GROWTH, MORTALITY AND YIELD PER RECRUIT OF GILTHEAD SEA BREAM, SPARUS AURATA IN BARDAWIL LAGOON, NORTH SINAI, EGYPT

Mohamed M. ${ }^{1}$, Hassanen, G. D. $\mathbf{I}^{\mathbf{2}}$, Mohsen, S. Hussein ${ }^{\mathbf{3}}$, EL Aiatt A. A. O ${ }^{4}$ and Mohammed G. ${ }^{5}$
1. General Authority for fish resources Development, El Arish, North Sinai, Egypt.
2. Faculty of Environmental Agricultural Sciences, EL-Arish, Suez Canal University, Egypt.
3. Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
4. National Institute of Oceanography and Fisheries (NIOF), Egypt.
5. Dept. of Aquaculture, Central Lab. for Aquaculture Research, Abbassa, AboHammad, Sharkia, Egypt.

Abstract

Growth, mortality and yield per recruit of Gilthead sea bream, Sparus aurata were studied from a small scale fishery of Bardawil lagoon. 2775 specimens ranged between 11.9 to 36.1 cm cm TL and varied from 22 to 651 g total weight, were collected during, 2010. The relationship between length and weight was estimated as $\mathrm{W}=0.0248^{*} \mathrm{~L}^{2,821 \mathrm{i}}$. The study showed that there are 6 age groups have been identified by reading the scales and growth rates were calculated in the corresponding lengths for different age groups in a manner back calculation as follows $17.74,23.25,27.6,31.44,32.85$ ad 34.19 at the end of the first year, the second, and sixth, respectively. Age was determined using scales reading technique for 900 individuals and the longevity of this species was found to be 6 years. Growth in length and growth in weight at the end of each year were calculated. The growth parameters of the von Bertalanffy equation were calculated as $\mathrm{Loo}^{=} 38.04 \mathrm{~cm}, \mathrm{~K}=0.3381 \mathrm{yf}$ and to $=\sim 0.7933 \mathrm{yr}$, natural and fishing mortality rates were $0.8420 \mathrm{yr}{ }^{\prime}, 0.4551 \mathrm{yr} \sim$ and $0.3869 \mathrm{yr}^{{ }^{1}}$, respectively. The currently exploitation rate $(\mathrm{E}=0.4595)$ indicates that the stock of sea bream in the Bardawil lagoon under exploited. The length at first capture L_{c} was estimated as 20 cm . The length ai first maturity L_{m} of males and females were estimated as 20.0 and 24.5 respectively.

Key Words: Age, growth, yield per recruit, Sparus aurata, Bardawil lagoon, Egypt.

INTROUDACTION

Gilthead sea bream, Sparus aurata is economically a very important fish species in the Bardawil lagoon and in the general Mediterranean area. Gilthead sea bream (F. Sparidae) this family can be found in a wide variety of marine habitats, from rocky to sand bottoms, at depths between 0 to 500 m , although they are usually more common at less than 150 m deep (Abecasis et al, 2008). The gilthead sea bream, Sparus aurata is a one of the main target demersal species of the trammel gear fishery in the lagoon. About 97% of
the total catch of the lagoon come from the boats using the trammel nets.

In Bardawil lagoon, Sparus aurata is mainly exploited by two fishing techniques; trammel nets and hand line. The previous studies on the gilthead sea bream populations in the lagoon indicated that the exploited and fishing effort may have been above optimum levels for most demersal species (Bebars., 1986\&1992: Khalifa, 1995; Salem 2004; Khalil and Mehanna, 2006; Mehanna, 2006; Salem et al, 2008 and Salem 2011).

This work carried out to supplement some information about Age, growth, yield per recruit and exploitation rates of Sparus aurata in Bardawil lagoon that could be useful for management of this important species.

MATERIALS AND METHODS

1. Study Region:

The study was carried out in the Bardawil lagoon (Fig. 1).The lagoon covers an area of $693 \mathrm{~km}^{2}$, in an arid area in the northern part of Sinai Peninsula, Egypt. It separated from the Mediterranean Sea by along narrow sandbar that varies in width between 100 m and 1 km .

The lagoon communicates with the Mediterranean Sea water by two artificial and one natural narrow channel.

The lagoon is considered as a natural depression with a depth of $0.5-3 \mathrm{~m}$.

2. Sampling:

Random samples (2775 specimens) were collected from well mixed catches during the fishing season 2010. For age determination, the scales were removed from the left side of each fish behind the tip of the pectoral fin for 900 specimens.
In the laboratory, the scales were cleaned and stored dry in envelopes for the subsequent study. Later on, scales were soaked overnight in 10% ammonia solution. 5-7 scales were placed between two glass slides, and examined by a projector with $33 \times$ magnifications.
On the clearest scale from each batch, the total scales radiuses as well as the radius of each annulus were measured to the nearest 0.01 cm .

3. Data Analysis:

The back-calculated total length at the end of each year was determined from scale measurements using Lea's, 1910 equation as $\mathrm{L}_{\mathrm{x}}=\mathrm{L}_{\mathrm{p}}\left(\mathrm{S}_{\mathrm{x}} / \mathrm{Sp}\right)$, where: L_{x} equals length of fish at age (x), L_{p} equals
the fish length at capture, S_{x} equals the scale radius at annulus x and S_{p} equals total scale radius.

The relationship between length and weight was described by the potential equation ($W=a * L^{b}$, Ricker, 1975), where W is the total weight (g), and L is the total length (cm), a and b are constants.

The calculated weight at the end of each year was estimated by applying length-weight equation. The von Bertalanfry growth equation (VBGE): $\mathrm{L}_{\mathrm{t}}=$ $\mathrm{La}>\left(1-\mathrm{e}^{\prime \prime \mathrm{k}}\right.$ (tn V was used to describe growth in size, where L_{t} is the length at age t, Loo the asymptotic length, K the body growth coefficient and to the hypothetical age at which a fish would have zero length.

The values of Leo and K were estimated by plotting L, vs $L_{\mathrm{t}}+\mathrm{i}$ using the Ford, 1933 - Walford, 1946 plot, while to was estimated by Gulland and Holt plot, 1959. For comparison of the growth parameters with previous studies, the growth performance index was calculated from the given by Munro and Pauly, 1983 as $\langle\mathfrak{£}\rangle^{\prime}=\operatorname{Ln} K+2 L n U$. To estimate the instantaneous rate of total mortality (Z) using Jakson 1939 The instantaneous rate of natural mortality (M) was obtained by Alverson and Camey (1975).

The fishing mortality (F) was estimated by subtracting the value of natural mortality from the total mortality as $\mathrm{F}=\mathrm{Z}$ M , while the exploitation rate $\mathrm{E}=\mathrm{F} / \mathrm{Z}$.

The length at first maturity $\left(L_{m}\right)$ was determined by examination of gonads to determine the sex and the stage of maturity, where 50% of fish reach their sexual maturity was estimated by fitting the maturation curve between the percentage maturities offish corresponding to each length class interval. Then L_{m} was estimated as the point on the X -axis corresponding to 50% point on the Y -axis.

The probability of capture was
estimated from length-converted catch curve, using the running average technique to determine L50 (Pauly, 1984b). The method of Gulland, 1969 was used to predict the yield per recruit as follows: $\mathrm{Y}^{\prime} / \mathrm{R}=\mathrm{p}{ }^{*}{ }_{\mathrm{e}} \mathrm{M}(\mathrm{Tc}-\mathrm{Tr}){ }^{*} \mathrm{w}(\mathrm{X} * \wedge$ (1/Zj _ $(3 \mathrm{~S} / \mathrm{Z}+\mathrm{K})+(3 \mathrm{~S} 2 / \mathrm{Z}+\mathrm{ZK})-(\mathrm{S} 3 / \mathrm{Z}+3 \mathrm{~K})]$

Where: $\mathrm{S}=\mathrm{e}^{\mathrm{k}\left({ }^{(T c}{ }_{-}{ }^{\mathrm{T} 0)} \mathrm{K}, \mathrm{tO}=\mathrm{Von}, ~\right.}$ Bertalanfy growth parameter, Tc is age at first capture, Tr is age at recruitment, Wcc is asymptotic body weight, F is fishing mortality, M is a natural mortality and $Z=F+M$, is a total mortality.

Fig. (1): The Bardawil lagoon

RESULTS AND DESICCATION

1. Age and growth

Scales reading for 900 individuals showed six age classes of Spams aurata in Bardawil lagoon during the fishing season 2010.

The percentage occurrence of these groups as $17.9,29.3,30.7,15.3,3.4,1.9$ and 1.4% for $0,1,2,3,4,5$ and 6 age groups respectively. This indicated that, the dominate of the young fish $(0,1$ and $2-$ group fish, illegal size) while the age group five and six the least age groups in the catch (1.9 and 1.4%).

The maximum estimated age (6 years) for S. aurata in Bardawil lagoon was recorded by Khalifa, 1995. Age groups and growth in length (average back calculation lengths) were identified for S. aurata as 17.74, 23.25, 27.60, 31.44, 32.85 and 34.19 cm for ages $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$,
$4^{\text {th }}, 5^{\text {th }}$ and $6^{\text {th }}$ years respectively. The growth rate of S. aurata is particularly high during the first year of life, especially in this study.

After the first year, the annual growth rate drops rapidly. Table (1): summarized the back-calculated lengths of the present study compared with the other studies for the same species The observe total length ranged from 11.9 to 36.1 cm and the observed total weight varied from 100 to 651 g .

The length - weight relationship Fig. (2) was described by the power equation as:
$\mathrm{W}=0.0248 * \mathrm{~L}^{2,89}$,the negative allometry was established as the value of $(b<3)$.

The differences in length-weight relationship might be interpreted as being due to differences in growth and morphometry between regions (Barnabe,

Table (1): The length at the end of life year of S. aurata given by different authors

Region	sex	Age	N	Total length at the end of life year						References
		years		1	2	3	4	5	6	
Bardawill lagoon	M	1--2	106	16.39	18.85					Bebars. 1986
seasons 1985/86	F	1-3	148	16.97	2(i.15	22.7				
Bardawill lagoon, season 1986	M +F	1--3	-	19.5	23.67	26.89				Ameran, 1992
Bardawill lagoon, Season, 1986	M+F 1	1--6	-	19.36	23.67	26.29	28.39		32. 16	Khalifa. 1995
$\begin{gathered} \text { season } \\ 2000 \end{gathered}$	$\mathrm{n}+\mathrm{F}$	1--5	1826	19.36	23.83	2845	31.54	32.84		Salem, 2004
$\begin{array}{cc} \text { Bardawill } & \\ \text { lagoon } & \text { season } \\ & 2001 \end{array}$	M F	F 1--5	1835	20.2	25.2	27.6	29.8	32.3		
Port Said	M +F	F 1--4	1714	21.26	27.8	32.25	34.3			Mehanna. 2007
Bardawill lagoon, season, 2008	M +F	F 1--4	3483	22.82	27.09	30.03	31.5			Salem, 2010
Bardawill lagoon	M +F	F 1--4	3262	2338	27.51	30.21	32.15			Salem, 2011

2. Length at first maturity (L_{m})

1976) and it is a practical index of the condition of fish, and varies over the year according to factors such as food availability, feeding rate, gonad development and spawning period (Bagenal and Tech, 1978).
Growth parameters of von Bertalanffy were calculated as $L o o=38.04 \mathrm{~cm}, \mathrm{~K}=$ 0.34 year" 11 and to $=-0.793$ year and the obtained equation was L, $=38.04^{*}(l-e$ o. 34 (tu 793)^ Mcllwain et al., 2005 mentioned that the differences in growth parameters due to age, sex, maturity and sampling period for the same species. The value of growth performance index ($\langle £\rangle^{\prime}$) was calculated as 6.19.

The results showed a low growth performance index than in the previous studies, may be due to the lower value of A Constant of length-weight relationship and growth parameters for 5. aurata in Bardawil lagoon were summarized in Table. (2).

The length at first maturity was estimated at 20.0 and 24.5 cm for male and female respectively (Fig. 3,4).

This result is close to that of Salem, 2004, 2011, for male while the length at first maturity is higher in this study, who observed that, the value of L_{m} for S. aurata in the same lagoon as 20.6 and 22.5 cm for male and female respectively.

Anna et al, 2005 recorded that, in the Mediterranean Sea, the species is becoming mature at smaller lengths compared to the other regions.

3. Mortalities and exploitation rate:

Total mortality (Z) was estimated as $0.842 \mathrm{yr}^{-1}$, while natural mortality (M) was estimated as $0.455 \mathrm{yr}^{-1}$ and the fishing mortality rate.

We find that the high natural mortality may be due to the presence of fishing craft shrimp (Alklsh) that destroy the very large

Fig.(2): Length - weight relationship of 5. aurata in Bardawil lagoon.
amounts of fish sea bream fry. These results indicated that, the natural mortality is increasing from year to year. This may be due to two factors:
1-shrimp trawl fishing, where the mortality of by catch either direct by capture the bream fmgerlings (very small mesh of the trawls used in this fishery) or indirect by accumulated the granules of clay and fine sand on gill lamellae of fingerlings (this method kill many fingerling of these species by increasing of turbidity in water).
2-Predators by the cormorant birds where it visit the lagoon in the critical seasons for the seabream fingerlings. The increasing of natural mortality from year to year linked with increasing of effort by shrimp trawl fishing and the fishing activity in most areas is mainly directed to juveniles on their nursery grounds according to the local fishermen. The higher natural mortality (. 455 year-1) in this study versus previous study indicates the stock of sea bream under abnormal position. These results are consistent with those results obtained from Salem et al 2008. (F) was 0.387 year- 1 .

From these results, the current exploitation rate ($E=45.95 \%$) shows under exploited stock and safe according to Gulland, 1971), who suggested that the optimum exploitation rate for any fish
stock is about 0.5 at $\mathrm{F}=\mathrm{M}$ and more recent, (Pauly, 1987) proposed a lower optimum F that equal to 0.4 M and (Patterson, 1992) reported that an exploitation rate of about 0.4 is safe for the stock.

4. Length at first capture $\left(L_{c}\right)$

The length at first capture (The length at which 50% of fishes retained by the gear is the mean selection length, $L c$) was estimated to be 20 cm , (Fig 5). In this study, the value of L_{c} was equal of the length at first sexual maturity $\left(L_{m}\right)$ for male $(20.0 \mathrm{~cm})$ and smallest length at first sexual maturity for the female (24.5 cm). From our results, the most of bream catch in Bardawil lagoon were below the length at first sexual maturity (immature fish), which must be having a chance to spawn 2-3 times before capture according to (Grandcourt et al., 2005).

5. The relative yield-per-recruit (Y7R) and biomass per-recruit (B / R):

The formula of Gulland (1969) was used for the calculation of yield per recruit, as follows: $T / \mathrm{R}=\mathrm{Fe}{ }_{\sim}^{(M(\mathrm{Tc}-\mathrm{Tr})]}$ Woo [(1/Z) - (3S/(Z+K)) + ((3S2)/(Z+2K)) $\left.-\left(\left(S^{J}\right) /(Z+3 K)\right)\right]$ The input parameters used in the calculation were as follows in Table (5). As shown from the figure (6) there were clear that the curves starts at the origin where the yield per recruit was zero when the fishing mortality was zero.

Mesabh, et al.

Table (2): Constant of length weight relationship and the growth parameters of S. aurata in Bardawill lagoon.

Regions	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$	N	Constants of length-weight relationship and growth parameters						References
Egypt			a	b	Loo	K	to	$<\mathrm{P}^{\prime}$	
Bardawil lagoon	1-4	3262	0.025	2.813	36	0.39	1.68	0.22	Salem, 2011
	1-6		0.014	2.98	38	0.34	0.96	.	Khalifa, 1995
	1-5	1537	0.013	3.035	38.5	0.297	1.08	-	Tharwate/tf/., 1998
	1-4	1835	0.014	3.017	35.2	0.58	0.74	6.58	Salem. 2004
Port said	1-4	1714	0.012	3.028	38	0.5	-0.6	-	Mehanna, 2007
	1-4	1947	0.027	2.79	32.7	0.81		$\begin{aligned} & 6.76 \\ & 5 \end{aligned}$	Salem etai. 2008
	1-4	3483	0.030	2.76	34.2	0.48	0.78	6.33	Salem. 2010
Other regions									
Thau (France)	1-4	713	0.0226	2.SS(>	62	0.221	-0.077	6.745	Lasserre \& Labourge. 1974.
Ebro (Spain)	1-7	611	$112 * 10^{7}$	3.055	62.1	0.171	-0.63	6.494	Suau and Lopez, 1976
Mima (Croatia)	1-12	314	0.0112	3.052	59.8	0.153	-1.71	6.303	Kraljevic and Duleic. 1997
Mellah Lagoon (Algeria)	1-7	370	0.0129	3.067	55.3	0.513	-0.28	7.359	Chaoui,e/a/.,2006

Fig (3): Length at first maturity for males of S. aurata in Bardawill lagoon 2010.

Fig (4): Length at first maturity for females of S. aurata in Bardawill lagoon 2010.

Fig (5): Length at frist capture of Sparus aurata in Bardawill lagoon 2010.

Table (5): Input parameters used in the calculation yield per recruit for S. aurata in Bardawill lagoon, 2010.

The parameters Season 2010

The parameters	Season 2010
Length infinity Lcc	38.04
Weight infinity $\mathrm{W}<\mathrm{x}>$	714.3
Growth constant K	0.3381
Natural mortality M	0.4551
Fishing mortality F	0.3869
Total mortality 2	0.8420
Mean age at recruitment Tr	0.3161
Mean age at first capture Tc	1.4127
Mean length at first capture $\mathrm{Lc}(\mathrm{cm})$	20.00
Mean length at recruitment $\mathrm{Lr}(\mathrm{cm})$	11.9
Theoretical age at length zero To	-0.7933
Mean length $\mathrm{L}^{\%}$	21.59
Exploitation rate E	0.46
$\mathrm{~L}_{\mathrm{c}-}=$	25.2000

Then the yield per recruit increased rapidly as the fishing mortality increased and a maximum value of yield per recruit was reached, after which the yield per recruit decreased with further increasing in fishing mortality.

Table (6) also showed that the present fishing mortality ($\mathrm{F}=0.38$ and age at first capture ($\mathrm{Tc}=1.41$) gave a yield of 61.89 gram per recruit.

Fig (6): Y/R of S. aurata during 2010 a function of different fishing mortality and age at the first capture.

Table (6): Yield per recruit (Y/R) of S. aurata during 2010 a function of different fishing mortality and age at the first capture.

\mathbf{F}	$\mathbf{T}_{\mathbf{c}}=\mathbf{l}$	$\mathbf{T}_{\mathbf{C}} \mathbf{H . 2 5}$	$\mathbf{T}_{\mathbf{c}}=\mathbf{1 . 4 1 2 7}$	$\mathbf{T}_{\mathbf{c}}=\mathbf{1 . 5}$	$\mathbf{T}_{\mathbf{t}}=\mathbf{1 . 7 5}$
0.1	30.928	30.352	29.857	29.556	28.569
0.2	47.330	47.006	46.559	46.248	45.106
0.3	56.427	56.646	56.452	56.245	55.291
0.38	61.056	61.812	61.897	61.817	61.139
0.4	61.579	62.418	62.546	62.486	61.855
0.5	64.487	65.939	66.399	66.496	66.232
0.6	66.071	68.094	68.873	69.123	69.229
0.7	66.850	69.394	70.468	70.861	71.321
0.8	67.133	70.144	71.487	72.013	72.804
0.9	67.107	70.537	72.123	72.769	73.864
1	66.888	70.692	72.498	73.253	74.627
1.1	66.551	70.689	72.693	73.547	75.175
1.2	66.143	70.581	72.764	73.708	75.568
1.3	65.697	70.404	72.749	73.775	75.846
1.4	65.232	70.182	72.673	73.773	76.039
1.5	64.763	69.931	72.556	73.724	76.167
1.6	64.298	69.665	72.411	73.640	76.246
1.7	63.842	69.389	72.246	73.533	76.288
1.8	63.400	69.112	72.070	73.409	76.302
1.9	62.973	68.835	71.887	73.274	76.295
2	62.562	68.563	71.701	73.132	76.271

The results in season 2010 indicated that the maximum yield per recruit was obtained with a fishing mortality coefficient $\mathrm{F}=1.75$. It was also evident the increase of present fishing mortality coefficient $(\mathrm{F}=0.38)$ to $\mathrm{F}_{\text {max }}(\mathrm{F}-1.8)$ would be associated with negligible increase in the yield per recruit (73.30-61.89 $=11.41$). This means that increase of fishing mortality coefficient by about 17.56%.

To investigate the variation in yield per recruit with changing of age at first capture T_{c}, which was closely related to the estimation of the optimum mesh size, in season 2010 the yield per recruit of $£$ aurata was calculated using $\mathrm{T}_{\mathrm{c}}=1.0,1.25$, 1.5 and 1.75 with the present age at first capture ($\mathrm{T}_{\mathrm{c}}-1.41$) and the results are given in table (6) and graphically represented by fig. (6). The results indicated that the maximum yield per recruit increased when the age at first capture increased.
This means that increase of age at first capture can be associated with increase of the maximum yield per recruit in spite of increasing of the fishing mortality (Table. $6)$.

CONCLUSION

It may not be easy to achieve a balance between the low voltage and the social and economic needs of fishermen, but the application of the optimum mesh size may be not difficult in terms of increased Tc to 1.75 years, which achieved the highest yield in the current fishing effort.

Recommendation:

We can recommend that, the current effort of S. aurata should be stabilized and if possible should be reduced. Attempts should be made to increase the length at first capture from 20 cm . to 25 cm . (change of current to optimum mesh size) to help escapement of immature fish that in turn may help recoup the fishery in
subsequent years.
If this is not carried out immediately, there is a possibility of damage to the S.aurata fishery in near future.

Must stop the use of shrimp fishing craft trawel (Alklsh) in Lake Bardawil because they destroy the very large numbers of sea bream fingerlings Fish.

REFFERENCES

Abecasis, D.; Bentes, L.; Coelho, R.; Correia, C; Lino, P. G. ; Monteiro, M.; Gonc.alves, S.; Ribeiro, J.S. and K. Erzini, (2008). Ageing seabreams:A comparative study between scales and otoliths. Fisheries research, 89: 37-48.

Alverson, D. L. and Carney, M. J. (1975). A graphic review of the growth and decay of population cohorts. Journal du Conseil International pour P Exploration de la Mer 36:133-143.

Ameran, M. A. A., (1992). Studies on fish production of Bardawil lagoon M.Sc. Thesis. Fac. Agri. canal Univ, 158 pp .
Anna, C, P. George, and Evaggelos, T. (2005). Aspects of the biology of blackspot seabream (Pagellus bogaraveo) in the Ionian Sea, Greece. Fisheries Research (77) p 84-91.
Bagenal, T.B. and Tesch, F.W.(1978). Age and growth. In: T. Bagenal, Editor, Methods for Assessment offish Production in Fresh Waters. IBP Handbook No.3(3rd ed.), Blackwell Scientific Publications, Oxford ,pp.101136.

Barnabe, G., (1976). Methods for assessment offish production (eggs and early life history 166-199. Blackwell sc. pub J., oxford and Edinburg.
Bebars, M. I., (1986). Second scientific report on the stock assessment management of the Bardawil lake
fisheries submitted to the Academy of Scientific Research and Technology, December 1986.

Bebars, M. I., (1992). Fisheries management of Bardawil lagoon (North Sinai, Egypt). Project of fish resources development in Bardawil lagoon. Final report. Academy of Scientific Research and Technology, 93 pp .
Beverton, R. J. H. and Holt, S. J. (1966). A review of methods for estimating mortality rates in exploited fish populations, with special reference to sources of bias in catch sampling. Rapp. P. V. Reun. CIEM, 140 (1): 67-83.

Chaoui, L.; Kara, M. H.; Faure, E. and Quignard, J. P. (2006).Growth and
Gulland, J. A., (1969). Manual of method for fish stock assessment part, 1 fish population analysis FAO Man. Fish Sci., 4: 1-154.

Gulland, J. A. and Holt, S. L.(1959). Estimation of growth parameters for data at unequal time intervals. J. cons.Perm. Int. Explor.Mer.,: 25 (I) p $47 \sim 49$.

Grandcourt, E. M.; AI Abdessalaam, T.Z.; Francis, F. and Al Shamsi, A.T.(2005). Population biology and assessment of the orange-spotted grouper, Epinephelus coioides (Hamilton, 1822), in the southern Arabian Gulf. Fisheries research, (74) p.55-68.

Jackson, C. H. N., (1939). The analysis of animal population. J. Anim. Ecol., 8:238-264.

Khalifa, U., (1995). Biological studies on gilthead bream, Sparus aurata in Lake Bardawil, M. Sc. Thesis, Fac. Sc. Zool. Dep. Cairo Univ. 361 pp.
Khalil, M. T. and Mehanna, S. F. (2006). Lake Bardawil and Zaranik Protected Area. Egyp. State Ministry of Environment, Publication of
reproduction of gilthead sea bream Sparus aurata in Mellah lagoon (North-eastern Algeria). Scientia Marina, 70 (3): 545-552.

Ford, E., (1933). An account of the herring investigation conducted at Plymouth. J .Marin. Biol. Ass. U.K.,Vol. 19: 305-384.

Gayanilo,F. C.; Sparre, P. and Pauly, D.(1997). FAO-ICLARM stock assessment tools. Reference manual. ICLARM International Center for Living Aquatic Resources Management Food and Agricultural Organisation of the United Nation. Rome .,PP 262.

Gulland, J. A., (1971). The fish resources of the Ocean, Fishing News Books, Ltd., WestByfleet, UK, 255 pp .
Biodiversity Unit. No. 15: 292-349.
Kraljevic, M. and Duleic, J. (1997). Age and growth of gilthead sea bream Sparus aurata in the Mima Estuary, Northern Adriatic. Fish Res., 31: 249255.

Lasserre, G. and Labourge, P. G. 1974. Etude comparee de la croissance de la daurada, Sparus aurata L. des regions d'Arcachone et de Sete. Vie Milieu 24(IA): 155-170.
Lea, E., (1910). On the methods used in the herring investigations. Publ. Circonstance, Cons. Int. Explor. Mer. 53: 7-174.

Mcllwain, J. L.; Claereboudt, M. R.; AL-Oufi, H. S.; Zaki, S.; Goddard, G.S. (2005). Spatial variation in age and growth of the Kingfish (Scomberomorus commersori) in the coastal waters of The Sultanate of Oman. Fish Res., 73: 283-298.
Mehanna, S. F., (2006). Lake Bardawil fisheries: current status and future sight. J. Egypt. Ger. Soc. Zool.. 51(D): 91-105.
Mehanna, S. F., (2007). A preliminary
assessment and management of Gillthead bream, Sparus aurata in The Port Said fishery, the southeastern Mediterranean Sea, Egypt. Turkish J. of Fisheries and Aquatic sciences. 7: 123-130.

Munro, J. L. and Pauly, D. (1983). A simple method for comparing growth of fishes and invertebrates. ICLARM Fishbyte. 1 (1): 5-6.
Patterson, K., (1992). Fisheries for small pelagic species: an empirical approach to management targets. Rev. Fish Biol. Fish. 2 4, pp. 321-338.

Pauly, D., (1987). A review of ELEFAN system for analysis of length-frequency data in fish and invertebrates. Pauly, D., Morgan, G.R. (eds.), ICLARM Conference Proceedings on Lengthbased Methods in Fisheries Research, vol. 13. ICLARM. Manila, pp. 7-34.
Pauly, D., (1984a). Length-converted catch curves: a powerful tool for fisheries research in the tropics (Part II). ICLARM Fishbyte. 2(1), 17-19.

Pauly, D. (1984b). Fish population dynamic in tropical water: A manual for use with programmable calculators. ICLARM Stud. Rev. (8): $325 p$.

Pauly, D. and Soriano, M. L.(1986). Some practical extensions to Beverton and Hol relative yield-perrecruit model in Maclean, J. L., Dizon, LB., Hosillo, L.V. (Eds.), the First Asian Fisheries Forum.
Asian Fisheries Society, Manila, Philippines, 491-496.
Ricker, W. E., (1975). Computation and interpretation of biological statistics of fish populations. J. Fish. Res.

Board Can. 191:1-367.
Salem M. (2011). Population Dynamic and Fisheries Management of Gilthead sea bream Sparus aurata (Sparidae) from Bardawil lagoon, North Sinai, Egypt, Egyptian J. of Aquatic Biology and Fisheries, 15 (1): 1110-6131.

Salem, M., (2010). Age, growth and population biology of gilthead sea bream Sparus aurata from Bardawil lagoon, North Sinai, Egypt. The $3^{\text {rd }}$ Global Fisheries \& Aquaculture Research Conference . Nov., 29-1 Dec. 2010. Egypt.

Salem, M., (2004). Biological studies for the fishery regulations and management of the Bardawil lagoon. Ph.D. thesis, Fac. Envi. Agri. Sci. Suez Canal Univ, Egypt.
Salem, M., Ameran, M., and El_Aiatt, A. A., (2008). Population dynamics of sea bream, Sparus aurata from Badawil lagoon, Norh Saini, Egypt. J. of Egy. Acad. Soci. For Environmental development.

Suau, P. and Lopez, Y. J. (1976). Contribucion la estudeo de la dorada Sparus auratus. Scientia Marina, 40 (1): 169-199.

Thanvat, A. A.; Emam, W. and Ameran, M. A. (1998). Stock assessment of the gilthead seabream, Sparus aurata from Bardawil lagoon, North Sinai, Egypt J. Aquat. Biol, 4:438-504.
Walford, L. A., (1946). A new graphic method of describing the growth of animals. Mar. Biol. Bull. 90 (2): 141147.

Mesabh，et al．

الملخص العربي

النمو والنقوق والإمداد لأسمـاكّ الانيس ببحيرة البردويل ،شمـال سينـاء مصر
محمد مصبح＇، جابر دسوقى إبراهيم حسنين ‘، محسن صالحّ، عطية على عمر ؛، ومحمد جابرْ
1．الهيئة العامة لتتمية الثروة السمكية
「ب．قسم الأسماكـ كلية الزراعة البيئية بالعريش－جامعة قناة السويس
「．قسم الإنتاج الحيوانى－كلية الزراعةــ جامعة الأزهر بالقاهرة
₹ \＆المعهز القومى لعلوم البحار
ه．مركز بحوث الأحياء المائية بالعباسية

تم إجر اء هذا البحث فى بحبرة البردويل لعمل در اسة على مخزون أسماك الدنيس Sparus aurata ووضع خطة علمية عملية لإدارة مصبد هذه الاسماك بيحيرة البردويل．تم تجميع YVVO عينة فى الفترة من أبريل حتى ديسمبر خلال موسم
 والوزن من خلال المعادلة النالية حسـاب W＝0．0248＊L 2.8219 ．W ． وأوضحت الدر اسة أن 7 مجمو عات عمرية بالبحيرة تم تحديدها عن طريق قر اءة القشور وحسبت معدلات النمو فى الاطوال المقابلة للمجمو عات العمرية المختلفة بطريقة الحساب
 الرابعة، الخامسة، السادسة على اللترتيب．قيم معاملات النمو لفون بيرتلانفى كانت كالنالي：الطول عند مـا لا نهاية＝

 صبد جائر للأسماكَ صغيرة الحجم ولذللك يجب رفع الطول عند بداية الصيد الى الجنسي o，¿؟（يتم ذلك باستخدام فتحات شبالك أكبر من الحالية ）وكذلك يجب وقف الصيد بحرفة كلسة الجمبري فى بحبرة البردويل التي تدمر كميات كبيرة من إصبعيات أسماك الدنيس．

الكلمـات الاسترشادية：النمو ، النقوق ، الإمداد، أسمالك الدنيس، بحيرة البردويل، الصيد الجائر．

أستاذ فسيولوجيا الأسماك المساعد، كلية العلوم الزر اعية البيئية بالعريش، جامعة قناة السويس، مصر．

