THE PREDICTIVE VALUE OF ALPHA 1 ACID GLYCOPROTEIN IN DIAGNOSIS OF NEONATAL SEPSIS

Mohammed Abd El Fatah Abd Allah*, Abd El Rahman Ahmady Awad*, Hisham Ahmed Mohammed Ali* and Ashraf Taha Abd Elmouttaleb**

Pediatrics* and Medical Biochemistry** departments of Al-Azhar University

ABSTRACT

Background: Neonatal sepsis is an important cause of morbidity and mortality despite the major advances in the management (*Stoll, 2004*).

Objective: We aimed to evaluate the predictive value of alpha1-acid glycoprotein (alpha1AG) in the early diagnosis of neonatal sepsis.

DESIGN: This case control study was conducted among newborn admitted to neonatal intensive care unit (NICU) of Sayed Galal University Hospital.

Patient And Methods: A total of 90 newborn, 30 with confirmed sepsis by blood culture and laboratory investigation (Group I), 30 with clinically suspected sepsis (Group II), and 30 as a control group (Group III) were enrolled in the study. On admission to NICU, blood was taken for CRP, blood culture, and alpha1AG before starting antibiotic therapy.

Results: We found that serum level of Alpha-1acid glycoprotein was highly significant between clinically suspected septic(Group II) and control groups(Group III) (p=0.00) and highly significant between confirmed septic(Group I) and control groups(Group III) (p=0.00). In the present study the sensitivity, specificity, positive and negative predictive values of alpha 1 acid glycoprotein at cut of value 136ng/ml were found to be 93%, 91.3%, 93.1%, 66.4%, respectively.

Conclusion: Alpha-1-acid glycoprotein has high sensitivity and specificity in early diagnosis of neonatal sepsis.

Keywords: Alpha-1-acid glycoprotein, Neonatal sepsis.

INTRODUCTION

Sepsis is one of the most common infectious conditions in the neonatal period, and remains a major source of morbidity and mortality despite extraordinary progress in the field of neonatology in recent years (*Campos, et al., 2010*). According to the world health organization (WHO), neonatal deaths 2.6 million in 2016 (*UN IGME, 2017*).

Vol. 20

No. 2

June 2017

Neonatal sepsis may be categorized as early or late onset. 85% of newborns with early onset infection present within 24 hours, 5% present at 24-48 hours, and a smaller percentage of patients present within 48-72 hours. Onset rapid in premature most is Early neonates. onset sepsis syndrome associated with is acquisition of microorganisms from the mother. Transplacental infection or ascending infection from the cervix may be caused by organisms that colonize in the mother's genitourinary tract, with acquisition of the microbe by passage through a colonized birth canal at delivery (Klinger, et al 2009).

Blood culture tests are still considered the gold standard for the diagnosis of sepsis although results are not available until at least 48 hour. There is a need for effective and accurate an biochemical marker to support or exclude the diagnosis of infection. Hematological indices. acute phase reactants, protein markers, and cytokines have been extensively examined as adjunctive tests for diagnosis of sepsis. None have shown sensitivity, specificity, positive predictive values (PPV), or negative predictive values (NPV) that can sufficiently management clinical guide (Bhandari, et al, 2008).

A number of plasma proteins collectively termed acute phase proteins show a dramatic increase in concentration in response to infection or tissue injury. Acute phase proteins include α 1-protease inhibitor, α 1-acid glycoprotein, ceruloplasmin, C-reactive protein, fibrinogen and habtoglobin (*Peter*, *et al. 2011*).

Alpha-1acid glycoprotein $(\alpha 1 \text{AGP})$ is an acute –phase serum protein that is produced by the liver in response to inflammation and infection. It is a 183 amino acid protein with five N-linked glycans that comprise 45% of its 43 KDa mass. Alteration of Nglycosylation is associated with certain pathophysiological states. Alpha-1 acid glycoprotein belongs to the lipocalin family and binds numerous basic neutral and lipophilic drugs and steroid hormones (Colombo, et al.,2006).

METHODS

This is case control study; it was carried out in the neonatal intensive care unit of Sayed Galal University Hospital, in the period from October 2016 to April 2017.The cases were selected by simple random method.

Patients:

Ninety neonates admitted to NICU were included in the study

and enlisted to one of 3 groups as following:

- Group1 (confirmed septic group): included 30 neonates admitted to neonatal intensive care unit (NICU) with sepsis proved with clinical & laboratory investigations (hematological sepsis score > 5 and positive blood culture).
- Group2 (suspected septic group): included 30 neonates admitted to NICU with clinical manifestation of sepsis (hematological sepsis score 2-5and negative blood culture).
- Group3 (control group): included 30 full healthy neonates enrolled from neonatal care clinic as a control group.

Inclusion criteria

- Term and preterm neonates with symptoms and signs of sepsis (confirmed and suspected sepsis).
- Signs of sepsis 3 or more of the following clinical manifestation:
- Temperature instability (<37°C or >38.5°C)
- Respiratory signs: increased oxygen requirement, apnea, cyanosis, intercostal retraction, tachypnea or grunting

- Circulatory signs: weak pulses, prolonged capillary refilling time >2 second, hypotension, tachycardia or shock.
- GIT signs: abdominal distention, diarrhea, bloody stool, feeding intolerance, hepatomegaly or jaundice.
- Neurological signs: irritability, hypotonia or lethargy.
- Hypoglycemia or hyperglycemia.
- Petechiae, bleeding (with thrombocytopenia) or DIC (*Richard and Joan, 2008*).

Exclusion criteria

- Extreme low birth weight (ELBW).
- Age > 28 day.

All neonates were subjected to the following

Complete clinical history taking

Complete clinical examination:

Laboratory Investigations including:

- 1. Complete Blood Cell Count (CBC) with differential count by an automated cell counter (Abbott Cell-Dyn 1700, Abbott laboratories, USA).
- 2. Blood film.
- 3. Blood culture.
- 4. Plasma CRP concentration measured using an immuno-

turbidimetric method (Human, Diagnostic, Wiesbaden, Germany).

5. Alpha -1- acid glycoprotein measured by ELISA technique,

manufactured by Bioneovan Co., Ltd., China.

Evaluation of sepsis: occur according to the scoring system for sepsis. (*Khalada et al., 2010*).

Points	Abnormality	Score
Total neutrophil count	< 1750 /cmm	1
	Or > 7500 to 8500 /cmm	
Immature neutrophil count	>400 /cmm	1
(I/T) ratio	>0.16 at birth	1
	or 0.13 beyond 72 hours	
	>0.2 as a maximal normal ratio	
(I/M) ratio	> 0.3	1
Total WBC count	< 5000 /cmm	1
	Or > 25000 /cmm 12-24 hours	
	Or > 21000 /cmm on day 2	
Degenerative changes in	If present	1
neutrophils as toxic granulations or Dohle bodies		
Platelet count	< 100, 000/ mm3	1

Table (1): Sepsis score (Hematologic scoring system)

Score less than 2: sepsis is very unlikely to occur.

Score from2- 4: sepsis is suspected to occur.

Score more than 5: sepsis is very likely to occur.

Ethical consideration:

- Approval of the ethical committee in the pediatrics department and university was obtained before the study.
- No conflict of interest either financial or commercial.
- Caregiver consent and approval for the study was obtained before the study

RESULTS

Demographic data		suspected sepsis group (II) (No.=30)		Confii gr (N	rmed sepsis coup (I) No.=30)	Control group (III) (No.=30)	
		No.	%	No.	%	No.	%
	Male	18	60.0	17	56.7	17	56.7
Gender	Female	12	40.0	13	43.3	13	43.3
	NVD	20	66.7	21	70.0	13	43.3
Mode of	CS	10	33.3	9	30.0	17	56.7
delivery							

Table (2): Gender and mode of delivery among the studied groups.

This table shows male predominance in the studied groups, in septic groups babies born by NVD more than CS and in control group babies born by CS more than NVD.

Table (3): Weight and gestational age among the studied groups.

Demographic data		Suspected sepsis group (II) (No.=30)	Confirmed sepsis group (I) (No.=30)	Control group (III) (No.=30)	F test	P. value	LSD
	Range	1-4	2-4	3-4		0.000	P1=.665
Weight(kg)	Mean <u>+</u> SD	2.51 <u>+</u> 0.667	2.58 <u>+</u> 0.574	3.36 <u>+</u> 0.301	23.163		P2=.000
							P3=.000
Gestational age	Range	32-39	33-40	37-39		0.042	P1=.905
(wks)	Mean <u>+</u> SD	36.90 <u>+</u> 2.006	36.83 <u>+</u> 2.27	37.80 <u>+</u> 0.714	2.701		P2=.024
	_						P3=.030

P1=between suspected sepsis group and confirmed sepsis group.

P2= between suspected sepsis group and control group.

P3=between confirmed sepsis group and control group.

This table shows statistically significant difference between septic group and control group regarding weight and gestational age, and no statistically significant difference between suspected sepsis group and confirmed sepsis group regarding weight and gestational age.

Table (4): percentage of clinical presentation of septic neonates.

Clinical presentation of septic neonates					
	Frequency	Percent (%)			

No. 2

R. distress	56	93.3
T instability	23	38.3
Poor reflex	52	86.7
Lethargy	44	73.3
Feeding intolerance	38	63.3
Poor perfusion	23	38.3
Pallor	22	36.7
Abd distention	23	38.3
Hypoglycemia	7	11.7
Convulsion	10	16.7
Mottling	22	36.7
Bleeding tendency	19	31.7
Apnea	20	33.3
Sclerema	4	6.7
Cyanosis	17	28.3
Jaundice	23	38.3

This table shows the most clinical presentation of septic neonate were RD and poor reflex, and the least clinical presentation hypoglycemia, convulsion and sclerema.

	DI I	14	6 41	<i></i>	•	
I able (5):	RI00d	culture o	t the	confirmed	sensis	groun
1 4010 (0)	D1004	current c o		communea	Sepsis	Siver

blood culture							
Frequency Percent (%)							
E. coli	4	13.3					
Klebsiella	10	33.3					
Pseudomonas	4	13.3					
Staph. Aureus	12	40.0					
Total	30	100.0					

This table shows that the most common organism was Staph. aureus (40.0%) followed by Klebsiella (33.3%) in the proved sepsis group.

 Table (6): Comparison between suspected sepsis group, confirmed sepsis group and control group regarding labs parameters.

	Labs parameters	Suspected sepsis	Confirmed sepsis group	Control group (III)	F. test	P. value	LSD
--	-----------------	------------------	---------------------------	------------------------	---------	----------	-----

THE PREDICTIVE VALUE OF ALPHA 1 ACID GLYCOPROTEIN IN DIAGNOSIS OF NEONATAL SEPSIS Mohammed Abd El Fatah Abd Allah, Abd El Rahman Ahmady Awad, Hisham Ahmed Mohammed Ali and Ashraf Taha Abd Elmouttaleb

		group (II) (No.=30)	(I) (No.=30)	(No.=30)			
	Range	18-190	12-256	0-3	í l		P1=0.000
CRP(mg/ml)	Mean <u>+</u> SD	43.80 <u>+</u> 33.44	101.33 <u>+</u> 64.69	.60 <u>+</u> .894	43.335	0.000	P2=0.000 P3=0.000
	Range	9-17	8-26	13-17		0.000	P1=0.441
HB (gm / dl)	Mean <u>+</u> SD	11.92 <u>+</u> 2.58	12.59 <u>+</u> 3.96	14.91 <u>+</u> 1.33	9.141		P2=0.000 P3=0.004
TLC	Range	3-47	3-38	6-9			P1=0.915
$(mm^{3}/x10^{3})$	Mean <u>+</u> SD	17.01 <u>+</u> 9.41	17.26 <u>+</u> 8.54	7.83 <u>+</u> .850	16.055	0.000	P2=0.000 P3=0.000
DI T	Range	6-647	10-693	156-450			P1=0.221
PLT (mm ³ /x10 ³)	Mean <u>+</u> SD	185.17 <u>+</u> 203.03	250.20 <u>+</u> 204.29	297.70 <u>+</u> 81.29	3.207	0.045	P2=0.007
(Mean <u>+</u> SD	5.18 <u>+</u> 1.07	4.59 <u>+</u> 1.06	4.70 <u>+</u> .423			P3=0.242

This table shows statistically significant difference between suspected sepsis group, confirmed sepsis group and control group regarding CRP. Also show statistically significant difference between septic groups and control group regarding HB, TLC and PLT and no statistically significant difference between suspected sepsis group and Confirmed sepsis group regarding HB, TLC and PLT.

 Table (7): Comparison between suspected sepsis group, confirmed sepsis group and control group regarding alpha -1-acid glycoprotein and sepsis scoring.

		Suspected sepsis group (II) (No.=30)	Confirmed sepsis group (I) (No.=30)	Control group (III) (No.=30)	F. test	p. value	LSD
Alpha 1acid	Range	336-720	769-7548	33-230	22.314	0.000	P1=.000
glycoprotein (ng/ml)	Mean <u>+</u> SD	533.77 <u>+</u> 128.23	1725.77 <u>+</u> 1665.64	123.33 <u>+</u> 60.29			P2=.000 P3=.000
	Range	2-5	4-7	0-1	326.456	0.000	P1=.000
Sepsis scoring	Mean <u>+</u> SD	3.63 <u>+</u> .890	5.30 <u>+</u> .952	0.20 <u>+</u> 0.407			P2=.000 P3=.000

This table shows statistically significant difference between suspected sepsis group, confirmed sepsis group and control group regarding Alpha -1-acid glycoprotein and sepsis score.

No. 2

Figure (1): ROC curves for alpha acid glycoprotein CRP, and WBCs

 Table (8): Sensitivity, specificity, PPV, NPV, Accuracy and Cut off of α-1acid glycoprotein between septic group and control group.

Marker	Cut off value	AUC	Sensitivity %	Specificity %	PPV%	NPV%
α-1-acid glycoprotein(ng/ml)	136	0.99	93%	91.3%	93.1%	68.4%
CRP (mg/ml)	6	0.85	87.8%	84.8%	81.1%	67.7%
WBCs(mm ³ /x10 ³)	11.5	0.81	83.3%	75.3%	81.1%	63.9%

Roc curve Figure (1) and **table (8)** shows cut off value of serum α -1- acid glycoprotein to detect sepsis136 ng/ml with sensitivity 93% and specificity 91.3%, also show cut off value of CRP to detect sepsis 6 mg/ml with sensitivity 87.8% and specificity 84.8% and cut off value of WBCs to detect sepsis11.5 with sensitivity 83.3% and specificity 75.3%.

DISCUSSION

In this study a male predominance was found in the studied groups as males represents 60% of the suspected septic group and 56.7% of confirmed septic group. This male predominance is apparent in almost all studies of

neonatal sepsis as in a study done by **Gerges**, (2009) who found that males represented 64% of septicemic group in his study and **Abdelfatah**, (2005) who found that males represented 57.7% of his cases.

Also Abdul Salam (2011) who found the males represented 55%, ElGohary (2014) who found males represent 51, 4%, and El Bashir (2010) who found males represent 55%. This may be due to gene located on the X chromosome which is involved with the function of the Thymus or with synthesis of immunoglobulins (*Klein and Remington, 2001*).

In this study, regarding the mode of delivery babies born by NVD are more than babies born by CS in both septic groups (NVD 20 (66.7%) in clinically suspected sepsis group and 21 (70.0%) in confirmed sepsis group. CS 10 (33.3%) in clinically suspected sepsis group and 9 (30.0%) in confirmed sepsis group.

This agrees with Stoll et al (2008) who observed that babies born by NVD were more likely to have sepsis than those delivered by CS and Wageah (2015) who observed that babies born by NVD in clinically more 66% are suspected septic groups and 74% confirmed septic groups. in This may be due to the infant is

colonized with the pathogen from birth canal (*Gomella*, 2013).

The most common clinical finding patients was among respiratory distress (93.3%)followed by poor reflex (86.7%). (73.3%), lethargy feeding intolerance (63.3%). El-Kerdani et al., (2001) found that weak reflexes followed by lethargy and respiratory distress were the most common clinical signs among neonates with sepsis as it was detected in 65% and 60% of their patients respectively.

However Nabih et al., (2001) found that 24% had respiratory distress, 88% were lethargic, 22% had apnea, 48% had hepatospleno-42% had abdominal megally. distension, 12% had seizures and 56% had sclerema. Ottolini et al (2003) found that the most frequent sepsis signs and symptoms were tachypnea 58%, cyanosis 25% then lethargy 20%. Kaseb et al (2004) found 56.6% of cases had respiratory distress, lethargic, 33.3% were 16.6% had abdominal 16.6% apnea, distension. and 33.3% had convulsions of cases.

These differences may be explained by the difference in the causative organisms and the course of sepsis or due to non-specific symptoms and signs of neonatal sepsis.

study, TLC our was In significantly higher in confirmed septic group than in control group (P value <0.05) this comes in agreement with Ahmed et al (2002), Elwan et al (2004), and Abou-Hussein et al (2005) who mentioned in their studies that, statistically TLC showed significant difference between septic group and control group. However, Hashim et al (2004), Ali (2006) and Fergany (2006) found that TLC did not show any significant difference in patients with confirmed sepsis versus patients with no infection.

As regarding hemoglobin concentration, confirmed septic group tended to have lower concentration than control. This difference was statistically significant regarding Hb concentration (P value <0.05), this agrees with El-Kerdani et al (2001) who found significant anemia in neonates with proven sepsis.

As regards the type of bacteria isolated from blood cultures in the present study, Staph was found to be the main organism of the cultures growth. Staphylococci (40%), Klebsiella (33.3%), E-coli (13.3%) and pseudomonas (13.3%).

This agree with Abdul Salam (2011) who found that causative organism in 37% of the cases

caused by staph, 27%caused by klebsiella, 17% by E Coli, and 12% by pseudomonas.

No. 2

Furthermore **El Bashir (2010)** found that blood culture result in septic neonates the cause in 40% of the cases is staph, 25% klebsiella 15% streptococcus, and 15%caused by pseudomonas.

Moreover **El Gohary (2014)** found that blood culture of the study group showed that 25.7% were caused by staph, 17.1% caused by E Coli, 14% caused by streptococcus, 11.4% caused by klebsiella, and 8.6% pseudomonas.

Also **Ipek et al (2010)** found that themost common isolated microorganism was staphylococcus aureus, and **Kaseb et al., (2004)** found that gram-positive bacteria accounts for the majority of the culture growth, staph was isolated in 40%, on the other hand Klebsiella was found in 36.7%, and E.coli in 6.7%.

The predominance of grampositive bacteria in this study was against some previous study done in Egypt by Ahmed et al., (2002) found that gram-negative who bacteria accounts for the majority of growths (55.9%) culture the enterbacteria, 20.3% pseudomonas 15.3% Klebsiella). These and findings prove that every neonatal unit has its own pattern of microorganisms, which change from time to time, and antimicrobial combinations should be altered according to culture results.

In our current study it was found that CRP was significantly higher in septic group than control group (p=0.00). This was in agreement with Linda (2006) who found that CRP was significantly higher in case group than control group. Similarly, **Ipek et al (2010)** carried out a study on 105 neonates and found that there were significant differences between groups for CRP level.

In the present study the sensitivity, specificity, positive and negative predictive values of α -1acid glycoprotein at cut off value 136 ng/ml were found tobe 93%, 91.3%, 93.1%, 66.4%, respectively.

Which agree with other previous studies:

Ipek et al (2010) found that sensitivity 56.25% then increased to 81.25% in the second test after 3 days, specificity 93.62%, PPV 75% then 81.25% and NPV 86.27% then93.62%.

El Bashir (2010) found that sensitivity 75%, the specificity 90%, PPV 64.3% and NPV 93.7%.

Abdul Salam (2011) found that sensitivity91%, specificity 100%, PPV 00% and NPV 80%.

El Gohary (2014) found that sensitivity 80% in first test then 91% in the second test, specificity 95%, PPV 96.5% then96.9% and NPV73% then 86%.

Ipek et al., (2011) found that in their study sensitivity, specificity, positive and negative predictive value47.05%, 93.62%, 84.25% and 70.96% respectively.

Wageeh(2015) found that sensitivity, specificity, positive and negative predictive value of alpha -1-acide glycoprotein 78%, 86.3%, 91.1%, 65.4%, respectivelv between control and clinically suspected sepsis group 87%. 91%. 93%. and 68%. respectively between control & confirmed sepsis group.

ROC curve for serum alpha-1acid glycoprotein level in septic group showing an area under the curve (AUC) 0.99.it showed that serum α -1-acid glycoprotein was reliable to detect sepsis (p<0.01) and the cutoff value of serum alpha-1-acid glycoprotein to detect sepsis was> 136 ng /dl with sensitivity 93%and specificity 91.3%.

This comes in agreement with study done by (*Ipek et al., 2011*) which show similar results as ROC curve for serum α - 1-acid glycoprotein level was constructed showing an area under the curve (AUC) 0.922 and cut off value to detect sepsis was> 134 ng/dl, yielded sensitivity of 89%, specificity of 91%.

REFERENCES

1. Abdelfatah M, et al (2005): Rapid detection of neonatal sepsis using polymerase chain reaction. M.Sc. thesis (Pediatrics).Faculty of Medicine Cairo University.

2. Abdul Salam M S, et al (2011): value of α 1 acid glycoprotein for early diagnosis of neonatal sepsis, thesis submitted for partial fulfillment of master degree in pediatric (Menofia University).

3. Abou-Hussein HH, El-Khawaga AM. And Wahab AA (2005): C-reactive protein as a marker for early-onset neonatal sepsis: The good, the better and the best. The Egyptian Journal of Neonatology; 6 (3): 151-159.

4. Ahmed M, Hamed Z, Fouad H, et al (2002): Granulocyte colony stimulating factor as a marker for neonatal sepsis. Thesis submitted for partial fulfillment of M.D. Degree in Pediatrics (Cairo University).

5. Ali RA, et al (2006): Serum adiponectin in neonatal sepsis. Master Thesis, Faculty of Medicine, Ain-Shams University.

6. Bhandari V, Wang C, Rinder H, et al (2008): Hematologic profile of sepsis in neonates: neutrophil CD64 as a diagnostic marker. Pediatrics; 121:129-34.

7. Campos DP, Silva MV, Machado JR, et al (2010): Early-onset neonatal sepsis: cord blood cytokine levels at

diagnosis and during treatment. J Pediatric (Rio J). 86(6):509-14.

No. 2

8. Colombo S, Buclin T, Decosterd, et al (2006): Orosomucoid plasma concentration and genetic variants ,clin. Pharmacol. Ther. 80(4):3.

9. El Bashir R M, et al (2010): Value of α l acid glycoprotein for early diagnosis of neonatal sepsis, thesis submitted for partial fulfillment of master degree in pediatric (Banha University).

10. El Gohary T Y, et al (2014): Role of α 1 acid glycoprotein in comparison to CRP in early diagnosis of neonatal sepsis. Thesis submitted for partial fulfillment of master degree in pediatrics (Banha University).

11. El-Kerdani T, Abed Wahed M A, Aly, et al (2001): The values of neutrophil CD11b expression, 1L-6 and soluble receptor of tumor necrosis factor in early diagnosis of neonatal sepsis. J. Egy. Soc.; 115:125.

12. Fakhr AM, et al (2005): Comparison between conventional blood culture and PCR in diagnosis of neonatal septicemia. MSc. Thesis in Microbiology Department, faculty of Medicine, Zagazig University, P. 108-112.

13. Fergany AL, et al (2009): Serum cortisol and thyroid hormone levels in neonates with sepsis. Master Thesis, Faculty of Medicine, Ain- Shams University; 2006.

14. Fergany AL, et al (2006): Serum cortisol and thyroid hormone levels in neonates with sepsis. Master Thesis, Faculty of Medicine, Ain- Shams University.

15. Gerges MN, et al (2009): Detection of different bacteriological species responsible for early-onset neonatal sepsis. M.Sc. thesis (Pediatrics). Faculty of Medicine. Cairo University.

16. Gomella TL (2013): Neonatology management, procedures, on-call problems, diseases and drugs. Elsevier Philadelphia; 761-790.

17. Hashim MS, Aboulghar HM, El-Gayar DF, et al (2004): Evaluation of serum cortisol and ACTH levels in neonatal sepsis. The Egyptian journal of neonatology; 5 (3): 135-142.

18. IpekIlke O, Mehmet Saracoglu and Abdul KadirBozaykut A (2010): Alpha one acid glycoprotein in early diagnosis of neonatal sepsis J Matern Fetal Neonatal Med,; 23 (7), 617-621.

19. KhaladaBinteKhair, Mohammad AsadurRahman,Tuhin Sultana, et al (2010):Role of Hematologic Scoring System in Early Diagnosis of Neonatal Septicemia, BSMMU J; 3(2): 62-67.

20. Kaseb AA, Abou El-Ela, MH, Abou Hussein et al (2004): The value of procalcitonin in the diagnosis of neonatal sepsis. M.Sc. thesis (Pediatrics). Faculty of Medicine, Cairo University.

21. Klinger G, Levy I, Sirota L, et al (2009). Epidemiology and risk factors for early onset sepsis among very-low-birth weight infants. Am J ObstetGynecol; 201(1):38.e1-6.

22. Klein JO and Remington JS (2001): Current concepts of infections of the fetus and newborn infant. In: Klein JO, Remington JS (eds). Infectious Diseases of the Fetus and Newborn Infant. 5th ed. WB Saunders; 943-998.

23. Linda L and Bryan L (2006): Neonatal sepsis, e medicine from WebMD.

24. Mishra UK, Jacobs SE, Doyle LW, et al (2006): Newer approaches to the diagnosis of early onset neonatal sepsis. Arch Dis Child Fetal Neonatal Ed.; 91(3): 208-12.

25. Nabih M, El-Maraghi S and Sallah S et al (2001): Serum intracellular adhesion molecule in neonatal sepsis. Thesis submitted for partial fulfillment of M.D. Degree in pediatrics. Cairo University.

26. Ottolini MC, Lundgren K, Mirkinson, et al (2003): Utility of complete blood count and blood culture screening to diagnose neonatal sepsis in the symptomatic at risk newborn. Pediatric. Infect. Dis. J.; 22: 430-4.

27. Peter J Delves, Seamus J Martin, Dennis R Burton, et al (2011): In Roitt's Essential Immunology, 12th Edition, Blackwell Scientific publication.

28. UN IGME (2017): United Nation Inter-agency Group for child Mortality Estimation.

29. Richard AP and Joan AR (2008): Early onset sepsis. In: Neonatology, 1st ed. Cambridge University Press, 283-92.

30. Stoll BJ (2004): Infections of the neonatal infant. Quoted from Nelson Textbook of Pediatrics, Behrman, RE, Kleigman, RM and Jenson HB (Eds.). 17th ed. W.B. Saunders, Philadelphia P: 623-640.

31. Stoll BJ (2008): Infections of the Neonatal Infant. In: Kliegman RM, Behrman RE, Jenson HB and Stanton BF (eds). Nelson Textbook of Pediatrics, 18th ed. Elsevier; 109: 794- 811.

32. Wageeh, et al (2015): Value of α 1 acid glycoprotein for the early diagnosis of neonatal sepsis, Thesis submitted for partial fulfillment of master. Degree in Pediatric (Ain shams, University).

الملخص العربي 1789

القيمة التنبؤيه لحمض الفا -1- جليكوبروتين في تشخيص التسمم الدموي لدى الاطفال حديثي الولادة

ماز الا التسمم الدموي مشكله كبير ، في الاطفال حديثي الولادة مع ارتفاع معدلات الإصابة والوفيات على الرغم من التقدم في الرعاية المركزة لحديثي الولادة. أن تشخيص التسمم الدموي يبدأ بالشك السريري والتحدي الذى يواجه طبيب الأطفال حديثي الولادة هو تقرير أي الأطفال بحاجه إلى علاج بالمضادات الحيوية التجريبية ولكن هذا يسبب الإفر اط بالمضادات الحيوية و عدوى المستشفيات بسبب حجز الحالات في المستشفى بدون داعى وللأسف لا يوجد اختبار تشخيصي واحد يمكن الوثوق به لتشخيص التسمم الدموي في الأطفال حديثي الولادة العديد من الاختبار ات التشخيصية لتشخيص او تأكيد التسمم الدموي .

وقد أجريت هذه الدراسة بهدف تقييم القيمة التشخيصية لحمض الفا -1- اسيد جليكوبروتين في التشخيص المبكر للتسمم الدموي في حديثي الولادة.

وقد أجريت هذه الدراسة على 90 من حديثي الولادة بوحدة العناية المركزة لحديثي الولادة بمستشفى السيد جلال الجامعي .

الأطفال حديثي الولادة في هذه الدر اسة تم تقسيمهم إلى 3 مجموعات على النحو التالي :

- المجموعة الأولى :تشمل 30من حديثي الولادة تظهر عليهم العلامات السريرية للتسمم الدموي
 الذي تم إثباته بالتحليلات المختبرية ومزرعة الدم.
- المجموعة الثانية :تشمل 30من حديثي الولادة تظهر عليهم العلامات السريرية للتسمم الدموي ومزرعة الدم سالبه.
 - المجموعة الثالثة :تشمل 30 من حديثي الولادة أصحاء كمجموعه تحكم.
 - وقد تم إخضاع جميع الذين شملتهم الدر اسة إلى ما يلى :-
 - 1- اخذ التاريخ الطبي .
 - 2- استكمال الفحص الإكلينيكي .
 - 3- عمل الفحوص المختبرية . القياس الكمي لمستوى بروتين سي التفاعلي في بلازما الدم
 4- القياس الكمي لنسبه حمض الفا -1- جليكوبروتين في الدم.

وقد أظهرت الدراسة ارتفاع مستوى الفا -1- جليكوبروتين في الدم ارتفاعا عاليا في الأطفال حديثي الولادة المصابين بالتسمم الدموي مقارنه بالأطفال الأصحاء في هذه الدراسة سجل قياس نسبه ألفا -1- جليكوبروتين في الدم درجه من الحساسية والتخصصية وقيمه تنبؤ ايجابيه وسلبيه كما يلى :-

- 93.1،%91.3،%93 وذلك عندما كانت قيمته اعلى من 136نانو جرام/ المليلتر بالمقارنة بمجموعه التحكم.
- ويظهر تحليل منحنى الروك حمض الفا -1- جليكوبروتين كعلامة تشخيصيه مبكرة في حديثي الولادة مع خاصية الحساسية والخصوصية.