

SINAI Journal of Applied Sciences

1-14

EFFECT OF THYME EXTRACT AS A NATURAL PRESERVATIVE ON THE QUALITY OF SMOKED MACKEREL FISH

Mahmoud I. Alsaiqali¹, M.A.S. Abdel-Samie^{1*}, A.A. El-Shibiny^{1,2} and S.I. Ghoneim¹

1. Dept. Food and Dairy Sci. and Technol., Fac. Environ. Agric. Sci., Suez Canal Univ., Egypt.

2. Univ. Sci. and Technol., Zewail City of Sci. and Technol., Egypt.

ABSTRACT

Fresh and partially processed fish are subject to spoilage either by microbes or by fat oxidation, which gives a great attention to fish preservatives, especially natural preservatives, a great interest as alternatives to chemical preservatives. In this study, thyme extract has been used along with smoking and soaking fish fillets in brine solutions as an alternative method of preservation. Fish fillet samples were evaluated for their chemical composition (moisture, pH and protein contents), total bacterial count, and the numbers of isolated *Salmonella* spp., *Escherichia coli*, *S. aureus*, and *Pseudomonas* spp. The obtained results showed a decrease in pH values and moisture contents and an increase in protein contents in smoked fish fillet soaked in brine solution alone without thyme extract or with the addition of thyme extract. The thyme extract showed a high reduction rate in *Salmonella* spp., *E-coli* and *Pseudomonas* spp numbers in comparison with the control and the fish fillet samples soaked in brine solution. On the other hand, *S. aureus* showed high resistance rate. The results indicated that, thyme could be added to the brine solution used for the preparation of smoked fish as an antimicrobial agent.

Key words: Mackerel fish smoking, antimicrobial, thyme, quality.

INTRODUCTION

Fish is a good source of high quality proteins that constitutes about 14% of animal protein needs of human around the world (Abolagba and Melle, 2008). Also, it was reported as one of the main sources of vitamins and minerals and was cleared as essential nutrients in infant and adult daily food (Abdullahi *et al.*, 2001).

Mackerel Fish is one of the healthiest and cheapest sources of protein; it contains 21.34% protein and 63.36% moisture (Oyelese, 2008). This much of water encourage the spoilage of fish by microorganisms. Additionally, the presence of enzymes in fish accelerates fat autooxidation of fish meat tissues and leads to deterioration and quality spoilage (Desrosier, 1977). Muscles of healthy animals including fish do not contain microorganisms and contamination always happen during slaughtering, handling, processing and transportation (Ercolini *et al.*, 2006). Fish and their products, in respect of pathogen content, natural toxins and possible contaminants is considered a high source of hazard (Gram, 1993).

Clostridium botulinum, Mycobacteium spp, Streptococcus spp., Vibrio spp., Aeromonas spp., Salmonella spp., Pseudomonas spp, Staphylococcus aureus. Vibrio parahaemolyticus, Escherichia coli, Listeria monocytogenes, Micrococcus spp, yeasts and moulds are among the most important contribute microorganisms that to the biological hazards in fish either raw or treated or even processed (Lipp and Rose, 1997; Nishimori et al., 2000; Okonta and Ekelemu, 2005; Adebayo et al., 2012; Al-

^{*} Corresponding author: Tel.: +201111138765 E-mail address: mampowerd@hotmail.com

Jasser and Al-Jasass, 2014). *E-coli* is naturally found in fish gills, skin, intestine and muscles but it is unable to neither grow nor cause spoilage (Yagoub, 2009).

The contamination with Salmonella spp is considered a low risk infection (Heinitz and Johnson, 1998) and never found in smoked sardine (Nvarko et al., 2011). Fish products are preserved using many methods including chilling, freezing, caning. smoking, drying, radiation and others. in addition to some chemical preservatives as sodium benzoate, citric acid, sorbate and others used to extend its shelf-life (Espejo-Hermes, 1998). Fish smoking is an old food preservation method, widely used in fish processing, and smoked fish represents 15% of the total European fish market (Stolyhwo and Sikorski, 2005).

Generally speaking, smoking is used to improve the consumers' acceptability including all characteristics such as taste and odor and extends the shelf-life, inhibit oxidative reactions, lower pH, and acts as spoilage agents antagonist (Sengor *et al.*, 2004).Three different methods are used to smoke fish; cold smoking, hot smoking and liquid smoking (Goulas and Kontominas, 2005).

Using salting with smoking in fish preservation prevent or reduce the postharvest losses, remove water, reduce water activity and inhibits both bacterial growth and enzymatic activities (Mustafa *et al.*, 2009; Kumolu-Johnson *et al.*, 2010). Salting, brining and the type of wood used for the smoking fire are all factors affect the smoked fish quality and reduces the microbial spoilage for up to 6 months (Omojowo *et al.*, 2008).

Herbal plants are rich in antioxidants and some of them have antimicrobial effects that help in preserving food against oxidation and microbial growth (Sampels *et al.*, 2010). Thyme, garlic, lemongrass and cinnamon showed an antimicrobial activity and are used to preserve Tilapia and other fish types (Alsaid *et al.*, 2010). Ginger extract was used against bacteria in smoked mackerel fish during chilled storage (Iheagwara, 2013) and Coriander seeds and garlic showed an antibacterial activity against Salmonella typhi (Belguith et al., 2009; Matasyoh et al., 2009). In one study, Berry Marinades prolonged the shelf-life of Herring Fillets fish and that might be due to the oxidation inhibition effect of the herb (Sampels et al., 2010). On the other hand, the treatments of mackerel fish using pomegranate peels and green tea extracts inhibited the microbial growth and biochemical attributes during ice storage (Shinde et al., 2015).

Herbs not only prevent microbial growth but also prevent lipid oxidation; Marjoram oil improved the peroxide value of lipids extracted from frozen beef during storage at -18°C (Shelbaya *et al.*, 2014). Rosemary, thyme, sage and other plants are used to control lipid oxidation in fish meat, as reflected in thiobarbituric acid (TBA) reactive substance values (Yu *et al.*, 2002).

Thyme enhanced the chemical and microbiological properties of fresh rainbow trout fillets during storage under refrigeration conditions (Angis and Oguzhan, 2013). It was used to help preserving smoked rainbow trout by inhibiting the growth of any available microorganism (Erkan, 2012).

Ethanolic extracts of thyme, thyme essential oil, and thymol showed inhibition against Salmonella sonnei, E. coli, Shigella spp; Pseudomonas spp; Streptococcus spp. and Staphylococcus aureus (Cosentino et al., 1999; Fan and Chen, 2001; Yasar et al., 2005; Mohammad and Ali, 2006; Akrayi and Abdulrahman, 2013; Al-Mohana and Al-Hussein, 2014). Thyme extract was able to maintain acceptable microbial limit which indicates that it is a good additive to extend the shelf life of refrigerated fish (Corbo et al., 2008).

The phenolic components of thyme are reported to play a big role as antibacterial and antioxidant in rainbow trout fillets (Mexis *et al.*, 2009). Ilhak and Guran, (2014) used thymol and sodium lactate to reduce the growth of *Salmonella typhi* in fish patty. Thymol and carvacrol rich plants have a significant antioxidant effect on the process of the lard oxidation (**Tsimidou and Boskou**, 1994).

The present study investigated the possible use of thyme as a natural preservative and antibacterial agent in mackerel fish due to its antimicrobial activity and its lipid oxidation inhibition properties. Integrated effects of light salting, thyme extracts (7%) and smoking on chemical analysis (pH-value, moisture and protein contents) and growth rate of *Staphylococcus aureus, Salmonella* spp., *E. coli*, and *Pseudomonas* spp. in processed mackerel fish were analyzed.

MATERIALS AND METHODS

Preparation of Thyme Aqueous Extract

Aqueous extract of thyme was prepared according to the method described by **Vaishnavi** *et al.*, (2007). Thyme leaves was dried at shade, crushed to a coarse powder in a mechanical blender, a 100g of powder were extracted in500 ml of distilled water at room temperature for 24 hours. Mixture was then filtered using Whatman No1 filter paper and the filtrate was separated in glass dishes and dried in a vacuum oven at 40°C for 48 hours.

A 7% thyme in brine solution (5% salt) was prepared for the salting process by the addition of 70g/L thyme powder in brine water.

Brining and Smoking Processes

Fish samples (90 fish) with average weigh 200-250g were selected. Fish were carefully gutted, dressed, filleted by hand and washed with tap water. Fillets were divided into 3 groups, control (thawed than frozen mackerel without brine or extract added brine treatment), BS (soaked in brine solution 5% only), and BS + TE (soaked in brine solution with the addition of 7% thyme powder for 30min at 4°C. Ratio of brine to fish was 2:1 (w: w) as shown in Table (1). Wood sawdust (white wood and some other wood types), purchased from carpentry shops, was used to smoke fish for 2 hours and products were packed in transparent polyethylene bags and sealed with a sealing machine to reduce microbial contamination (Salán *et al.*, 2006).

Chemical composition of fillet

Crude protein and moisture contents of fish samples were determined according to the official methods (AOAC, 2002). For pH determination, 10 gm of fillet samples were homogenized with 100 mL distilled water for 1 min, and the pH values of the slurry were measured at room temperature (Hayes *et al.*, 2010) using pH meter Suntex-T-s-l 911005942/ Taiwan) with calibrated probe type (Ingold 406-M6-DXk-S7/25).

Microbiological Analysis

Total Plate Count (TPC)

10 grams of fish sample are transferred to a stomacher bag and 90ml of sterile Salt Peptone Solution (SPS) as diluents was added (20g peptone/1000ml distilled water). The sample was homogenized in a stomacher (Seward 400 Stomacher Lab Blender /Stock 36001) for 90 seconds to obtain 1:10 (10^{-1}) dilution. Serial dilutions $(10^{-2} \text{ to } 10^{-5})$ of the homogenized samples sterile distilled were made using water.100µLof each dilution was placed on the surface of media. Plates were incubated at 37°C for 18-24 h. Viable count was calculated as colony forming unit CFU/g sample (ICMSF, 1978).

 Table (1): Preparation of samples and treatments.

Sample	Soaking in brine solution 5%	Thyme extract addition 7%
Control	-	-
BS	Soaked for 30 minutes	No addition
BS + TE	Soaked for 30 minutes	Added

BS = soaked in brine solution, BS + TE = soaked in brine solution with thyme extract added.

Isolation and Enumeration of Pathogenic Bacteria

Baird-Parker Agar (BPA) medium was used to isolate and enumerate *Staphylococcus*. Diluted samples were plated and incubated as previously described for 24-48 h at 37°C. Colonies of *S. aureus* appeared as black colonies with clear to opaque zones (**ISO**, **1999**).Xylose Lysine Desoxycholate Agar (XLD) was used to isolate and enumerate *Salmonella*, pink colonies with or without black center showed the presence of Eosin Methylene Blue *Salmonella* spp.

(ISO, 1993). Agar (EMP) was used for the identification and enumeration of *E. coli*. Colonies with green metallic sheen indicate the presence of *Escherichia coli* (FAD, 2001). Pseudomonas Agar Base (PAB) was used to isolate and enumerate *Pseudomonas* in samples.

Samples are diluted and plated as previously described and Plates were incubated for24-48 h at 25-37°C. Blue-green or brown pigmentation colonies were counted as *Pseudomonas* (FAD, 2001).

The bacterial isolates were characterized based on microscopic examinations and Gram staining reactions according to the methods described by **Fawole and Osho**, (2002), as well as appropriate biochemical tests, example Kligler's Iron Agar (KIA) test, Indole production test, Methyl Red (MR) test, Vogues-Proskauer test, Citrate utilization test and carbohydrate fermentation test (Oyeleke and Manga, 2008).

Statistical Analysis

Statistical analyses are performed using SPSS V.15.0 for Windows. Analysis of Bergius (ANOVA) was used at p<0.05.

RESULTS AND DISCUSSION

Chemical Composition of Prepared Smoked Mackerel Fillet

Data in Table (2) presents the chemical composition of the prepared fish fillet without treatments (control) and smoked fish fillet treated with 5% brine solution

(BS) without thyme extract (TE) and treated with 5% brine solution with 7% thyme extract.

The moisture contents of mackerel fillets showed that, the control sample of mackerel fillet had high moisture content (67.13%) compared to other treatments.

The smoked mackerel fillet with 5% brine solution (BS treatment) showed less moisture content (58.11%) compared to the control. However, the moisture content of mackerel samples treated with 5% brine solution and 7% thyme extract was lower than that of the other 2 samples (56.70%).

The high moisture content of the fillet treated with brine solution might be due to the presence of NaCl in solution, which cause an osmotic pressure that lead to the loss of water from low salt concentration in the fillet to the high salt concentration in the liquid.

Smoking itself increase the loss of water from the fish body due to the high temperature which led to moisture vaporization from fish fillet surfaces. Similar results have been reported before by **Cho** *et al.*, (2014) who stated that, smoked fish fillet showed lower moisture contents compare to fresh fillet. **Huong (2014)** also showed a decrease in moisture content after soaking in brine 10% NaCl and smoking by wood in fillets samples.

From data presented in Table (2), it could be noticed that smoking with soaking of fish in BS alone or with the addition of TE reduced the pH values of mackerel fillet.

The maximum pH value was observed in control fillet samples with a score of 6.36 while the treated fillet samples with BS and BS with TE showed lower pH values (6.29 and 6.25 respectively). These findings were similar to the published results by **Adeyemi** *et al.* (2013) who attributed the decrease in the pH values to the smoking process and also in line with the findings of **Tsai** *et al.* (2005) who indicated that pH values of fresh mackerel were higher than the pH values of the treated fish when 8% brine solution was used.

Sample	Moisture (%)	pH values	Protein (%)
Control	$67.13a \pm 0.727*$	$6.36a \pm 0.095$	$18.60c \pm 0.690$
BS	$58.11b \pm 0.613$	$6.29b\pm0.074$	$20.78b\pm0.577$
BS + TE	$56.70c \pm 0.605$	$6.25c \pm 0.070$	$21.65a \pm 0.815$

 Table (2): Chemical composition of mackerel fish with and without treatments (soaking in brine alone or with thyme extract).

The low decrease in pH values may be attributed to the effect of natural antioxidant of thyme that reduce or inhibit the oxidation of lipids, antimicrobial effects of salt and of thyme, and low moisture contents in mackerel fish due to smoking treatments.

The maximum protein content (21.65%) was noticed with smoked mackerel fish treated with TE and BS. The smoked fillet samples soaked in brine solution only (treatment BS) contained 20.78% of protein, and both treatments were quite high compare to the control sample which had lower protein content (18.60%).

This high protein content might be due to the reduction of moisture during smoking, which increased the relative percentage of protein contents. Higher protein contents may also due to the effects of the salt (5%) preservatives effect which slow down autolysis in fish muscles and slow down the protein break down.

Higher protein contents noted in the brine and thyme addition was also due to the antimicrobial effect of phenolic components in thyme extract as carvone, thymol and carvacrol which may inhibit the enzyme activity and protect protein from degradation (Ayala-Zavala *et al.*, 2007). These findings were in accordance with those reported by Koru *et al.* (2007) and Omojowo *et al.* (2010) who observed an increase in protein contents in fish fillet after soaking in brine and smoking processes.

Total Plate count of Mackerel Fillet

Changes in total bacteria count (TBC) of bacteria was determined by aerobic plate count and measured as log_{10} CFU/g (Table 3).

Effects of smoking and soaking in brine solution alone or with the addition of thyme extract on total bacterial count of mackerel fish fillet compared to control are shown in Figure (1). Soaked mackerel fillet in brine solution with and without thyme extract decreased the total microbial count of fillet samples compared to the control.

Total microbial count measured by aerobic plate count method showed that, control mackerel fillet contained higher number of microbes (4.39 Log_{10} CFU/g) compared to samples of soaked mackerel fillet in brine solution with and without thyme extract (3.47 and 3.69 Log_{10} CFU/g).

The reduction of microbial count in the smoked fish fillet without and with the addition of thyme extract might be due to the protective effects of salt against microbes, lower moisture contents with the application of smoking, and/or the high antioxidant activity of thyme which inhibits the growth of microbes. Similar results were obtained by **Degnon** *et al.* (2014) and **Abolagba and Igbinevbo** (2010), they reported that, salting and smoking reduced the total bacteria count in all fish samples.

Isolation and Enumeration of Pathogenic Bacteria

Table (4) shows the numbers of the isolated foodborne and/or pathogenic The bacterial numbers were bacteria. decreased as the bacteria showed sensitivity to our treatments. Fish smoking and soaking in brine solution without and with thyme extracts showed less numbers of isolated Salmonella spp., E. coli, S. aureus, and Pseudomonas spp. compare to the control which indicated that thyme extract has an antimicrobial effect and it was able to reduce the growth rate of these foodborne bacteria.

6	Alsaiqali, <i>et al</i> .
Table (3): Total	microbial count of mackerel fish with and without thyme addition.

Sample	Aerobic plate count Log 10 CFU/g
Control	$4.39a \pm 0.417$
BS	$3.69 \text{ b} \pm 0.293$
BS + TE	$3.47c \pm 0.398$

Control = thawed mackerel, filleted, then frozen, BS= soaked in brine solution (5%), BS + TE= soaked in brine solution with thyme extract (7%).

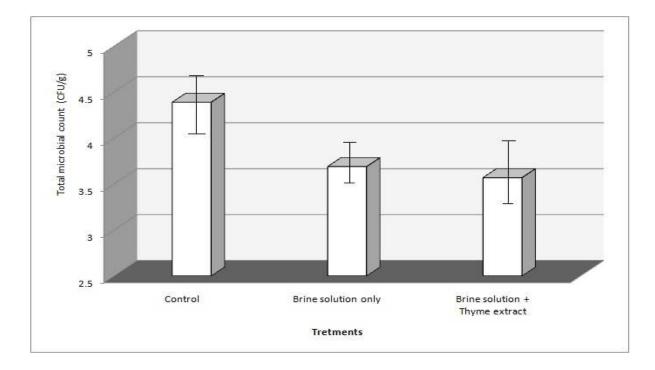


Figure (1): Total bacterial count of mackerel fillet samples.

Sample	Bacterial count (CFU/log₁₀)			
	Salmonella spp.	E. coli	S. aureus	Pseudomonas spp.
Control	$2.61a \pm 0.387$	$2.89a \pm 0.261$	$3.03a \pm 0.257$	$2.82a\pm0.390$
BS	$1.84b\pm0.480$	$2.05b \pm 0.232$	$2.48b\pm0.233$	$2.00b\pm0.360$
BS + TE	$1.02 c \pm 0.20$	$1.87c \pm 0.367$	$2.31c \pm 0.473$	$1.70c \pm 0.318$

Table (4): Number of the tested pathogenic bacteria in mackerel fillets.

The control samples were positive to *Salmonella* spp. with average number 2.61 \log_{10} CFU/g. The treated samples with brine solution and thyme extract showed lower numbers of *Salmonella* spp. (1.84 and 1.02 \log_{10} CFU/g, respectively) compared to control samples. It is clear that, thyme extract with salt and smoking process reduced the numbers of *Salmonella*, significantly (p < 0.05) compared to the control.

These results are similar to those reported by **Diez (2012)** and **Olagunju** *et al.* **(2012)** who reported a decrease in *Salmonella* spp. counts when fish samples were smoked and they attributed that to the low moisture content due to the smoking process. The shelf-life of smoked fish depends on the time and temperature of heating along the manufacture process, on the decrease in water activity and on the antibacterial activity of smoke components as well as the concentration of the smoke may influence its antimicrobial effect **(Fretheim** *et al.*, **1980)**.

This result indicated that *Salmonella* spp numbers were decreased after smoking and this may be due to the active phenolic compounds in wood and heat temperature of smoke that destroy or inactivate *Salmonella* spp and reduce spoilage caused by enzymatic processes and microbial activity **Mailoa** *et al.* (2013).

In present study, *Salmonella* spp. was positive in samples before and after treatment with smoking and this may be a cross contamination during all stages of fish production, handling and processing.

These results are similar to the results obtained by **Abbas (2014)** who showed that *Salmonella* spp. was positive in sample of raw and smoked fish. In mackarel, *Salmonella* spp. was isolated from fish samples before and after smoking **(Akinjogunla** *et al.,* **2011)**.

The data in Table (4) show that thyme extract has a strong inhibitory effect on *Salmonella* spp. This reduction may be due

to the effect of thyme extract which consists of high phenolic compounds (chavicol, eugenol, estragole carvone) that reduced the bacterial growth according to **Del Nobile** *et al.* (2009) who reported similar results with *Salmonella typhi* in mackerel fish during storage at 4°C. The smoked filets, showed lower *Salmonella* count after treatment with 5% rosemary extract in comparison to control (**Da Silva, 2002**).

E. coli has been isolated before from fish samples such as *Tilapia zilli*, *Hemisynodontis membranacea*, *Clupea harengus* and *Scomber scombrus* (Olagunju *et al.*, 2012; Elhadi and Alsamman, 2015).

Similar trends of results have been observed with both *E. coli* and *Pseudomonas* spp. A reduction in the growth of *E. coli* from 2.89 Log₁₀ CFU/g in control fillet samples to 2.05 Log₁₀ CFU/g in BS treatment may be due to the high salt concentration in the brine solution which may cause plasmolysis. Further reduction in *E. coli* numbers was observed in the BS and TE treatments where only 1.87 Log₁₀ CFU/g was recorded.

The results indicated that the thyme extract that has been added to the brine solution had the best effect on reducing the *E. coli* numbers. Similar results indicated that pomegranate peels extracts (0.5% and 1%) and green tea extracts (3% and 5%), in addition to clove essential oil applied with smoking process successfully inhibited the growth of *E. coli* in mackerel fish (Han *et al.*, 2000; Degnon *et al.*, 2014 and Shinde *et al.*, 2015).

A similar trend of reduction was noticed with *Pseudomonas* bacteria. Control sample had the highest numbers of *Pseudomonas* spp. (2.82 log₁₀ CFU/g).

While the soaking treatment with brine solution and smoking reduced the numbers of *Pseudomonas* spp. in comparison with the control samples (2.0 Log_{10} CFU/g). Similar results were obtained by **Hassan** *et al.* (2014), who found that, *Pseudomonas* numbers were reduced by washing fillet by

brine 1% NaCl. Karabagias et al. (2011) also found that, thyme herb was highly effective to reduce the numbers of Pseudomonas spp. in lamb meat at airpackaged conditions. On the other hand, Staphylococcus aureus showed a resistance pattern to both treatments in comparison to the control since we did not observe any reduction after both treatments.

The negative antimicrobial effect of thyme and brine solution may be because S. aureus is a Gram positive bacteria that have a thick peptidoglyc layers that may inhibit or reduce the penetration rate of the extract through the bacterial cell wall.

The tolerance rate of S. aureus may be higher than that of Gram negative bacteria. Vishwanath et al. (1998) reported that, S. aureus could grow well in low water activity and under saline conditions. From results of isolated pathogenic bacteria and the inhibition percentages of BS (brine solution alone with smoking) or BS+TE (brine solution with thyme extract and smoking) (Table 5).

From the results, it could be concluded that all tested bacterias except S. aureus 29.07-29.5% inhibition showed after treating mackerel fillet with brine only and smoking. The addition of thyme increased the inhibition percentages to reach 35.29-60.92%, with minimum inhibition against S. aureus (23.76%). The high rate of inhibition of the isolated pathogenic bacteria in case of the addition of thyme extract to the brine solution (BS+TE) might be due to its high antioxidant activity.

Tornuk et al., (2011) found that, thymol and carvacrol (main compounds in thyme) and thymol hydrosols affected the microbial growth in mackerel fish.

Thyme was effective against bacterial in hot smoked fish products when compared to the untreated fish fillet (Erkan, 2012). Additionally, the aqueous extracts of thyme were found to be effective in inhibiting the growth of bacteria (Akrayi and Abdulrahman, 2013; Mehanna et al., 2013). Abdollahzadeh et al., (2014) used thyme essential oil in minced fish, and the results showed that, thyme had a strong antibacterial activity during storage.

Conclusion

In this study, thyme was used as a food additive to inhibit the foodborne bacteria in fish. The results indicated that soaking mackerel fish fillet in brine solution and brine solution with thyme extract managed to inhibit the growth of some pathogens including Salmonella spp., E. coli, S.aureus and Pseudomonas spp.

The total microbial count in fish fillet soaked in the added thyme to the brine solution or brine solutions alone were lower than that of control samples.

Moisture contents and pH values decreased while protein contents increased with the application of brine solution alone or with thyme extract, before getting through smoking process. The results encourage the use of thyme as a food additive to reduce the risk of pathogens in fish.

Samples		Bacterial count (%)			
	Salmon alla ann	E cali	C annous	Dandomonas	

Table (5): Reduction rate of the tested pathogenic bacteria after treatments.

Samples	Dacterial Count (76)			
	Salmonella spp.	E. coli	S. aureus	Pseudomonas spp.
BS	29.50	29.07	18.15	29.08
BS + TE	60.92	35.29	23.76	39.72

REFERENCES

- **Abbas, M. S. (2014).** Isolation of bacteria from fish. Int. J. Advan. Res., 2(3): 274-279.
- Abdollahzadeh, J.; Javadi, A.; Zare, R. and Phillips, A. (2014). A phylogenetic study of *Dothiorella* and *Spencermartinsia* species associated with woody plants in Iran, New Zealand, Portugal and Spain. Persoonia 32: 1–12.
- Abdullahi, S.A. (2001). Investigation of nutritional status of *Chrysichthys nigrodigitatus, Barus filamentous* and *Aucheoglanis occidental* is (Family: Bagridae). J. Arid Zone Fish. 1: 39-50.
- Abolagba, O.J. and Igbinevbo, E.E. (2010). Microbial load of fresh and smoked fish marketed in Benin metropolis, Nigeria. Res. J. Fish. Hydrobiol. 5(2):99-104.
- Abolagba, O.J. and Melle, O.O. (2008). Chemical composition and keeping qualities of a scaly fish tilapia (*Oreochromis niloticus*) smoked with two energy sources. African J. Gen. Agric. 4(2): 113-117.
- Adebayo-Tayo, B.C.; Odu, N.N.; Anyamele, L.M.; Igwiloh, N. and Okonko, I.O. (2012). Microbial quality of frozen fish sold in Uyo metropolis. J. Nature and Science, 10 : 3.
- Adeyemi, K.D.; El-Imam, A.; Dosunmu, A.M. and Lawal, O.K. (2013). Effect of *Moringa oleifera* marinade on microbial stability of smoke-dried african catfish (*Clarias gariepinus*). Ethiopian J. Enviro. Studies and Management, 6:1.
- Akinjogunla, O.J.; Inyang, C.U. and Akinjogunla, V.F. (2011). Bacterial species associated with anatomical parts of fresh and smoked Bonga fish (*Ethmalosa fimbriata*): Prevalence and susceptibility to cephalosporin. Res. J. Microbiol 6: 87 - 97.

- Akrayi, H.S. and Abdulrahman, Z.A. (2013). Evaluation of the antibacterial efficacy and the phytochemical analysis of some plant extracts against human pathogenic bacteria. J. Phys: Conf. Ser., 7:29-39.
- Al-jasser, M.S. and Al-jasass, F.M. (2014). A comparative study of microbial load, chemical and sensory characteristics of camel meats collected from supermarkets and butcher shops. African J. Microbiol. Res., 5 (27): 4839-4844.
- Al-Mohana, A.M. and Al-Hussein, B.A. (2014). Antibacterial potential of Clove & Thyme extracts against *Streptococcus* spp. In culture media. Int. J. Adv. Res., 2(2):25-29.
- Alsaid, M.; Daud, H.; Bejo, S.K. and Abuseliana (2010). Activities of some culinary spice extracts against *Streptococcus agalactiae* and its prophylactic uses to prevent streptococcal infection in red hybrid tilapia (*Oreochromis sp.*).World J. Fish and Marine Sci., 2(6):532-538.
- Angis, S. and Oguzhan, P. (2013). Effect of thyme essential oil and packaging treatments on chemical and microbiological properties of fresh rainbow trout (*Oncorhynchus mykiss*) fillets during storage at refrigerator temperatures. African J. Microb. Res., 7 (13): 1136-1143.
- AOAC (2002). Official Methods of Analysis of AOAC International. 17th Ed. 1st Revision. Gaithersburg, MD, USA, Association of Analytical Communities.
- Ayala-Zavala, F.J., Shiow, W.Y., Chien,
 W.Y. and Gonzalez- Aguilar, G.A. (2007). High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technol. Biotechnol., 45, 166–173.
- Belguith, H.; Kthiri, F.; Ben Ammar, A.; Jaafoura, H.; Ben Hamida, J. and Landoulsi, A. (2009). Morphological

and biochemical changes of *Salmonella hadar* exposed to aqueous garlic extract. Int. J. Morphol., 27 (3): 705-713.

- Cho, S.; Soo-Yuen K.; Yoon, M. and Kim S. (2014). Physicochemical profiles of chub mackerel *Scomber japonicus* bones as a food resource. Fish Aquat. Sci., 17(2): 175-180.
- Corbo, M.R.; Speranza B.; Filippone A.; Granatiero S.; Conte, A.; Sinigaglia, M. and Del Nobile, M.A. (2008). Study on the synergic effect of natural compounds on the microbial quality decay of packed fish hamburger. Int. J. Food Microbiol., 127: 261–267.
- Cosentino, S.; Tuberoso, C.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E. and Palmas, F. (1999). *In vitro* antimicrobial activity and chemical composition of *Sardinian Thymus* essential oils. Letters in Appl. Microbiol., 29:130-135.
- Da Silva, L. V. (2002). Hazard Analysis Critical Control Point (HACCP), Microbial Safety, and Shelf Life of Smoked Blue Catfish (*Ictalurus furcatus*). Master of Science (M.Sc.) The Department of Food Science, 100.
- Degnon, R.G.; Adjou, E.S.; Dahouenon-Ahoussi, E.; Mohamed M. Soumanou M.S. and Fiogbé, E. (2014). Evaluation of the microbiological and nutritional quality of fermented-dried lesser african threadfin (*Galeoides decadactylus*) used as food supplement in southern Benin. J. Water Resource and Protection, 6:29-34.
- Del Nobile, M.A.; Corbo, M.R.; Speranza, B.; Sinigaglia, M.; Conte, A. and Caroprese, M. (2009). Combined effect of MAP and active compounds on fresh blue fish burger. Intel. J. Food Microbiol., 135 (3): 281-287.
- **Desrosier, N. W. (1977):** Elements of Food Technology. Publishing Co. Ltd. West post; Connecticut. 2nd E., 375-384.
- **Diez, J.G. (2012).** Chemical characterization, antimicrobial properties, effect on foodborne pathogens and sensory

acceptability in chouriço. Universidade de Tras-Os-Montes E Alto Douro Vila Real (PhD. Thesis).

- **Elhadi, N. and Alsamman, K. (2015).** Incidence and antimicrobial susceptibility pattern of extended-spectrum-βlactamase-producing *Escherichia coli* isolated from retail imported mackerel fish. African J. Biotechnol., 14 (23) : 1954-1960.
- Ercolini, D.; Russo, F.; Torieri, E.; Masi, P. and Villani, F. (2006). Changes in the spoilage-related macrobiotic of beef during refrigerated storage under different packaging conditions.J.Appl. Environ Microbiol., 72: 4663-4671.
- Erkan, N. (2012). The effect of thyme and garlic oil on the preservation of vacuum-packaged hot smoked rainbow trout (*Onchorynchus mykiss*). J. Food Bioprocess Technol., 5:1246-1254.
- **Espejo-Hermes, J. (1998).** Fish Processing Technology in the Tropics. Tawid Publications, Quezon City, Philippines, 336.
- Fan, M. and Chen, J. (2001). Studies on antimicrobial activity of extracts from thyme. Wei Sheng Wu Xue Bao., 41: 499-504.
- Fawole, M.O. and Osho, B. A. (2002). Laboratory manual of microbiology. Spectrum books LMD, 6-45.
- **FDA (Food and Drug Administration)** (2001). Bacteriological Analytical Manual, 8th Ed. publication by FDA, USA.
- Fretheim, K.; Granum, P. E. and Vold, E. (1980). Influence of generation temperature on the chemical composition, antioxidative, and antimicrobial effects of wood smoke. J. Food Sci., 45 (4): 999-1002.
- Goulas, A. E. and Kontominas, M. G. (2005). Effect of salting and smokingmethod on the keeping quality of chub mackarel (*Scomber rjaponicus*): biochemical and sensory attributes. J. Food Chem., 93 : 511-550.

10

- Gram, L. (1993). Inhibitory effect against pathogenic and spoilage bacteria of *Pseudomonas* strains isolated from spoiled and fresh fish. J. Appl. Environ. Microbiol., 59: 2197-2203.
- Han, Y., Sherman, D.M., Linton, R.H., Nielsen, S.S. and Nelson, P.E. (2000). The effects of washing and chlorine dioxide gas on survival and attachment of *E. coli O157:H7* to green pepper surface. Food Microbiol., 17: 521–533.
- Hassan, M.A.; Shaltout, F.A.; Maarouf, A.A. and El-Shafey, W.S. (2014). Psychrotrophic bacteria in frozen fish with special reference to pseudomonas R species. Benha Vet. Med. J., 27 (1): 78-83.
- Hayes, J. W.; Leathwick, J. R. and Hanchet, S. M. (2010). Fish distribution patterns and their association with environmental factors in the Mokau River catchment, New Zealand. New Zealand J. Marine and Freshwater Res., 23: 171-180.
- Heinitz, M. L. and Johnson, J. M. (1998). The incidence of *Listeria* spp., *Salmonella* spp., and *Clostridium botulinum* in smoked fish and shell fish. J. Food Prot., 61:318–323.
- **Huong D. T.T. (2014).** The effect of smoking methods on the quality of smoked mackerel. Fisheries Training Programme, Iceland.
- **ICMSF (1978).** International Commission on Microbiological Specifications for Foods. Microorganisms in food: Their significance and methods of enumeration. 2^{nd} Ed. Vol. 1. Univ. of Toronto, Presses, Toronto and Buffalo. Canada.
- **Iheagwara, M.C. (2013).** Effect of ginger extract on stability and sensorial quality of smoked mackerel (Scomber scombrus) fish. J. Nut. Food Sci., 3 (3): 3-9.
- Ilhak, O.I. and Guran, H.S. (2014). Combined antimicrobial effect of thymol

and sodium lactate against *Listeria monocytogenes* and *Salmonella typhimurium* fish patty. Food Safety, 34: 211–217.

- ISO (1999). International Organization for Standards. Microbiology of food and animal feeding stuffs - Horizontal for the enumeration method of coagulase-positive *Staphylococci* aureus (Staphylococcus and other species) - Part 1: Technique using Baird Parker agar medium, 1st Ed., ISO6888-1: 1999.
- **ISO (1993).** International Organization for Standards. Microbiology general guidance on methods for the detection of *Salmonella*. ISO 6579: 1993(E) 3rd Ed.
- Karabagias, I.; Badeka, A. and Kontominas, M.G. (2011). Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Science. 88: 109-116.
- Koru, O.; Toksoy, F.; Tunca, M.Y.; Baysallar, M.; Uskudar, G.A.; Akca, E. and Ozkok, T.A. (2007). *In vitro* antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens. Anaerobe, 13: 140-145.
- Kumolu-Johnson, C.A.; Aladetohun, N.S. and Ndimele, P.E. (2010). The effects of smoking on the nutritional qualities and shelf-life of *Claria gariepinus* (LACEPEDE). African J. Biot., 9 (1): 073-076.
- Lipp, E.K. and Rose, J.B. (1997). The role of seafood in food borne diseases in the United States of America. Rev. Sci. Tech., 16 : 620-640.
- Mailoa, N. M.; Sabahannur, S. and Halid I. (2013). Analysis total microbial and selection of salmonella on smoked fish. Int. J. Sci. and Tech. Res., 2 (6): 29-31.
- Matasyoh, J.C.; Maiyo, Z.C.; Ngure, R.M. and Chepkorir, R. (2009). Chemical composition and antimicrobial

activity of the essential oil of *Coriandrum sativum*. J. Food Chem., 113: 526-529.

- Mehanna, N.S.; Effat, B. A.; Tawfik, N.
 F.; Sadek, Z. I.; Dabiza, N. M.; El-Shafie, K. and Abd-El-Khalek, A. B. (2013). Evaluation of antibacterial activity of aqueous extracts of thyme and black pepper against pathogens and probiotics. J. Appl. Sci. Res., 9(2): 1181-1185.
- Mexis S. F.; Chouliara E. and Kontominas M. G. (2009). Combined effect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fillets stored at 4°C. J. Food Microbiol. 26: 598–605.
- Mohammed, K. Z. and Ali, B. (2006). An investigation of thyme effect on *Helicobacter pylori*. Middle-East J. Sci. Res., (1): 54-57.
- Mustafa, Ü.; Bahar, G.; Ruhan, E. and Hayri, G. (2009). The investigation of extract loss of horse mackerel (*Trachurus trachurus* L., 1758) with different salting methods. Fisheries and Aquatic Sci., 25 (3): 217-220.
- Nishimori, E.; Kita-Tsukamoto, K. and Wakabayashi, H. (2000). *Pseudomonas plecoglossicida* sp. the causative agent of bacterial hemorrhagic ascites of *Plecoglossus altivelis*. Int. J. Syst. Evol. Microb. 50: 83-89.
- Nyarko H. D.; Obodai, E. A.; Boamponseml L. K.; Coomson, S.S. and Aniwe, Y. (2011). Microbial profile of smoked sardine (*Sardilella aurita*) at smoking sites and market centers of Tema, Ghana-1. Archives of Appl. Sci. Res., 3 (3):443-453.
- **Okonta, A. A. and Ekelemu, J. K. (2005).** A preliminary study of micro-organisms associated with fish spoilage in Asaba, Nigeria. Proceedings of the 20th Annual Conference of FISON Port Harcourt. 14-18th Nov. 2005/ 557-559.

- Olagunju, A.; Muhammed, A.; Mada, S.; Mohammad, A.; Mohammad, H. M. and Mahmoud K. T. (2012). Nutrient composition of *Tilapia zilli*, *Hemisynodontis membranacea*, *Clupea harengus* and *Scomber scombrus* Consumed in Zaria. Word J. Life Sci. and Medical Res. (2):9-16.
- Omojowo, F. S.; Omojasola, P. F.; Kolawole, M. O.; Ngwu, E.; Oluborode, G. B. and Adetunji, C.
 O.(2010). Effect brining on the microbial quality and safety of smoked catfish. New York Sci. J. 3(6).
- Omojowo, F.S.; Omojasola, P.F. and Ihuahi, J.A. (2008). Microbial quality of Citric Acid as preservative in smoked catfish (*Clarias gariepinus*). J. Bio. and Env. Sci., 5(3):130-134.
- Oyeleke, S B. and Manga, B.S. (2008). Essentials of Laboratory Practical in Microbiology. Tobest Publisher, Nigeria, P. 63-65.
- **Oyelese, O.A. (2008).** Hypoxanthine levels, chemical studies and bacteria flora count of frozen/thawed market simulated chub mackerel (*Scomber japonicus*) under cold storage temperature conditions. World J. Biol. Res., 001:2.
- Salán, O.E.; Juliana, A.G. and Marilia, O. (2006). Use of smoking to add value to salmoned trout. Braz. J. Arch. Biol. Technol., 49(1): 57-62.
- Sampels, S.; Asli, M.; Vogt, G. and Morkore (2010). Berry marinades enhance oxidative stability of herring fillets. J. Agric. Food Chem. 58:12230-12237.
- Sengor, G.F.; Kalafatoglu, H. and Gun, H. (2004). The determination of microbial flora, water activity and chemical analysis in smoked mussels (*Mytilus galloprivinciali s*, L.). Turk J. Vit, Anim. Sci., (28): 793-797.
- Shelbaya, L.A.; El Mehairy, H.F. and El-Zainy, A. (2014). Antioxidant activities of marjoram (*Origanum majoranum* L.)

12

added to frozen beef kofta and it's therapeutic effect against kidney damage in rats. World Appl. Sci. J., 31(8):1406-1414.

- Shinde, P.A.; Reddy, V.K. and Patange, S.B. (2015). Quality of Indian mackerel as affected by pomegranate peel and tea leaf extracts during ice storage. J. Agric., 13 (1): 109-122.
- Stołyhwo, A., and Sikorski, Z. (2005). Polycyclic aromatic hydrocarbons in smoked fish – a critical review. Food Chemistry, 91: 303–311.
- Tornuk, F.; Cankurt, H.; Ozturk, I.; Saqdic, O. and Yektim, H. (2011). Efficacy of various plant hydrosols as natural food sanitizers in reducing *Escherichia coli O157:H7* and *Salmonella typhimurium* on fresh cut carrots and apples. Int. J. Food Microbiol., 148 (1): 30-35.
- Tsai, Y.H.; Lin, C.Y.; Chang, S.C.; Chen, H.C.; Kung, H.F.; Wie, C.I. and Hwang, D.F. (2005). Occurrence of histamine and histamine-forming bacteria in salted mackerel in Taiwan. Food Microbiol., 22 : 461-467.
- Tsimidou, M. and Boskou, D. (1994). Antioxidant activity of essential oils

from the plants of the *Lamiaceae family*. In: G. Charalambous (Ed.), Spices, herbs and edible fungi (273–284). Amsterdam: Elsevier.

- Vaishnavi, C.; Kaur, S. and Kaur, M. (2007). Bactericidal activity of kitchen spices and condiments on enteropathogens. Natural Product Radiance, 6:40-45.
- Vishwanath, W.; Lillabati, H. and Bijen, M. (1998). Biochemical, nutritional and microbiological quality of fresh and smoked mud eel fish *Monopterus albus*: a comparative study. Food Chemistry, 61 (1/2): 153-156.
- Yagoub, S.O. (2009). Isolation of *Enterobacteriaceae* and *Pseudomonas* spp. from raw fish sold in fish market in Khartoum state. J. Bact. Res., 1 (7): 085-088.
- Yasar, S.; Sagdic, O. and Kisioglu, A. (2005). *In vitro* antibacterial effects of single or combined plant extracts. J. Food Agric. and Environ., 3 (1): 39-43.
- Yu, L.; Scanlin, L.; Wilson, J. and Schmidt, G. (2002). Rosemary extracts as inhibitory of lipid oxidation and color change in cooked turkey products during refrigerated storage. J. Food Sci., 67: 582-585.

Alsaiqali, *et al*.

الملخص العربي

تأثير مستخلص الزعتر كمدادة حافظة طبيعية على جودة سمك المكاريل المدخن محمود إبراهيم السيقلى، محمد عبد الشافي عبد السميع، أيمن عبد المجيد الشبينى، " وسمير إبراهيم غنيم ١- قسم علوم وتكنولوجيا الأغذية والألبان، كلية العلوم الزراعية البيئية بالعريش، جامعه قناة السويس، مصر. ٢- جامعه العلوم والتكنولوجيا، مدينة زويل للعلوم والتكنولوجيا، مصر.

أجريت هذه الدراسة لتقيم تغيرات الجودة الكيميائية والبكتيريولوجيه لسمك المكاريل المنقوع في محلول ملحي والمستخلص المائي للزعتر مع إجراء معاملة التدخين كطريقة بديلة لحفظ شرائح سمك المكاريل. حيث تم عزل أربع أنواع بكتيرية من سمك المكاريل وهي السالمونيلا والاستاف اوريس والاى كولاى والبسيدوموناس ومن ثم إجراء ثلاث معاملات لهذه الأسماك وهى: كنترول (بدون إضافات)- الغمر بمحلول ملحى ٥% فقط - الغمر بمحلول ملحى ٥% مقط - الغمر بمحلول ملحى ٥% فقط - الغمر بمحلول ملحى ٥% معاملات لهذه الأسماك وهى: كنترول (بدون إضافات)- الغمر بمحلول ملحى ٥% فقط - الغمر بمحلول ملحى ٥% فقط - الغمر بمحلول ملحى ٥% + مستخلص الزعتر ٧% بنسب وزنيه (١:١) و غمر ها لمدة ٣٠ دقيقة على درجة حرارة الغرفة ومن ثم إجراء معاملة التدخين لمدة الزعتر ٧% بنسب وزنيه (١:١) و غمر ها لمدة ٣٠ دقيقة على درجة حرارة الغرفة ومن ثم إجراء معاملة التدخين لمدة والبكتيريولوجية. وأوضحت النتائج المتحصل عليها أن معاملة مستخلص الزعتر على التغيرات في الخصائص الكيميائية والبكتيريولوجية. وأوضحت النتائج المتحصل عليها أن معاملة مستخلص الزعتر بتركيز ٧% كان لها تأثير كبير في تقليل العدد الكلى للبكتيريا وتثبيط الأنواع البكتيرية المعزولة خاصة السالمونيلا والاى كولاى والاستاف اوريس مقارلة بمعاملة التحلي الذعتر بتركيز عار على النه المحيانية المعاملة التدخين لمدة الحري المعاملة مستخلص الزعتر بتركيز ٧% كان لها تأثير كبير في تقليل المحلول المحلى فقط والكنترول. وقد لوحظ أيضاً أن الاستاف اوريس كانت أكثر الانواع البكتيرية تحت الدراسة مقاومة المحلول المحلى فقط والكانت أكثر الانواع البكتيرية تحت الدراسة مقاومة المحلول المحلول المحلى وقد لوحظ أيضاً أن الاستاف اوريس كانت أكثر الانواع البكتيرية تحت الدراسة مقاومة المحلول المحلول المحل رقم الخواع البكنيرية مع زيادة بمعاملة وليس المحلول الحلون المولية معاولة معاملة مالا ملول والاى كولاى والاستاف اوريس مقارنة بمعاملة المحلول المحل وقد أوصدة كالمونية في مالول المولية مع زيانة بمعاملة مستخلص الزعتر معاوم أول المالي والان كر الانواع البكنيرية معاملة مليحيون أول المحل فقط والمالي والاساف المولي مالمول المحل فقط والكنت أكثر الانواع البكنيرية مالمومنة بعاملان المحلون المحل فول المحل فول المولية مع زيادة بسيطة بالبروتين مقارنة بالكنترول وعلى ذلك لما حملي مالموس معانه

الكلمات الإسترشادية: مستخلص الزعتر، المادة الحافظة الطبيعية، جودة، سمك المكاريل المدخن.

المحكمــون:

أ.د. حسن عبد الفتاح أستاذ بقسم علوم وتكنولوجيا الأغذية، كلية الزراعة، جامعة الزقازيق.

٢. د. سهام صلاح جاد الله أستاذ مساعد بقسم علوم وتكنولوجيا الأغذية، كلية العلوم الزراعية البيئية بالعريش، جامعة قناة السويس.