss-

Newton algorithm can locate suitable step

sizes for each direction and converges them

quickly especially if the function of error

has a quadratic surface that can converge

quickly in the first iteration. But this

improvement only occurs when the

quadratic approximation error function is

realistic. Otherwise, the Gauss-Newton

algorithm would typically be unlike or

divergent[27].

The Levenberg–Marquardt optimization

algorithm (LM)integrates both the steepest

descent method and the Gauss-Newton

θ

�̇�

𝜒

�̇�

PW _L

PW _

𝑏j

∑⬚

∑⬚

∑⬚

∑⬚

∑⬚

∑⬚

𝑂

𝑤j 𝑤kj

𝑏k

𝑂k

�

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 136 -

algorithm [27, 28]. Opportunely, it inherits

the Gauss-Newton algorithm speed

advantage and the stability of the steepest

descent method. It’s more robust or strong

than the Gauss-Newton algorithm, because

of its good convergence in many cases,

although the error surface is more complex

than the quadratic situation. The LM

algorithm is slower than the Gauss-Newton

algorithm (in the convergent situation) and

faster than the steepest descent method.

The essential idea of the Levenberg–

Marquardt algorithm is that it carries out a

combined training process about the area

with complex curvature. The Levenberg–

Marquardt algorithm swaps to the steepest

descent algorithm until the local curvature is

appropriate to make a quadratic

approximation. Then it almost becomes the

Gauss-Newton algorithm, which can

significantly accelerate the convergence.

To derivate the LM algorithm, the

subsequent four training algorithms will be

presented;

1 back-propagation algorithm

2 Newton’s method

3 Gauss-Newton’s algorithm

4 Levenberg-Marquardt algorithm.

The mean square error (MSE) used to

estimate the error value in training process

and network outputs as follows:

 ()

∑ ∑

 (7)

 (8)

Where

x The vector of the ANN inputs

w The ANN weights matrix

m The output number of the ANN

 The training process error

 The desired output

 The network approximation (actual

output)

A. Steepest Descent Algorithm (EBP)

The EBP is an optimization algorithm from

the first-order. It obtains the minima in error

space by using the first-order derivative of

the total error function. Normally, gradient g

is described as the first-order derivative of

total error function:

 ()

 [

]

 (9)

The steepest descent algorithm update rule

as follows:
 (10)

Where,

 The learning constant (step size)

N the weights number

k the number of iterations.

The process of training of the steepest

descent algorithm is asymptotic

convergence. Near the solution, all the

gradient vector elements would be very

small and the weights change slowly.

B. Newton’s algorithm

 In Newton’s method [29-31], it is

supposed that all the gradient components,
(i = 1, 2… N) Are functions of weights,

these weights are linearly independent:
 () (11)

Where Nis the weights number and is a

nonlinear relationship between weights and

associated gradient components. Thus, to

spread out each in (11) the Taylor series

is used and the first-order approximation is

taken:

 (12)

By combining the definition of gradient

vector g in (11), it could be determined that

 (

)

 (13)

By inserting (13) to (12):

(14)

So as to obtain the minima of total error

function E, the gradient vector components

set to zero.

(15)

By combining (11) with (15) up

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 137 -

(16)

From the last equation, it is clear that there

are N parameters for N equations. This

denotes that all can be estimated

throughout the learning process and the

weights will be updated periodically.

Equation (16) can be written as a matrix as

follows:

i

ii

i

i

i w

w

w

E

ww

E

ww

E

w

E

w

E

w

E

g

g

1

2

2

1

2

1

2

2

1

2

1
1

(17)

Where H is Hessian matrix:

2

2

1

2

1

2

2

1

2

ii

i

w

E

ww

E

ww

E

w

E

H

(18)

By combining (9) and (18) with (17)
 (19)

So

 (20)

Consequently Newton’s method updates the

rule for weights as follows :

 (21)

Where, H refers to a Hessian matrix that

presents the second-order derivatives

associated with total error function and

supplies the appropriate evaluation on the

change of gradient descent. It's noticeable

that the inverted Hessian matrix provides

compatible step size.

C. Gauss-Newton Algorithm

 In Gauss-Newton algorithm, Jacobian

matrix J is presented to reduce the difficulty

in the calculation process of the second-

order derivatives associated with total error

function with Newton’s method which

complicates calculating of Hessian matrix

for weight updating.

i

MP,

1

MP,

i

P,1

1

P,1

w

e

w

e

w

e

w

e

J

(22)

By combining (7) and (9), elements of

gradient descent vector can be estimated as

follows:

 (

∑ ∑

)

 ∑∑ (

)

(23)

The relationship between gradient descent

(g) and Jacobian matrix (J) can be obtained

by combining (23) and (22) as follows:

 Je (24)

Where the error (e) (a vector of network

errors) has the following form;

[

]

 (25)

Inserting (7) into (18), the elements of

Hessian matrix, i.e., ith row and jth column

can be observed as

 (

∑ ∑

)

 ∑∑ (

)

(26)

Where as follows:

 ∑∑

 (27)

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 138 -

From Newton’s method it is supposed that

the is a very small value near to zero[23].

Consequently, Jacobian matrix (J) and

Hessian matrix (H) are linked with the

following equation:

 (28)

By using (21), (24) and (28), the weights

updating rule of the Gauss-Newton

algorithm can be illustrated as in below:

 (
)

 (29)

It is clear that the advantage of the Gauss-

Newton algorithm, which isn't available

through the standard Newton’s method in

weight updating, is that the previous does

not demand the computation of second-order

derivatives of the total error function by

presenting Jacobian matrix (J). But, the

Gauss-Newton algorithm still suffers from

the same convergent problem as the Newton

algorithm for complex error space

optimization. Mathematically, the problem

lies in the inability to get the inverse of the

matrix(
).

D. The Levenberg–Marquardt optimization

algorithm

 The Levenberg–Marquardt

optimization algorithm was separately

developed by Kenneth Levenberg and

Donald Marquardtand presented a numerical

solution for minimizing a nonlinear function

problem[32, 33]. It is used to update weight

and bias values of feed forward neural net

due to its fast and stable convergence. In the

scope of neural-networks, this algorithm is

suitable to train small- and medium-sized

problems. It is used in Matlab through a

trainlm function which is usually the best

Back propagation algorithm in the toolbox

and is kindly recommended as the best

choice supervised algorithm yet still

requiring a larger memory than other

algorithms. The Levenberg-Marquardt

algorithm was investigated to arrive at the

second-order training speed without

computing the Hessian matrix .The

Levenberg-Marquardt algorithm employs

the Hessian matrix approximation in the

following Newton-like update:

 (30)
 [

] (31)

The Levenberg–Marquardt algorithm update

rule is described in the below equation

 (
)

 (32)

When the scalar value of combination

coefficientµ is zero, this is Newton's

method, using the calculated Hessian matrix.

When µ is large, this becomes a gradient

descent with a small learning rate (step size).

Newton's method near an error minimum is

faster and more precise, so the aim is to

move towards Newton's method as quickly

as possible. Thus, µ is reduced after each

reduction in error function and rises only

when a tentative step would increase the

error or performance function. In this way,

the performance function will continuously

be reduced at all algorithm iterations.

6. Results

A. State-feedback Controller

 A state-feedback controller is

designed in this work to stabilize the real-

time model of TWIP. The state-feedback

controller stabilizes the model by putting or

moving the unstable closed-loop poles to a

stability region. Figure (5) shows State feed

back controller Simulink model is developed

for the real-timework. The state-feedback

controller provides remarkable close loop

response of the two-wheel inverted

pendulum and it shows that the pendulum

angle is stable which is shown in Fig.7.

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 139 -

Fig.5 TWIP Simulink model of control using the state-feedback controller

Fig 6. The control signal of TWIP model provided by the state-feedback controller

Fig. 7 Two-wheel inverted Pendulum angle controlled by the state-feedback controller

B. Neural Networks Controller

 Neural networks controllers were

developed to stabilize the real-time model of

two-wheel inverted pendulum system. The

feed-forward networks were able to

precisely stabilize the model. Different

architectures of FFNN are tested using

MATLAB-Simulink as shown in Fig.8.

Most of them are able to stabilize the system

but are different in their performance

according to the size of the hidden layer.

The best network to stabilize the model was

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 140 -

the 4-10-2 FFNN as observed in real time

work which takes small settling time and

low over shoot to stabilize TWIP model.

Figure (9) illustrates the responses of each

tested network, indicating that the best

performance belongs to the 4-10-2 network.

This network gives better performance than

each of the 4 tested networks as well as

state-feedback as shown in Fig.9. Its hidden

layer has ten neurons with the hyperbolic

tangent activation function and pure line

function in the output layer. It denotes that

the biases number in the hidden layer is ten,

and the weights number among the input

layer and the hidden layer is 40. Because

there are two neurons in the output layer, it

denotes the weights number between the

hidden layer and the output layer as 20 and

we have two biases in the output layer. The

weights and biases matrices of this network

are written below. The mean square error of

training versus epoch numbers is shown in

Fig.11. The goal is represented by a dashed

line which equals 1e-06 as set in the nntool

GUI window. In Fig.12, the best result

shows when the actual output is similar to

the desired output and that is represented by

a dashed line. The solid line represents the

best fit linear regression between network

approximations (current outputs) and desired

outputs. The 'R' value specifies the nature

relationship between the actual outputs or

network approximations and targets. When

'R' = 1, this proves that there is a perfect

linear relationship between actual outputs

and desired outputs or targets. If 'R' is

approximately zero, there is no linear

relationship between actual outputs and

desired outputs. From Fig.12 it's obvious

that R=1 which means that there is an exact

linear relation between the network output

and the state-feedback output (target).Table

(2)displays the parameters which are

common to all tested neural networks and

Table (3)displays the output parameters of

the best tested network.

Fig. 8 Simulink model of real-time control of TWIP using feedforward neural network controller

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 141 -

Fig.9 Comparison between the state-feedback controller and feed-forward neural networks angle

response

Fig.10 State-feedback, 4-10-2 NN and 4-15-2 NN controller response

Fig.11 Training performance for 4-10-2 feed-forward NN of two-wheel inverted pendulum angle control

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 142 -

Fig.12 Regression plot for 10-4-2 feed forward NN of two-wheel inverted pendulum angle control

C. The weights and biases values of the 4-10-2 feedforward neural network

5.8106-3.2340-1.8545-0.8172-

2.81650.15831.98702.3629

7.0246-1.4866-0.87510.3980-

1.1531-0.0076-1.4280-1.1152-

0.2679-0.0053-0.3194-0.2403-

6.0918-1.91500.4101-2.4530

1.6311 0.1363-2.39942.1744

2.0278-2.09440.2418-1.1903-

4.25780.3351-5.7542 4.9485

11.06362.8033-2.42502.2101

ijw

5.1741

0.1270

3.1997

0.1480

2.5777-

2.5777-

1.3461

0.4975-

2.1837-

1.7504-

ijb

 ,

05-7.3855e-06-8.0258e05-1.4564e0.0749043.9774-05-1.9173e-0.0047693-06-4.0651e-0.0018392-06-3.6053e

05-7.3855e-06-8.0258e05-1.4564e0.0749043.9774-05-1.9173e-0.0047693-06-4.0651e-0.0018392-06-3.6053e
jkw

,

 0.2027-0.20269-jkb

TABLE 2

SHARED PARAMETERS BETWEEN NETWORKS

Parameter value

Number of input samples 12000

Sampling time 0.005 (s)

Number of training data samples 8400 (70%)

Number of validation data samples 1800(30%)

Number of test data samples 1800 (30%)

Goal 0.000001

Learning rate 0.01

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 143 -

TABLE 3

TESTED FEED-FORWARD NEURAL NETWORKS TRAINING PARAMETERS

FF-Neural

Network

Architecture

Num-

of

Epochs

Training

Time (s)

MSE of

training data

MSE of

Validation

data

Regression

(R)

Gradient Momentu

m

(Mu)

4-5-2 685 11 9.97e-07 1.3365e-06 9.9999e-01 0.00409 0.001

4-10-2 480 13 9.93e-07 1.5814e-06 9.9999e-01 0.368 0.0001

4-15-2 46 2 9.87e-07 6.7093e-07 9.9999e-01 0.257 0.001

4-25-2 804 123 9.99e-07 1.7976e-06 9.9999e-01 0.00401 0.0001

7. Conclusion

 In this paper, supervised feed-

forward neural networks are developed to

real-time control of the TWIP angle. A state-

feedback controller was developed

previously to stabilize the two-wheel

inverted pendulum. Input-Output datasets

were collected by using Arduino UNO board

and Matlab-Simulink. The data was then

used later for training neural networks.

When the training process ended, the neural

network was exported to MATLAB-

Simulink and the network was placed in the

feedback loop instead of the existing state-

feedback controller as shown in Fig.8. The

SFFNN trained with a different number of

neurons in hidden layer stabilizing the TWIP

model. Therefore, the results indicate that

feed-forward networks were able to stabilize

the TWIP model. The network response

depends on hidden layer size (neuron

numbers). All the SFFNN have four neurons

in input layer (system states) and two

neurons in the output layer (DC motors

control signals) but different in hidden layer

number of neurons. Figure (9) shows that

the feed forward networks with 10 neurons

in hidden layer give better performance

among the tested networks and successfully

stabilize the system better than a state-

feedback controller. The SFFNN controller

successfully stabilizes the TWIP model

without being knowledgeable about any

system dynamics.

REFERENCES

[1] Ponce, "A REVIEW OF

INTELLIGENT CONTROL

SYSTEMS APPLIED TO THE

INVERTED-PENDULUM

PROBLEM," American Journal of

Engineering and Applied Sciences

American Journal of Engineering

and Applied Sciences, vol. 7, pp.

194-240, 2014.

[2] J. Goncalves, N. Gago, C. Arantes,

F. Soares, J. S. Esteves, P. Garrido,

et al., "A realization of the inverted

pendulum and cart," Lect. Notes Eng.

Comput. Sci. Lecture Notes in

Engineering and Computer Science,

vol. 2217, pp. 434-439, 2015.

[3] C.-H. Huang, W.-J. Wang, and C.-H.

Chiu, "Design and implementation of

fuzzy control on a two-wheel

inverted pendulum," IEEE

Transactions on Industrial

Electronics, vol. 58, pp. 2988-3001,

2011.

[4] F. Grasser, A. D'arrigo, S. Colombi,

and A. C. Rufer, "JOE: a mobile,

inverted pendulum," IEEE

Transactions on industrial

electronics, vol. 49, pp. 107-114,

2002.

[5] O. Boubaker, "The inverted

pendulum: history and survey of

open and current problems in control

theory and robotics," TheInverted

Pendulum in Control Theory and

Robotics: From Theory to New

Innovations, p. 1, 2017.

[6] R. P. M. Chan, K. A. Stol, and C. R.

Halkyard, "Review of modelling and

control of two-wheeled robots,"

Annual Reviews in Control, vol. 37,

pp. 89-103, 2013.

[7] A. A. Bature, S. Buyamin, M. N.

Ahmad, M. Muhammad, and A. A.

Muhammad, "Identification and

model predictive position control of

Two Wheeled Inverted Pendulum

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 144 -

mobile robot," J. Teknol, vol. 73, pp.

153-156, 2015.

[8] S. Nawawi, M. Ahmad, and J.

Osman, "Real-time control of a two-

wheeled inverted pendulum mobile

robot," World Academy of Science,

Engineering and Technology, vol.

39, pp. 214-220, 2008.

[9] J. Gonçalves, N. Gago, C. Arantes,

F. Soares, G. Lopes, J. S. Esteves, et

al., "A Realization of the Inverted

Pendulum and Cart," in Proceedings

of the World Congress on

Engineering, 2015.

[10] H.-J. Lee and S. Jung, "Gyro sensor

drift compensation by Kalman filter

to control a mobile inverted

pendulum robot system," in

Industrial Technology, 2009. ICIT

2009. IEEE International

Conference on, 2009, pp. 1-6.

[11] V. Mladenov, "Application of neural

networks for control of inverted

pendulum," WSEAS Transactions on

Circuits and Systems, vol. 10, pp. 49-

58, 2011.

[12] T. Callinan, "Artificial Neural

Network identification and control of

the inverted pendulum," MEng

Project Reports, School of Electronic

Engineering Dublin City University,

2003.

[13] S. Jung and S. S. Kim, "Control

experiment of a wheel-driven mobile

inverted pendulum using neural

network," IEEE Transactions on

Control Systems Technology, vol. 16,

pp. 297-303, 2008.

[14] K. Pathak, J. Franch, and S. K.

Agrawal, "Velocity and position

control of a wheeled inverted

pendulum by partial feedback

linearization," IEEE Transactions on

robotics, vol. 21, pp. 505-513, 2005.

[15] J. S. Noh, G. H. Lee, and S. Jung,

"Position control of a mobile

inverted pendulum system using

radial basis function network," in

Neural Networks, 2008. IJCNN

2008.(IEEE World Congress on

Computational Intelligence). IEEE

International Joint Conference on,

2008, pp. 370-376.

[16] C. Yang, Z. Li, R. Cui, and B. Xu,

"Neural network-based motion

control of an underactuated wheeled

inverted pendulum model," IEEE

Transactions on Neural Networks

and Learning Systems, vol. 25, pp.

2004-2016, 2014.

[17] C.-C. Tsai, H.-C. Huang, and S.-C.

Lin, "Adaptive neural network

control of a self-balancing two-

wheeled scooter," IEEE

Transactions on Industrial

Electronics, vol. 57, pp. 1420-1428,

2010.

[18] Z. Li and C. Yang, "Neural-adaptive

output feedback control of a class of

transportation vehicles based on

wheeled inverted pendulum models,"

IEEE Transactions on Control

Systems Technology, vol. 20, pp.

1583-1591, 2012.

[19] C. Yang, Z. Li, and J. Li, "Trajectory

planning and optimized adaptive

control for a class of wheeled

inverted pendulum vehicle models,"

IEEE Transactions on Cybernetics,

vol. 43, pp. 24-36, 2013.

[20] S. Jung and S. su Kim, "Hardware

implementation of a real-time neural

network controller with a DSP and

an FPGA for nonlinear systems,"

IEEE Transactions on Industrial

Electronics, vol. 54, pp. 265-271,

2007.

[21] R. C. Ooi, "Balancing a two-wheeled

autonomous robot," University of

Western Australia, vol. 3, 2003.

[22] S. Jadlovska and J. Sarnovsky, "A

complex overview of modeling and

control of the rotary single inverted

pendulum system," Advances in

Electrical and Electronic

Engineering, vol. 11, p. 73, 2013.

[23] M. T. Hagan and M. B. Menhaj,

"Training feedforward networks with

the Marquardt algorithm," IEEE

transactions on Neural Networks,

vol. 5, pp. 989-993, 1994.

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 145 -

[24] B. C. Aissa and C. Fatima, "Neural

Networks Trained with Levenberg-

Marquardt-Iterated Extended

Kalman Filter for Mobile Robot

Trajectory Tracking," Journal of

Engineering Science & Technology

Review, vol. 10, 2017.

[25] R. Battiti, "First-and second-order

methods for learning: between

steepest descent and Newton's

method," Neural computation, vol. 4,

pp. 141-166, 1992.

[26] B. M. Wilamowski, "Neural network

architectures and learning

algorithms," IEEE Industrial

Electronics Magazine, vol. 3, 2009.

[27] H. Yu and M. Bogdan, "Levenberg-

Marquardt training," in Electrical

Engineering Handbook intelligent

systems, ed:

, 2011, pp. 1-16

[28] D. W. Marquardt, "An algorithm for

least-squares estimation of nonlinear

parameters," Journal of the society

for Industrial and Applied

Mathematics, vol. 11, pp. 431-441,

1963.

[29] J. J. Callahan, Advanced calculus: a

geometric view: Springer Science &

Business Media, 2010.

[30] Y. N. Dauphin, R. Pascanu, C.

Gulcehre, K. Cho, S. Ganguli, and Y.

Bengio, "Identifying and attacking

the saddle point problem in high-

dimensional non-convex

optimization," in Advances in neural

information processing systems,

2014, pp. 2933-2941.

[31] S. Wright and J. Nocedal,

"Numerical optimization," Springer

Science, vol. 35, p. 7, 1999.

[32] A. A. Suratgar, M. B. Tavakoli, and

A. Hoseinabadi, "Modified

Levenberg-Marquardt method for

neural networks training," World

Acad Sci Eng Technol, vol. 6, pp. 46-

48, 2005.

[33] B. M. Wilamowski and H. Yu,

"Improved computation for

Levenberg–Marquardt training,"

IEEE transactions on neural

networks, vol. 21, pp. 930-937, 2010.

Journal of Advanced Engineering Trends (JAET), Vol. 38, No. 2. July 2019
`

- 146 -

قيقي لمبندول المعكوس ذي العجمتينالتحكم المقود لمشبكات العصبية فيالنظام الح

:الممخص العربي

,مفتوحة الحمقة وغير المستقرة يعد البندول المعكوس ذي العجمتين من اهم الامثمة واكثرها انتشارا عمي الانظمة الغير خطية

لمغاية مما يجعل البحث عن تقنية تحكم ذكية تعمل عمي تثبيته في وضع افقي مستقر تحديا يجذب اهتمام الباحثين في مجال

شارات التحكم الذكي. بداية , يتم استخدام وحدة تحكم التغذية المرتدة او الرجعية التي تستخدم حالات النظام الديناميكي وا

تحكم في المحركات لبناء قرار التحكم الدقيق لتثبيت النظام افقيا ثم, يتم تدريب الشبكات العصبية الإطعامية الموجهة إلى ال

ماركوارت للانتشار الخمفي باستخدام قياسات في الوقت الحقيقي لحالات النظام -الأمام اعتمادا عمي خوارزمية التحسين لفينبرغ

شارات التحكم في المحر كات و اوضحت النتايج العممية ان الشبكات العصبية كانت قادرة عمي تحقيق وانجاز مهمة استقرار وا

 البندول المعكوس ذي العجمتين بكفاءة.

