Immunological and Biochemical Profiles of Tilmicosin in Rabbits

Ahmed A. Said¹, Abdel-Alim F. Abdel-Alim¹, Sameh M. El-Nabtity¹, Manal Bahaa Eldin²

and Mai A. Fadel 3*

¹Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, 44511,

Egypt

²Reproduction Research Institute, Al Haram, Giza, Egypt

³Animal Health Research Institute, Dokki, Giza, Egypt

Article History: Received: 29/2/2016 Received in revised form: 17/4/2016 Accepted: 20/6/2016

Abstract

This study aimed to evaluate the effect of tilmicosin on rabbit immunity after daily subcutaneous (S.C) injection for 3 successive days. Fifteen New Zealand male rabbits were divided into 3 groups; the first group was left as a control, the second was non treated vaccinated against pasteurellosis (1 mL S.C in the skin fold of the back of the rabbit), while, the third was vaccinated and treated by tilmicosin in a dose of 10 mg/kg BW daily for 3 days. Whole blood and serum samples were collected from each rabbit on 1st, 3rd, 9th, 14th, 21st and 28th days post drug administration to determine some immunological and biochemical parameters. Histopathological examination of liver, kidneys and heart of all groups was also carried out. The results revealed that tilmicosin elicited a significant increase in B-lymphocytes, nitric oxide production by macrophages and lysozyme activity of the serum. Meanwhile, the drug had no significant changes on alanine aminotransferase enzyme (ALT) and aspartate aminotransferase enzyme (AST) levels (liver enzymes). On the 21st day ALT showed significant decrease. Moreover; there were no significant changes on urea and creatinine levels (kidney functions) when compared with control group. Histopathological findings of the vaccinated and treated groups showed lesion score from 1st and 2nd degree. It could be concluded that tilmicosin afforded a good effect on rabbits' immunity without negative effects on liver and kidney functions.

Keywords: Tilmicosin, Pasteurollosis, New Zealand Rabbits, Lysozyme activity, Lymphocyte, liver enzymes.

Introduction

Since the use of chemotherapeutic agents was widely introduced in the veterinary field, many authors have studied their influence on the immune response against animal diseases. Nonspecific immune-stimulants are gaining increased attention and attraction for medication in the veterinary field through potentiation of the immune response to applied vaccines [1]. Immunosuppressive properties of some antibiotics are represented by inhibition of both cellular and humoral immune responses to a variety of vaccines [2].

Tilmicosin is one of the macrolide antibiotics developed for veterinary use. It is synthesized from tylosin, and has an antibacterial spectrum similar to tylosin with enhanced activity against Pasteurella multocida and Pasteurella haemolitica [3]. It acts by inhibiting protein synthesis by binding to the 50 S ribosomal subunit of sensitive microorganisms [4]. Tilmicosin is used for treating some diseases caused by tilmicosin sensitive microorganisms such as: respiratory tract infections in rabbits caused by P. multocida and Bordetella bronchiseptica as well as bacterial enteritis caused by clostridia. Moreover, Mycoplasma gallisepticum and M. synoviae are sensitive to tilmicosin [5,6]. The aim of this study was to investigate the immunological and biochemical effects of tilmicosin in rabbits vaccinated with P. multocida.

*Corresponding author e-mail: (dr.mai87@yahoo.com), Animal Health Research Institute, Dokki, Giza, Egypt.

Material and Methods

Animals and experimental design

Tilmicosin phosphate was obtained from (ELANCO Animal Health, Eli Lilly, Geneva, Switzerland) as an aqueous solution in dark plastic bottle containing 240 mL (250 mg/mL). The molecular formula is: $C_{46}H_{80}N_2O_{13}$ [7]. It was injected S.C with a dose of 10 mg/kg BW once daily for 3 successive days [8]. Formalinized killed P. multocida vaccine was obtained from Veterinary Serum and Vaccine Research Institute (VSVRI), Abassia, Cairo, Egypt. It was administrated S.C in a dose of 1 mL in the skin fold of the back of the rabbits [9]. Fifteen male New Zealand rabbits were divided into three equal groups each of five weighing about 1.5 kg/animal. Each rabbit was kept in a separate cage and fed dry pellets (150 g/rabbit twice daily). Animals in the 1st group were kept as control, they received no drug and no vaccine all over the experimental period. Those of the 2nd group were non treated vaccinated with formalinized killed P. multocida vaccine in a dose of 1 mL in the skin fold of the back of each animal. Rabbits in the 3rd group were S.C injected with tilmicosin (10 mg/kg BW) once daily for 3 successive days and then vaccinated with the same vaccine at the same day in which the 2^{nd} group was vaccinated.

Heparinized blood samples (2 mL from the ear vein) were obtained on 1^{st} , 3^{rd} and 9^{th} day post vaccination from the vaccinated group and treated vaccinated group for the application of lymphocyte transformation assay [10]. For estimation of liver and kidney function tests (ALT, AST. Urea and Creatinine) and measurement of nitric oxide produced by macrophages in the serum, 3 ml of blood were collected from each rabbit on 1st, 3rd, 9th, 14th, 21st, 28th days [11,12].

Histopathological changes of liver, kidneys and heart following tilmicosin medication were investigated at the end of the experiment (28th day). Two animals were sacrificed from each group and tissues were placed in 10% formalin solution then embedded in paraffin and stained by H&E [13].

Analytical procedures

Serum nitric oxide level was measured with colorimetric method using Griess reagent, while serum lysozyme activity was estimated according Schltz [12]. Lymphocyte to transformation test using MTT (3-{4,5dimethylthiazol-2-yl}-2,5-diphenyltetrazolium bromide) which was used for separation of mononuclear cells. Reactivos GPL kits was used for estimation of liver functions (ALT, AST) according to Amador and Wacker [15] and Bergmeyer [16], respectively. Also, kidney function tests (blood urea nitrogen and creatinine) according to Tabacco [17] and Henry et al. [18], respectively, were carried out.

Statistical analysis

The data were analyzed using SPSS version 21, IBM Corp., Chicago, IL, USA. Analysis of variance (one –way ANOVA) was used to detect the differences between treatments. Data were expressed as mean \pm SD and Duncan's test was used to find the differences among means. Results with P \leq 0.05 were considered significantly different.

Results

Immunological results

The data represented in the present study emphasized a significant increase in all the examined parameters (B-lymphocyte transformation test, nitric oxide test and lysozyme activity), when comparing the vaccinated treated and vaccinated non treated groups with control group on the 3rd and 9th days post vaccination. Moreover, there was a significant increase lymphocyte in transformation in vaccinated treated group compared with the vaccinated non treated one on $3^{\overline{rd}}$ and 9^{th} day (Table 1).

Biochemical results

The obtained results indicated that there was a significant increase in AST activity in 1st day, 3rd day and 9th day of the experiment in the vaccinated and treated group compared with control group. In 14th, 21st and 28th days of the experiment there was no significant

changes in vaccinated, treated group compared with control group. In vaccinated non treated group, there were an increase in AST levels all over the period of experiment compared with control group, with more increase in 14th and 21st days than the others (Table 2).

There was a significant increase in the ALT activity in vaccinated and treated groups compared with the control group at 1^{st} , 3^{rd} and 9^{th} day of the experiment. At 14^{th} and 28^{th} day, there were no significant changes in the ALT levels when compared with the control group. At 21^{st} day, the results were at normal level. In vaccinated non treated group, there was significant increase in the ALT levels at 1^{st} , 3^{rd} , 9^{th} , 14^{th} and 21^{st} days of the experiment

when compared with control group. At 28th day of the experiment, there was no significant changes in the ALT level when compared with control group (Table 2).

Our results demonstrated a significant increase in serum creatinine level at 1st, 3rd and 9th days of the experiment in vaccinated and treated group when compared with control group. At 14th, 21st and 28th days, there were no significant changes in the serum creatinine levels in vaccinated and treated groups compared with the control group. In vaccinated non treated group, there were no significant changes in the serum creatinine level all over the experimental period compared with the control group (Table 2).

 Table 1: The effect of tilmicosin treatment (10 mg/kg BW/day S.C) for 3 successive days and formalinized killed *P. multocida* vaccine (1 mL S.C in the skin fold in the back of the New Zealand rabbit) on humoral immunity parameters

Groups	Lymphocyte transformation			Serum nitric oxide (ng/mL)			Lysozyme activity (µg/mL)		
	1 st day	3 rd day	9 th day	1 st day	3 rd day	9 th day	1 st day	3 rd day	9 th day
Control	0.5±0.03 ^a	0.64±0.28 ^c	0.58±0.01 ^c	7.3±0.3 ^a	9.8±1.2 ^b	10.04±0.96 ^c	184.6±5.4 ^b	183.6±6.2 ^c	163.3±5.9 ^c
Vaccinated non treated	0.64±0.03 ^a	0.88±0.02 ^b	0.98±0.71 ^b	6.3±0.8 ^a	10.7 ± 1.3^{b}	25.1 ± 1.8^{b}	180.6±6.7 ^b	248.4±4.67 ^b	266.8 ± 3.5^{b}
Vaccinated treated	0.599±0.03 ^a	1.32±0.29 ^a	2.35±0.5 ^a	6.8±0.62 ^a	$40.3{\pm}1.4^{a}$	53.4±2.1ª	200.2±3.3 ^a	279.5±3.5ª	288.3±4.4 ^a

Means within the same column carrying different superscripts are significant at (P \leq 0.05).

The results of this study demonstrated a significant increase in serum urea level at 1^{st} , 3^{rd} , 9^{th} and 14^{th} days of the experiment in vaccinated and treated groups compared with the control group. At 21^{st} and 28^{th} days of the experiment, there were no significant changes

in the serum urea level in vaccinated and treated group compared with the control group. In vaccinated non treated group, there was significant increase in the serum urea level all over the period of the experiment compared with the control group (Table 2).

		Control	Vaccinated non treated	Vaccinated treated
	1 st day	15.2±0.08 ^c	19.2±0.8 ^b	$25.4{\pm}0.05^{a}$
	3 rd day	$15.4 \pm 0.054^{\circ}$	19.8±0.83 ^b	27 ± 1.0^{a}
	9 th day	$15.4 \pm 0.054^{\circ}$	19.6±0.54 ^b	25.4 ± 0.54^{a}
AST(U/L)	14 th day	15.8±0.83 ^b	20.8 ± 0.83^{a}	$18.8{\pm}1.09^{a}$
	21 st day	$15.8 \pm 0.83^{\circ}$	20 ± 1.22^{a}	17.8 ± 2.04^{b}
	28 th day	16 ± 1.0^{b}	19.4 ± 0.54^{a}	$18.8 {\pm} 1.09^{ab}$
	1 st day	9.0 ± 1.0^{c}	12.6 ±1.67 ^b	23.4±0.54 ^a
	3 rd day	$8.8 \pm 0.83^{\circ}$	13.8 ± 0.83^{b}	23.6 ± 0.89^{a}
	9 th day	$10.6 \pm 0.54^{\circ}$	13.8±1.09 ^b	23.8±0.83 ^a
ALT(U/L)	14 th day	9.6 ± 0.54^{b}	13.8 ± 0.84^{a}	$11.8{\pm}1.09^{ab}$
	21 st day	11.4 ± 0.54^{b}	13±1.22 ^a	10.6 ± 0.54^{b}
	28 th day	8.8 ± 0.83^{b}	10.8±0.83 ^a	10.8±1.09 ^a
	1 st day	0.42±0.027 ^c	$0.54{\pm}0.05^{b}$	$0.84\pm0.054^{\rm a}$
Serum Creatinine(mg/dl)	3 rd day	$0.45 \pm 0.057^{\circ}$	$0.55 {\pm} 0.057^{b}$	$0.85{\pm}0.057^a$
	9 th day	0.45 ± 0.057^{c}	0.55 ± 0.057^{b}	0.75 ± 0.057^{a}
	14 th day	0.42±0.027 ^c	0.56±0.054 ^b	0.62 ± 0.016^a
	21 st day	0.42 ± 0.027^{c}	$0.58{\pm}0.083^{a}$	0.54 ± 0.054^{b}
	28 th day	0.44 ± 0.054^{c}	0.56 ± 0.054^{a}	$0.46\pm0.054~^b$
Serum Urea(mg/dl)	1 st day	$15.6 \pm 0.54^{\circ}$	19.8 ±1.095 ^b	33±2.73 ^a
	3 rd day	16.2±0.83 ^c	20.6 ± 0.54^{b}	26.6 ± 1.51^{a}
	9 th day	$15.6 \pm 0.54^{\circ}$	$20.6 \pm 0.54^{\rm b}$	28.0±1.22 ^a
	14 th day	$16.0 \pm 1^{.0c}$	21.8 ± 0.83^{b}	22.2 ± 2.58^{a}
	21 st day	16.4 ± 1.34^{b}	20.8 ± 0.83^{a}	17.8 ± 2.04^{b}
	28 th day	16.4 ± 1.34^{b}	20.8 ± 1.095^{a}	17.6 ± 0.54^{b}

 Table 2: The effect of tilmicosin treatment (10 mg/kg BW/day S.C.) for 3 successive days and formalinized killed *P. multocida* vaccine (1 mL in the skin fold in the back of the New Zealand rabbit) on liver enzymes and kidney parameters

Means within the same row carrying different superscripts are significant at (P \leq 0.05).

Histopathological results

In vaccinated non treated and vaccinated, treated groups, the histopathological

changes in liver, kidneys and heart were illustrated in Figure (1).

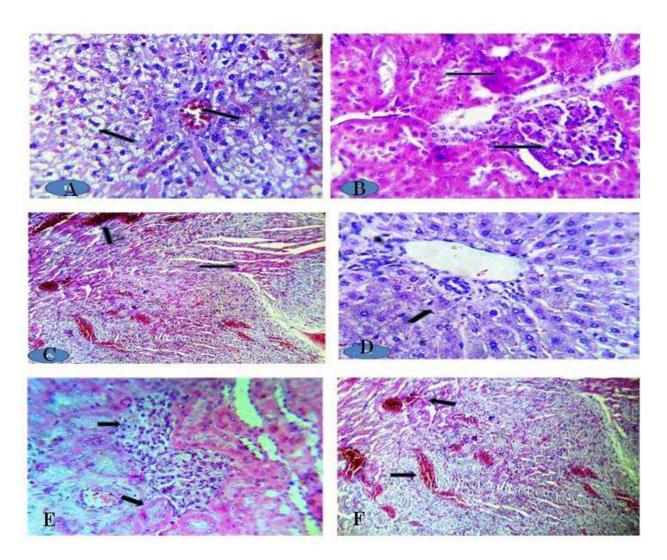


Figure 1: Histopathological changes in liver, kidneys and heart tissues of NewZeland rabbits vaccinated and/or treated with *P. multocida* and Tilmicosin, respectively. (A: Liver of vaccinated non treated animals showing moderate congestion of hepatic blood vessels and sinusoids and hydropic degeneration of most hepatocytes. B: Kidneys of vaccinated non treated rabbits showing hypertrophied glomerular tuft endothelium and mesingeal cells, hyaline casts in some tubules and cloudy swelling of the tubular epithelium. C: Heart sections of vaccinated non treated group showing moderate congestion of coronary and intermascular blood vessels and capillaries and hyaline degeneration of some muscle fibers. D: Liver of vaccinated group treated with tilmicosin showing normal structures apart of cloudey swelling of some hepatocytes. E: Kidneys of vaccinated rabbits treated with tilmicosin showing hypertrophied glomerular mesingeal cells and cloudy swelling of some renal tubular epithelium. F: Heart of vaccinated animals treated with tilmicosin showing moderate congestion of coronary and intermascular blood vessels and capillaries and hypertrophied glomerular mesingeal cells and cloudy swelling of some renal tubular epithelium. F: Heart of vaccinated animals treated with tilmicosin showing moderate congestion of coronary and intermascular blood vessels and capillaries and hypertrophied glomerular mesingeal cells and cloudy swelling of some renal tubular epithelium. F: Heart of vaccinated animals treated with tilmicosin showing moderate congestion of coronary and intermascular blood vessels and capillaries and hypertrophied set animals treated with tilmicosin showing moderate congestion of coronary and intermascular blood vessels and capillaries and hypertrophied glomerular is showing moderate congestion of coronary and intermascular blood vessels and capillaries and hypertrophied glomerular blood vessels and capillaries and hypertrophied glomerular blood vessels and capillaries and hypertrophied glomerular blood vessels and

Discussion

The present study was conducted to evaluate the effects of tilmicosin on rabbit immunity as well as to evaluate its effect on biochemical some parameters and histopathological findings. The results of this study revealed that the vaccinated rabbits when treated S.C with tilmicosin (10 mg/Kg BW/day) for 3 successive days showed no significant changes in the serum urea level, ALT and AST levels compared with the control group. These findings were confirmed by Xie et al. [19], Jordan [20], Jordan [21] and Altunok et al. [22]. The authors stated that liver function parameters such as ALT, urea and AST were normal, suggesting that the damage of liver was slight and reversible and tilmicosin treatment-related no changes occurred in creatinine. However, Jordan [21] observed that serum ALT after high-dose of tilmicosin in dogs of both sexes was increased by day 12 and continued to increase to the end of the study. This could be attributed to different species under investigation. In the present study, histopathological findings in treated rabbits with tilmicosin showed lesion scores of 1st and 2nd degree (on a scale of 0 to 3) according to Done [23]. These findings were incompatible with Jordan [20] who observed small foci of myocardial necrosis in the papillary muscle as a sign of toxicity. Also, Christodoulopoules [24] reported that lambs injected S.C with tilmicosin 15 mg/kg BW died within 15 minutes.

During necropsy, the heart was found to have multiple ventricular septal defects. Death was attributed to sudden heart failure due to the effects of tilmicosin on the heart. Regarding the effect of tilmicosin on lysozyme activity, this study clearly demonstrated that lysozyme activity increased in the treatedvaccinated group and vaccinated non treated group with maximum levels at 9th day of the experiment. This result was confirmed by Scorneaux and Shryock [25] who reported that tilmicosin enhanced intracellular killing by phagocytes which were detected in studies using swine phagocytes.

Tilmicosin uptake increased the lysosomal enzymes (acid phosphatase, lysozyme and beta-glucuronidas) production. In this study, nitric oxide level in serum was increased in treated and vaccinated groups. This result was in agreement with Cao et al. [26] who reported tilmicosin that decreased nitric oxide production. The promotion of B-lymphocytes proliferation in the treated group is compatible with Yun et al. [27] who reported that tilmicosin was similar to those of negative control whether in vitro or in vivo, indicating that this antibiotic did not promote or inhibit lymphocyte proliferation. In our study. tilmicosin stimulated humoral immune response which was inconsistent with Khalifeh et al. [28] who reported that tilmicosin reduced the humoral immune response. Also, Guan et al. [29] suggested that tilmicosin could suppress the humoral immune response.

Conclusion

Summing up our observations, tilmicosin elicited a significant increase in B-lymphocyte transformation. nitric oxide level and lysozyme activity. Thus indicating its immune stimulation effects with mild reversible impact liver and kidney functions. The on combination of formalinized killed *P*. multocida vaccine and tilmicosin in the prevention and treatment of rabbit pasteurollosis is more effective than using one of them alone.

Conflict of interest

None of the authors have any conflict of interest to declare

Acknowledgment

I find it difficult to express in words my feeling and gratitude towards staff of Immunology Unit, Animal Reproduction Research Institute, Al Haram, Giza.

References

[1] Ryter, A. (1985): Relationship between ultrastructure and specific functions of macrophages. Comp Immunol Microb Infect Dis, 8 (2): 119-133.

- Shalaby, M.A. (1989): Immunosuppressives and their effect on immune system of poultry. First Annual report Cav, 2 (8) 116-120.
- [3] EMA (2000): European Medicines Agency. Committee for veterinary medicinal products (Tilmicosin in rabbits). Summary report (5).
- [4] Sande, M.A. and Mandell, G.L. (1985): Antimicrobial agents, tetracycline, chloramphenicol, erythromycin and miscellaneous antibacterial agents in the pharmacological basis of therapeutics. Eds. Goodman Gilman A.L.S; Rall; T.W.; Murad, F. (Eds.). Macnillan puplishing company New York, pp: 1110-1118.
- [5] Beauchemin, V.; Byrd, J. and Burnett, T. (2007): Tilmicosin residue depletion study in chicken eggs. Eli Lilly and Company, Indianapolis, IN, USA. Sponsor submitted.
- [6] Luperi, L. and Brightwell, J. (1999): Tilmicosin tissue residue study in the rabbit. Unpublished Study no. RTC 6483 (Eli Lilly Study No. T5CRIT9801) from RTC Research Toxicology Centre. S.p.A., Roma for Eli Lilly Italia S.p.A., Sesto Fiorentino Italy. Sponsor submitted.
- [7] Arnold, D. and Xu, S. (1998): Tilmicosin. Addendum to the monographs prepared by the 47th meeting of the Committee and published in the FAO Food and Nutrition Paper 41/9.
- [8] Harvey, C. (1997): Abscesses in rabbits. In: rabbit medicine and procedures for practitioners program and abstracts. House Rabbit Society Veterinary Conference.
- [9] Ruzauskas, M. (2005): Development and assay of inactivated Pasteurella vaccine for rabbits. Biologija, 2: 35–39.
- [10] Rai-El balhaa, G.; Pellerian, J.L.; Bodin, G.; Abdullah, H.A. and Hiron, H. (1985): Lymphocyte transformation assay of sheep peripheral blood lymphocytes. A new rapid

and easy to read technique. Comp Immunol Microbiol Infect Dis, 8(3-4): 311-318.

- [11] Rajaramon, V.; Nonnecke, B.J.; Franklin, S.T.; Hamell, D.C. and Horst, R.L. (1998): Effect of vitamins A and E on nitric oxide production by blood mononuclear leukocytes from neonatal calves fed milk replacer. J Dairy Sci, 81(12):3278-3285.
- [12] Schltz, L.A. (1987): Methods in clinical chemistry. The C.V. Mosby Cost Louis 742-746.
- [13] Cullin, C.F.A. (1974): Handbook of Histology and Histochemical Techniques.
 3rd Ed. Butter worth.
- [14] Abdel Hafez, A.; Ramadan, A.A.; Zaki, A.A.; Hassan, H.M. and Hashad, M. (2000): Modulatory effects of buffalo basic and acidic uterine luminal proteins on phagocytic and bactericidal activities of PMN and mononuclear leukocytes in vitro. Med J, 49:609-622.
- [15] Amador, E.G. and Wacker, W.E.C. (1965): International federation of clinical chemistry. Meth Biochem Anal, 13: 275-279.
- [16] Bergmeyer, H.N. (1978): International federation of clinical chemistry. Clin Chem, 24:720-727.
- [17] Tabacco, J.A. (1979): Routes of antigen administration in raising antibodies in rabbits against metacestode cyst antigens of Taenia multiceps. J Immunol Methods, 65 (6): 355 – 360.
- [18] Henry, R.J.; Cannon, D.C and Winkelman,
 J.W. (1974): Clinical Chemistry,
 Principles and Techniques, 2nd edition,
 Harper and Row, pp: 525.
- [19] Xie, S.; Wang, F.; Wang, Y.; Zhu, L.; Dong, Z.; Wang, X.; Li, X. and Zhou, W. (2011): Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles. Particle and Fibre Toxicology, 8:33.

- [20] Jordan, W.H. (1992): The drug tolerance study of tilmicosin administered subcutaneously to beef cattle. Am J Vet, 75(6):1159-1165.
- [21] Jordan, W.H. (1987). The toxicity of EL-870 given orally to Beagle dogs for three months. Unpublished study No. DO8286 from Lilly Research Laboratories. Submitted to WHO by Lilly, Basingstoke, UK.
- [22] Altunok, V.; Yazar, E.; Elmas, M.; Tras, B.; Bas, A.L. and Col, R. (2002): Investigation of haematological and biochemical side effects of tilmicosin in healthy New Zealand Rabbits. J Vet Med B, 49: 68–70.
- [23] Done, S.H. (1999): Haemophilus parasuis: A synopsis. Pig J, 44:207–221.
- [24] Christodoulopoules, G. (2009): Adverse outcome of using tilmicosin in a lamb with multiple ventricular septal defects. Can Vet J, 50(1): 61-63.
- [25] Scorneaux, B. and Shryock, T.R. (1999): Intracellular accumulation, subcellular distribution and efflux of tilmicosin in bovine mammary, blood and lung cells. J Dairy Sci, 82(6):1202-1212.

- [26] Cao, X.Y.; Dong, M.; Shen, J.Z.; Wu, B.
 B.; Wu, C.M.; Du, X. D.; Wang, Z.; Qi,
 Y. T. and Li, B.Y. (2006): Tilmicosin and tylosin have anti-inflammatory properties via modulation of Cox-2 and iNOS gene expression &production of cytokines in LPS-induced macrophages and monocytes. Int J Antimicrob Agents,27(5):431-438.
- [27] Yun, Z.; Jun, L.; Yong-qi, J. and Hui-ling, F. (2009): Effects of tilmicosin and metronidazole on peripheral blood lymphocyte proliferation in pigs. Anim Husb Vet Med, 3: 25-28.
- [28] Khalifeh, M.S.; Amawi, M.M.; Abu-Basha, E.A. and Yonis, I.B. (2009): Assessment of humoral and cellularmediated immune response in chicken treated with tilmicosin, florfenicol or enrofloxacin at the time of Newcastle disease vaccination. Poult Sci, 88 (10): 2118-2124.
- [29] Guan, S.; Song, Y.; Guo, W.; Chu, X.; Zhang, X.; Wang, D.; Lu, J. and Deng, X. (2011): Immunosuppressive activity of tilmicosin on the immune responses in mice. Immunopharmacol Immunotoxicol, 33(2):323-328.

الملخص العربى

استهدفت هذه الدراسة تقييم التأثير المناعي للتيلميكوزين (١٠ مجم/ كجم) عندما أعطى عن طريق الحقن تحت الجلد للأرانب يومياً ولمدة ثلاثة أيام متتالية حيث تم استخدام عدد ١٥ ذكور الأرانب وتم تقسيمهم الي ٣ مجموعات؛ الأولي كضابطة، والثانية محصنة ضد مرض الباستريلا (١ مللي) تحت الجلد وغير معالجة، والثالثة محصنة ومعالجة بالتيلميكوزين (١٠ ملجم/كجم وزن لثلاثة أيام متتالية). تم اخذ عينتان من الدم لكل أرنب في الأيام ٢، ١٤، ١٤، ٢١ و٢ ٢ بعد العلاج لفحص الدم مناعياً وبيوكيميائياً كما تم فحص هستوبا ولوجي للكبد والقلب لكل المجموعات. وأظهرت النتائج أن التيلميكوزين يرفع معدلاتالخلايا الليمفاوية ،أوكسيد النيتريك ونشاط الليزوزيم وانزيمات الكبد ووظائف الكلي. وفي الوقت نفسه أدي هذا العلاج إلي عدم وجود تغيرات معنوية في نشاط الزيم الاسرتيت أمينوتر انسفيريز وفي نشاط انزيم الالانين أمينوتر انسفيريز ما عدا في اليوم الواحد والعشرين من التجربة الذي شهد انخياص في نشاط الانزيم. أيضا لم تظهر أي تعبرات معنوية في مستوي الكرياتينين و مستوي اليوريا في المجموعة في نشاط الزيم الاسرتيت عند مقاريز المفيريز وفي نشاط الزيم الالانين أمينوتر انسفيريز ما عدا في اليوم الواحد والعشرين من التجربة الذي شعد الانزيم. أيضا لم تظهر أي تغيرات معنوية في مستوي الكرياتينين و مستوي اليوريا في المجموعة المحصنة والمعالجة بالتيلميكوزين معند مقارنتها بالمجموعة الصابطة. من خلال فحص التغيرات الهستوباثولوجيه بالقلب والكلي في المجموعة المحصنة والمعالجة بالتيلميكوزين عند مقارنتهما بالمجموعة الضابطة قدرت شدة الاصابة ب + ١ و + ٢. ونستخلص من هذه الدراسة وجود آثار ايجابية للتيلميكوزين علي المناعة وليس له آثار سلبية علي معدلات الزيمات الكبد ووظائف الكلي.