

SINAI Journal of Applied Sciences

EFFICACY OF CERTAIN FUNGICIDES AND ANTAGONISTIC MICROORGANISMS ON MYCELIAL GROWTH OF *Fusarium* oxysporum ISOLATED FROM DATE PALM IN NORTH SINAI

AbdAllah S. Mohamed^{*}, M.Y.H. Abdalla and M.M. Sourour

Dept. Plant Prod., Fac. Environ. Agric. Sci., Arish Univ., Egypt

ABSTRACT

In this study the efficacy of three chemical fungicides as well as five different biological control agents were tested *in vitro* against several isolates of *Fusarium oxysporum* from wilted date palm trees grown in North Sinai. The three commercial fungicides were: Tachigaren 30% SL, Rhizolex-T 50% WP and Dithane M-45 80% WP. Whereas the biological control agents included three fungal species namely: *Trichoderma album*, *T. harzianum* and *T. strigosum*. As well as the two bacteria: *Bacillus megaterium* and *B. subtilis*. Tachigaren was the most effective fungicide in reducing the fungal growth of all tested isolates of *F. oxysporum*. Rhizolex T-50 ranked second while Dithane M-45 was the least effective fungicide in reducing the mycelial growth of the tested isolates of *F. oxysporum in vitro*. *Trichoderma harzianum* was the most effective biocontrol agent in inhibiting the mycelial growth of all tested *F. oxysporum* isolates followed by *T. album* and then *T. strigosum*. On the other hand, *Bacillus megaterium* and *Bacillus subtilis* were generally non effective in reducing mycelial growth of the tested isolates of *F. oxysporum* in vitro.

Kew word: Certain Fungicides, antagonistic microorganisms, *Fusarium oxysporum* isolated, date palm, North Sinai.

INTRODUCTION

The date palm (Phoenix dactylifera L.) is a major fruit crop in most Arab countries. It has historically been connected with sustaining human life and tradition of the people in the old world as a major agricultural crop. Arab countries possess 70% of the 120 million world's date palms and are responsible for 67% of the global date production Loutfy (2010). Fusarium wilt diseases caused by Fusarium oxysporum are among the most severe plant diseases in the world. Fusarium wilts affect many plant species belonging to all the botanical families. F. oxysporum is one of the most common species among soil fungi in cultivated soil allover the world. It includes a large diversity of strains: saprophytic, parasitic and pathogenic.

Fusarium oxysporum (Fo) is a ubiquitous inhabitant of soils worldwide and causes diseases such as wilt, yellows and dampingoff in different plant species Ratul and Narendra (2010). The fungus can invade plant's roots with its conidial germ tube or mycelium. The roots can be infected directly through the root tips, wounds in the roots or at the formation point of lateral roots. Mycelium enters the xylem vessels branches and produces micro-conidia which are carried upward in the sap stream. Due to the growth of the fungus within the plant's vascular tissue, the plant's water supply is greatly affected. This lack of water induces the leaves stomata to close, the leaves wilt and the plant eventually dies. Infection usually leads to chlorosis, leaf wilting and browning of the vascular system. Several procedures have been attempted for managing

^{*} Corresponding author: Tel.: +201220232306 E-mail address: a.allah saleh@aru.edu.eg

the fusarium wilt disease in the greenhouse and in field, **Ioannou (1999)**. Bayoud of date palm caused by the fungus *Fusarium oxysporum* f.sp. *albedinis* (Foa) is the most important disease of this crop. It is currently confined to Morocco and the western and central regions of Algeria, having destroyed approximately 15 million trees since it was first discovered, sometime before 1870, **Djerbi (1983)**.

In this research we studied the effects of some chemical fungicides as well as biofungicides, on the growth of several isolates of *Fusarium oxysporum* isolated from date palm grown in North Sinai.

MATERIALS AND METHODS

Isolation of Fungal Pathogens

Fusarium oxysporum cultures were isolated from infected roots of date palm trees showing wilt, drying, yellow leaves and progressive die back from different districts located in four different geographic regions in North Sinai. Root samples were washed carefully with tap water to remove the adhering soil. Diseased root samples were cut into pieces (1cm long). Surface sterilized with dipping in 0.5% sodium hypochlorite solution for 2 minutes, then washed thoroughly with several changes of sterile distilled water. The cuted pieces were dried between sterile filter papers. The surface sterilized pieces were transferred to Petri dished containing acidified potato medium dextrose agar (PDA) then incubated at $25 \pm 2^{\circ}$ C for two weeks then inspected for fungal growth, Rashed (1991), El-Morsi (1999), Abdalla et al. (2001), El-Morsi (2004) and Baraka et al. (2011).

Fusarium oxysporum Control In vitro

Effect of chemical fungicides on the linear growth of *F. oxysporum*

Three fungicides: Hymexazol (Tachigaren 30% SL), Tolclofos- methyl (Rhizolex-T

50% WP) and Mancozeb (Dithane M-45 80% WP) were tested individually at different concentration (10, 50, 100, 500 and 1000 ppm). The effects of the fungicides were assayed by using the poisoned food technique according to the method described by **Abdalla** *et al.* (1992). Fungicides were added to autoclaved PDA medium before dispensing medium in Petri plates, when temperature of the medium was about 50°C. Control treatment was PDA medium without fungicides additions.

Disks (5mm) in diameter from 7 days old cultures of the tested fungus were transferred to the center of Petri plates then of the plates were incubated at $27\pm2^{\circ}$ C for 16 days. After 4, 8, 12 and 16 days of incubation the linear growth of the tested was assessed by measuring two perpendicular diameters in cm and the average was recorded.

Biological control

The Trichoderma album isolate was isolated from the commercial biological product called control "Bio zeid". Trichoderma strigosum and Trichoderma harzianum were isolated by one gram of dry soil from each sample was added to test tubes containing 9 ml sterile water and each test tube was shaken periodically for approximately 15 minutes. After shaking one ml of suspension was added to test tube containing 9 ml sterile water, and the process was repeated to make serial dilutions up to 1:10000 for each fungus isolation. Aliquots 1 ml of serial dilutions was spread on APDA plates. All plates were incubated at 25°C. After 2-7 days the isolated microorganisms, were identified according to their morphological characters, Samuels and Hebbar (2015). Selected microorganisms were purified and transferred on to APDA slants; pure cultures were stored at 4°C for further studies. The antagonistic fungi were identified at Unit of Identification of Microorganisms, Plant Pathology Research Institute, Agricultural Research Center, using BIOLOGTM system.

The *Bacillus megaterium* culture was isolated from the commercial biological control product called "Bio Arc" and the *Bacillus subtilis* culture was isolated from the commercial biological control product called "Clean Root".

The biological control agents were tested against F. *oxysporum* isolates *in vitro* using acidified potato dextrose agar (APDA) medium in 9cm diameter Petri plates. Five mm diameter disc of a four days old fungal growth of the tested F. *oxysporum* isolates were placed at about two cm from the edge of the plates.

On the opposite side of the Petri plates a five mm disc of the tested antagonistic fungi was placed. Plates were incubated at 25°C and kept under daily observation and data were recorded one week later as linear growth of the F. oxysporum cultures as described by Abd El-Moity et al. (1993) and Perveen and Bokhari (2012). The bacterium was maintained on PDA medium at 33±2°C. The Bacillus sp. isolate was tested against F. oxysporum using PDA medium in 9 cm diameter Petri plates. 5 mm diameter discs of the tested fungus was placed two cm from the edge of the plate. On the opposite side of the Petri plates at about 2 cm from the edge a streak of the tested antagonistic bacterium was placed as suggested by Agarwal et al. (2011). These experiments were repeated twice and data were recorded.

RESULTS AND DISCUSION

Fusarium oxysporum Control In vitro

Effect of chemical fungicides on linear growth of *F. oxysporum*

In vitro studies Table 1 indicate that Tachigaren 30 % SL was very effective in controlling radial growth of *F. oxysporum* at 1000 ppm on tested isolates (D_2 , E_1 and F_7) 16 days after incubation, but it showed little effect on isolate B_2 16 days after

incubation. Rhizolex-T 50% WP ranked second in controlling radial growth of F. oxysporum isolates (E_1 and F_7). It was effective on linear growth less of F. oxysporum isolate D_2 , and showed no significant effect on isolate B₂ after 16 days of incubation. The fungicide Dithane M-45 80% WP was the least effective fungicide in controlling radial growth of Fusarium oxysporum isolates $(B_2, D_2, E_1 \text{ and } F_7)$ at all tested concentrations 16 davs after incubation on APDA medium.

These results are in agreement with those obtained by **Haggag and El-Gamal** (2012) who found that Tachigaren was the most effective fungicide in reducing the mycelial growth of *Fusarium solani*. Similarly, **Song** *et al.* (2004) demonstrated that Prochloraz and Carbendzim were more efficient in reducing mycelial growth of *F. oxysporum* f.sp. *lycopersici* compared with Tachigaren and Dithane M-45.

In vitro antagonism of microorganisms on the pathogen *Fusarium oxysporum*

All tested isolates of *Trichoderma* strigosum, *T. harzianum* and *T. album* suppressed the growth of *F. oxysporum* isolates (B_2 , D_2 , E_1 and F_7), this inhibition occurred before any direct mycelial interaction took place (Table 2 and Plate 1).

Trichoderma strigosum isolate significantly suppressed the growth of *F. oxysporum* isolates and it subsequently mycoparasitised the pathogen expect in case of isolate B₂, *T. strigosum* did not overgrow it.

Trichoderma harzianum isolate also significant suppressed the growth of *F*. *oxysporum* isolates and it subsequently mycoparasitised the pathogen expect in case of isolate $B_{2,}$ *T. harzianum* did not overgrow it.

Trichoderma album isolates was significantly inhibiting the growth of the pathogen F. *oxysporum* isolates and it subsequently mycoparasitised the pathogen, expect isolate B₂.

Mohamed, et al.

Treatments			Rate growth rate of <i>Fusarium oxysporum</i> isolates						
			4.1	after incuba	ation (day)	16 1			
		Control	<u>4 days</u>	50.00 fgh	<u>12 days</u>	16 days			
Abd		10 nnm	30.00 a	44.00 ikim	50.00 a	90.00 a 76.15 ii			
	Tachigaren 30% SL	10 ppm	21.30 gill 10.75 jild	44.00 JKIIII 42.87 Jmn	56.50 mm	70.13 lj 78.75 hi			
		30 ppm 100 ppm	19.75 IJKI 16.62 n	42.87 mm	50.25 on	70.75 III 82.00 fab			
		100 ppm	10.02 II 4.50 viiv	57.25 pq	30.23 ор 27.25 л	22.60 yz			
AL		500 ppm	4.30 VW	13.30 DE	27.23 Z	22.00 yz			
ear		Control	3.02 w	11./3 E	10.75 В	10.07 A			
B			30.00 a	30.00 Ign	90.00 a	90.00 a			
m 0.	Rhizolex-T 50 % WP	10 ppm	23.00 deig	41.00 mno	/1.00 hi	90.00 a			
"fi		50 ppm	17.00 mn	34.00 rs	61.50 JK	90.00 a			
, B		100 ppm	12.25 q	25.50 WX	46.00 qrs	/2.82 KI			
ate		500 ppm	9.00 tu	20.50 ZA	41.50 tu	62.75 p			
sol		1000 ppm	5.75 V	14.50 CDE	32.75 xy	55.62 qr			
al i		Control	30.00 a	50.00 fgh	90.00 a	90.00 a			
gui	Dithane M-45	10 ppm	22.25 efgh	46.28 ij	69.25 hi	88.75 abc			
F	80 % WP	50 ppm	19.25 kl	40.56 nno	59.75 jklm	80.50 gh			
		100 ppm	16.18 no	36.81 pqr	53.43 no	86.50 bcd			
		500 ppm	14.31 p	31.93 stu	50.43 op	84.25 def			
		1000 ppm	11.96 qrs	23.93 xy	46.50 qr	89.17 ab			
		Control	30.00 a	50.00 fgh	90.00 a	90.00 a			
	Tachigaran 30% SI	10 ppm	14.50 op	30.50 tu	37.25 vw	53.10 rs			
	Tacingaren 50 /0 SL	50 ppm	12.06 qr	26.25 wx	38.25 uv	49.62 t			
		100 ppm	10.21 st	24.50 wxy	34.25 wxy	47.82 tu			
fah		500 ppm	0.00 x	0.00 F	0.00 D	2.50 B			
Ra		1000 ppm	0.00 x	0.00 F	0.00 D	0.00 B			
om		Control	30.00 a	55.00 cd	82.00 c	90.00 a			
Ę	$\mathbf{D}_{\mathbf{b}_{\mathbf{c}}_{\mathbf{c}_{\mathbf{c}_{\mathbf{c}}}}}}}}}}$	10 ppm	24.55 cd	54.25 de	80.25 cd	90.00 a			
\mathbf{D}_{2}^{*}	Rhizolex-1 50 % WP	50 ppm	10.28 rst	31.25 stu	49.00 pq	75.45 jk			
, e		100 ppm	9.08 tu	25.57 wx	38.00 v	56.45 q			
olat		500 ppm	0.00 x	16.00 BCD	18.75 B	42.82 v			
ıgal iso		1000 ppm	0.00 x	0.00 F	13.00 C	21.77 zA			
		Control	30.00 a	55.00 cd	82.00 c	90.00 a			
Fui		10 ppm	25.01 c	50.00 fgh	77.00 de	89.50 ab			
	Dithane M-45	50 ppm	21.20 hij	42.50 lmn	69.50 hi	89.75 ab			
	ðu % Wľ	100 ppm	19.77 ijkl	38.25 op	59.50 jklm	85.25 def			
		500 ppm	19.55 jkl	42.00 lmn	53.25 no	71.37 lm			
		1000 ppm	14.65 op	32.75 st	44.50 rst	65.00 op			

Table (1): Effect of five concentrations of three fungicides "Tachigaren, Rhizolex and Dithane M-45" on the linear growth (mm) of *F. oxysporum in vitro* isolate (B₂, D₂, E₁ and F₇) 4, 8, 12 and 16 days after incubation.

190

Treatments			Growth rate of <i>Fusarium oxysporum</i> isolates after						
			incubation (day)						
		~	4 days	8 days	12 days	16 days			
ı Al Shaikh		Control	30.00 a	65.00 a	90.00 a	90.00 a			
	Tachigaran	10 ppm	22.50 efgh	48.50 ghi	68.00 i	85.75 cde			
	30% SL	50 ppm	18.50 lm	41.25 lmno	58.50 klm	82.95 efg			
		100 ppm	19.00 1	34.25 qrs	53.00 o	75.45 jk			
d d		500 ppm	3.42 w	14.25 DE	18.75 B	25.50 y			
aye		1000 ppm	0.00 x	0.00 F	0.00 D	0.00 B			
Έw.		Control	30.00 a	65.00 a	90.00 a	90.00 a			
Z		10 ppm	20.90 hijk	47.50 hi	57.75 lm	72.50 kl			
sols	Rhizolex-T	50 ppm	11.42 qrs	29.50 uv	43.25 rst	69.00 mn			
al i	3070 WF	100 ppm	8.87 tu	19.00 zAB	33.00 xy	44.67 uv			
gur		500 ppm	0.00 x	14.50 CDE	22.37 A	35.40 w			
H		1000 ppm	0.00 x	0.00 F	0.00 D	20.90 zA			
		Control	30.00 a	65.00 a	90.00 a	90.00 a			
ate		10 ppm	24.87 c	52.05 def	75.50 ef	90.00 a			
isol "	Dithane M-45	50 ppm	19.07 1	44.12 jkl	62.75 j	90.00 a			
šal É	80% WP	100 ppm	21.42 ghi	43.00 klmn	61.50 jk	90.00 a			
ßun		500 ppm	22.20 fgh	47.25 hi	75.75 ef	90.00 a			
Ŧ		1000 ppm	23.05 defg	48.25 ghi	77.50 de	90.00 a			
		Control	30.00 a	63.00 a	90.00 a	90.00 a			
		10 ppm	10.50 qrst	27.02 vw	43.00 st	71.00 lm			
	Tachigaren	50 ppm	9.57 tu	21.50 yz	35.50 vwx	56.25 qr			
	30% SL	100 ppm	7.85 u	17.50 ABC	31.25 y	31.00 x			
В		500 ppm	0.00 x	0.00 F	0.00 D	0.00 B			
		1000 ppm	0.00 x	0.00 F	0.00 D	0.00 B			
fro		Control	29.00 a	63.00 a	90.00 a	90.00 a			
Н ₇ "		10 ppm	27.02 b	59.00 b	77.25 de	90.00 a			
e "J risł	Rhizolex-T	50 ppm	15.22 nop	42.50 lmn	71.75 gh	90.00 a			
lat I A	50% WP	100 ppm	11.45 qrs	26.00 wx	44.00 rst	66.62 no			
A		500 ppm	0.00 x	12.85 E	27.50 z	50.00 st			
Iga		1000 ppm	0.00 x	0.00 F	0.00 D	21.10 zA			
Fur		Control	29.00 a	63.00 a	90.00 a	90.00 a			
		10 ppm	27.07 b	51.25 efg	88.50 ab	90.00 a			
	Dithane M-45 80% WP	50 ppm	23.00 defg	50.25 fgh	72.50 fgh	90.00 a			
		100 ppm	23.50 cdef	46.00 ijk	74.75 efg	90.00 a			
		500 ppm	24.00 cde	58.00 bc	86.25 b	90.00 a			
		1000 ppm	27.00 b	65.25 a	90.00 a	90.00 a			
	LSD 0.05		1.777	3.014	3.342	3.257			

Table (1): Con. Effect of five concentrations of three fungicides "Tachigaren, Rhizo	lex
and Dithane M-45" on the linear growth (mm) of F. oxysporum in vitro isol	ate
(B ₂ , D ₂ , E ₁ and F ₇) 4, 8, 12 and 16 days after incubation.	

Mohamed, et al.

Origin of	Treatment	Main linear growth of <i>F. oxysporum</i> (mm)				
fungal isolates		Microorganism against	Control	* PGI		
		F. oxysporum		(%)		
te :ar	T. strigosum	25.50 e		71.66		
ola Be	T. harzianum	26.75 e		70.27		
al is com Ab	T. album	19.72 fgh	00	78.17		
nga " fh	B. megaterium	50.00 a	90	44.44		
Fu "B2	B. subtilis	45.00 b		50		
fe	T. strigosum	25.05 e		72.16		
olai n	T. harzianum	18.35 gh		79.61		
ıl is ° fr afal	T. album	24.82 e	00	72.42		
nga D2: R	B. megaterium	45.00 b	90	50		
n y H	B. subtilis	37.00 d		5.88		
l te	T. strigosum	26.00 e		71.11		
ola m A h ed	T. harzianum	18.72 gh		79.2 0		
ıl is froı aik vay	T. album	20.87 fg	00	76.81		
Sh ¹ , Sh	B. megaterium	48.00 a	90	46.66		
Η.	B. subtilis	42.00 c		53.33		
L L	T. strigosum	22.07 f		75.47		
olat n A	T. harzianum	16.91 h		81.21		
ıl is froı rist	T. album	17.97 gh	90	80.03		
nga 7" 1 A	B. megaterium	48.00 a		46.66		
Fu F	B . subtilis	45.00 b		50		
LS	SD 0.05					

Table (2):	The ant	tagonistic	effect of the	bio-con	trol agen	t: T. strig	gosu	m, T. harzia	num, T.
	album,	Bacillus	megaterium	and B .	subtilis	against	F .	oxysporum	isolates
	growth	(mm) <i>in</i>	<i>vitro</i> 8 days a	fter incu	ubation.				

* PGI (Percent Growth Inhibition) = Colony growth in control plate – Colony growth in intersecting plate \ Colony growth in control plate × 100

- Each treatment represented the mean of six replicates for two experiment.

Similar results were obtained by **Perveen and Bokhari (2012)**. They studied the antagonistic potential of *T. harzianum* and *T. viride* against *F. oxysporum* isolated from date palm. They concluded that all tested isolates of *Trichoderma* showed appreciable inhibition for the mycelial growth of *F. oxysporum*.

Bacillus megaterium was non-significant in controlling radial growth of all tested *Fusarium oxysporum* isolates 8 days after incubation, no inhibition zones were observed with any of these isolates after incubation on PDA medium.

Bacillus subtilis was very effective in controlling radial growth of *F. oxysporum* isolates (B₂, D₂ and E₁) except isolate F_7 it was non-significant in controlling radial growth of the pathogen after incubation on PDA medium.

Several researchers have investigated bio-control strategies using various bacterial species to control *F. oxysporum* f.sp. *albedinis*

192

Plate (1): The antagonistic effect of T. strigosum (A), T. harzianum (B), T. album (C), B.megaterium (D) and B. subtilis (E) against F. oxysporum isolates growth in vitro after 8 days incubation

which cause the most destructive disease of date palm, called Bayoud disease. For instance, **Dihazi** *et al.*, (2012), found that *Bacillus amyloliquefaciens* and *Burkholderia cepacia* significantly inhibited growth and sporulation of *F. oxysporum* f.sp. *albedinis*. Also, selected three bacterial species namely: *B. pumilus, Rahnella aquatilis*,

Bacillus oereus for their high inhibition toward mycelial growth of *F. oxysporum* f.sp. *albedinis*.

These success in finding biological control agents against *F. oxysporum* are providing hope for establishing biocontrol strategy against *Fusarium* wilt of date palm.

REFERENCES

- Abd El-Moity, S.M.H.; Abdalla, M.Y. and Shehata, M.R.A. (1993). Evaluation of certain microorganisms for the biological control of chocolate spot disease on faba bean. Bull. Suez Canal Univ. Appl. Sci., 2: 17-32.
- Abdalla, M.Y.; Ibrahim, G.H.; Al-Mihanna, A.A. and Al-Rokaibah, A.A. (2001). Brown leaf spot of date palm in Saudi Arabia and the Influence of leaf epicuticular wax on disease severity. J. Adv. Agric. Res., 6 (3): 585-594.
- Abdalla, M.Y.; Kassem, F.A.; Shehata, M.R.A. and Ahmed, A.H. (1992). Etiology and control of offshoot heart rot of date palm in Al-Arish. Bull, of Suez Canal Univ. Appl. Sci., 1: 246-259.
- Agarwal, T.; Abhiniti, M.; Manish, B. and Trivedi, P.C. (2011). In vitro interaction of Trichoderma isolates against Aspergillus niger, Chaetomium sp. and Penicilium sp. Indian J. Fundamental and Appl. Life Sci., 1 (3): 125-128.
- Baraka, M.A.; Radwan, F.M. and Arafat, K.H. (2011). Studies on fungal root diseases of date palm and its control. J. Biol. Chem. Environ. Sci., 6 (2): 319-337.
- Dihazi, A.; Jaiti, F.; Wafataktak.; Kilani,
 F.O.; Jaoua, S.; Driouich, A.; Baaziz,
 M.; Daayf, F. and Serghini, M.A. (2012). Use of two bacteria for biological control of bayoud disease caused by *Fusarium oxysporum* in date palm (*Phoenix dactylifera* L.) seedlings. Plant Physiol Biochem. Doi:10.1016/j. plaphy. 2012.03.003.
- **Djerbi, M. (1983).** Diseases of the date palm (*Phoenix dactylifera*). Regional project for palm and dates Research center in Near East and North Africa. Baghdad, Iraq, FAO, 106.
- El-Morsi, M.A.E. (1999). Studies on certain fungal diseases of date palm in

New Valley. M.Sc. Thesis, Fac. Agric., Assiut Uni., 110.

- El-Morsi, M.A.E. (2004). Studies on certain fungal diseases of date palm off-shots in New Valley. Fac. Agric., Assiut Uni., 120.
- Haggag, Karima H.E. and El-Gamal Nadia G. (2012). In vitro study on Fusarium solani and Rhizoctonai solani isolates causing the damping off and root rot diseases in tomato. Cent. Agric. Pest. Lib., Agric. Res. Cent., Dokki, Giza, Egypt. Nat. and Sci., 10 (11): 16-25.
- **Ioannou, N. (1999)**. Management of soil borne pathogens of tomato with soil solarization. Technical Bulletin., Agric. Res. Inst., Nicosia, Cyprus (20): 5-9.
- Loutfy, I.E. (2010) Degradation of date palm trees and date production in arab countries: causes and potential rehabilitation. Aust. J. Basic and Appl. Sci., 4 (8): 3998-4010.
- Perveen, K. and Bokhari, N.A. (2012). Antagonistic activity of *Trichoderma harzianum* and *Trichoderma viride* isolated from soil of date palm field against *Fusarium oxysporum*. African J. Micro. Res., 6 (13): 3348-3353.
- Rashed, M.F. (1991). Pathological studies on fungi causing deterioration of date palm off-shoots in Egypt M.Sc. Thesis, Fac., Agric. Cairo Uni., 90.
- Ratul, S. and Narendra, K. (2010). Molecular detection and identification of *Fusarium oxysporum*. DOI 10.1007/978-3-642-05042-8_7,Springer-Verlag Berlin Heidelberg, 1-28.
- Samuels, G.J. and Hebbar, P.K. (2015). *Trichoderma*: Identification and agricultural applications. APS Press, st. Panl. MN., 204.
- Song, W.; Zhou, L.; Yang, C.; Cao, X.; Zhang, L. and Liu, X. (2004). Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Port., 23: 243-247.

الملخص العربى تأثير بعض المسببات الفطرية والكائنات البيولوجية المضادة علي نمو فطر الفيوزاريوم أوكسيسبورم المعزول من نخيل البلح في شمال سيناء عبدالله صالح محمد، محمد ياسر حسن عبدالله، محمد محمود سرور قسم الإنتاج النباتي، كلية العلوم الزراعية البيئية، جامعة العريش، مصر.

تم في هذا البحث دراسة تأثير بعض المبيدات الكيميائية المتداولة وكذلك بعض الفطريات والبكتريا المستخدمين في مجال المكافحة الحيوية علي عدة عز لات من الفطر Fusarium oxysporum والتي تم عزلها من جذور أشجار نخيل مصابة معملياً في محافظة شمال سيناء، في هذا البحث تم استخدم ثلاث مبيدات فطرية تجارية هي التاتشجرين والرايزوليكس والدايثين م-٤٥ وذلك بخمس تركيزات هي (١٠-٥٠-١٠٠١-٢٠٠٠ جزء في المليون) بالإضافة إلي محافظة المستخدمة في المقاومة الحيوية مثل فطر الترايكوديرما هارزيانم والترايكوديرما البوم والترايكوديرما الموم والترايكوديرما الميناء، في هذا البحث تم استخدم ثلاث مبيدات فطرية تجارية هي التاتشجرين موالرايزوليكس والدايثين م-٤٥ وذلك بخمس تركيزات هي (١٠-٥٠-١٠٠٠م-١٠٠٠ جزء في المليون) بالإضافة إلي الكائنات الحية الدقيقة المستخدمة في المقاومة الحيوية مثل فطر الترايكوديرما هارزيانم والترايكوديرما البوم والترايكوديرما الكائنات الحية الدومي للمسبب المرضي الفيون والاسيليس سيبتيليس، كان المبيد الفطري تاتشجرين هو أكثر تأثيراً في تثبيط سترايجوزم وبكتريا المسبب المرضي الفيوزاريوم أوكسيسبورم في المعمل يليه الرايزوليكس ثم الدايثين م-٤٥ وللي الترايكوديرما كان المبيد الفطري تاتشجرين مو النميريا والمسبيط في المعافي إلي معر الترايكوديرما ما والان الكوديرما والترايكوديرما ما لبوم والترايكوديرما النموم وي تثبيط مو المعمل يليه الرايزوليكس ثم الدايثين م-٤٥ النموم أوكسيسبورم حيث كان المو لمي ليه الرايزوليكس ثم الدايثين م-٤٥ الذي أظهر أقل النمو الميسليومي للمال المرحي الفيوزاريوم أوكسيسبورم في تثبيط نمو الفيوزاريوم أوكسيسبورم حيث كان المو لم تراكوديرما مالزراً في تثبيط نمو الفيوزاريوم أوكسيسبورم حيث كان الفر تراكوديرما مارينا بكتريا ولماسبورم حيث كان الفور تراكوديرما هارزيان مو أم الفور البوم أوكسيسبورم حيث كان الفور تراكوديرما كانت الأعلي تأبيرا في تثبيط نمو الفيوزاريوم أوكسيسبورم حيث كان الفر تراكوديرما هارزيان هو أكثر الأحلي البوم ثم ترايكوديرما مالزاي وليكس ثمان المور ، أما البكتريا الفطر تراكوديرما ماترايوزاريوم أوكش مالميب المرضي في تثبيط نمو الفور، أما البكتريا الفور ترايو الفر، أما البكتي البوديرم ما مترايو وليل مالور، أما البكتريا المورسي.

الكلمات الاسترشادية: المسببات الفطرية، الكائنات البيولوجية المضادة، فطر الفيوز اريوم أوكسيسبورم، نخيل البلح، شمال سيناء.

المحكمـــون: ۱- أ.د. سيد على أحمـد ۲- أ.د. محمد أنور عبدالستار

أستاذ الحشرات الاقتصادية، كلية العلوم الزراعية البيئية، جامعة العريش، مصر. أستاذ أمراض النبات، كلية الزراعة، جامعة الزقازيق، مصر.

Mohamed, *et al*.