

Evaluation of Gamma Rays Shielding Competence for Bentonite Clay /PVA Polymer Matrix Using MCNPX Code

Fawzy H. Sallam³, Ibrahim Z. Hager¹, Yasser S. Rammah¹, Hosam A. Othman¹, Sayed F. Hassan², Eman M. Ibrahim³ and Zakaria Ahmed⁴

¹Department of Physics, Faculty of Science, Menoufia University, Egypt

²Department of Medical and Radiological Research, Nuclear Materials Authority, Egypt

³Department of Geochemical Exploration, Nuclear Materials Authority, Egypt

⁴Egyptian Nuclear and Radiological Regulatory Authority, Egypt

Received 31st Oct. 2019 Accepted 15th March 2020 This Radiation shielding capability in terms of mass and linear attenuation coefficients, half value layer, tenth value layer, and mean free path haven been evaluated for natural bentonite coated with polyvinyl alcohol polymer (PVA) using Monte Carlo simulation (MCNPX) and XCOM program. All data were determined at gamma photons energies 662, 1173 and 1332 keV emitted from point sources of ¹³⁷Cs and ⁶⁰Co, respectively, and compared with calculated experimental data. XCOM results of mass attenuation coefficients showed better agreement with experimental data in comparison with MCNPX code. The relative deviations between experimental and theoretical mass attenuation coefficients are 4.3, 2.5 and 1.25 % at 662, 1173 and 1332 (keV) while deviation between simulated and experimental mass attenuation coefficients are -3.1, -10.96 and -10.35 % at the same energies, respectively. The relative deviation between simulated shielding factors HVL, TVL and MFPwith experimental data exhibit the same behavior as mass attenuation coefficient and having average relative deviations percentage equal to 2.5, 13.4 and 13.8 % at the studied energies, respectively.

Keywords: Mass Attenuation Coefficient, Bentonite, PVA Polymer, XCOM, MCNPX code

Introduction

Wide varieties of materials are being used in radiation protection. The choice of these materials depends on the requirements, application, cost, feasibility, availability, type of radiation, etc. There is always a need to develop material for shielding purposes, which can be used under harsh conditions of nuclear radiation exposure and can act as shielding material [1, 2]. The purpose of radiation shielding is to reduce radiation exposures to the public and workers to an acceptable level [3]. Mineral ores such as magnetite, siderite, barite and limonite ...etc, are popular for producing heavy weight concrete because of economical reasons [4]. Mineral ores can be used as a shield against gamma rays because it contains a variety of light and heavy elements like C, K, S, P, Ca, Mg, Na, etc [5]. Natural bentonite is considered a mineral ore which contains a variety of oxides and can be used as a shield against gamma rays. Polymeric composites containing inorganic additives became the most popular shield against gamma rays and many studies investigated their shielding properties [6-8]. Polymeric nanocomposites have a great potential for improving shielding properties [9-11].

The simulation method for investigation of radiation interaction is found radiologically safer, less time consuming, cost effective and applicable for desired energy of radiation. It is found that Monte Carlo simulation (MCNPX code) is a suitable method for investigation radiation

Corresponding author: <u>thanaasileem@yahoo.com</u> DOI: <u>10.21608/ajnsa.2020.18914.1292</u>

© Scientific Information, Documentation and Publishing Office (SIDPO)-EAEA

interaction with materials in the literature [12]. The general purpose of MCNPX code is modeling the interaction of gamma rays with matter and tracking all particles at different energies. It is a full threedimensional and utilizes extended nuclear cross section libraries [13]. Many studies used MCNPX program to demonstrate the effectiveness of nanoparticles in shielding properties [14-16]. Tekin et al, calculated shielding properties of concrete

doped with different percentages of WO₃ and PbO using MCNPX simulation at five energies 356, 662, 1173, 1234 and 1333 (KeV). They concluded that addition of PbO is more effective than WO₃ to reduce radiation dose [17]. Rammah et al investigated six bismuth borate glass samples against gamma rays and calculated its shielding parameters in the range of 0.356-1.33 MeV using MCNPX code. The authors found that replacement of B₂O₃ by Bi₂O₃ enhance shielding properties of glass [18].

The major aim of the current study is to evaluate the shielding factors for natural bentonite/PVA polymer matrix against gamma rays and this included:

- 1- Evaluating the mass attenuation coefficients ($\mu_m = \mu/\rho$) for the prepared samples at gamma photons energies 662, 1173 and 1332 keV emitted from point sources of ¹³⁷Cs and ⁶⁰Co, respectively using MCNPX code.
- 2- The results of simulated (μ/ρ) have been compared with the theoretical results obtained by WinXCOM program.
- 3- The simulated and theoretical values were compared with the calculated experimental data.
- 4- Based on the (μ/ρ) values, the effective shielding parameters such as LAC, HVL, TVL, and MFP have been calculated.

This study can be very useful for wide applications of natural materials for gamma rays shielding and utilization of standardized geometry of Monte Carlo simulation for medical physics, radiation physics, shielding and radiation protection.

Theoretical background

The linear attenuation coefficient can be calculated according to The Lambert-Beer law which describes attenuation of a monoenergetic beam as follows:

$$I = I_0 e^{-\mu x}$$
(1)

Arab J. Nucl. Sci. & Applic. Vol. 53, No. 2 (2020)

where I is the transmitted gamma radiation intensity, I_o is the incident gamma radiation intensity, x is the thickness of the absorbing medium and μ is the linear attenuation coefficient. For photons in an attenuating medium, the mass attenuation coefficient (μ/ρ) is given by:

$$\mu_{\rm m} = \mu/\rho = \ln(I_{\rm o}/I)/\rho x \qquad (2)$$

where ρ is the density of the shield material [19]. The theoretical mass attenuation coefficients obtained from XCOM program are calculated using equation (3) at different energies. $\mu_m = \sum w_i \mu_i$ (3)

where w_i and μ_i are percentage by weight and mass attenuation coefficient of the ith element of the mixture sample [20]. Shielding effectiveness is described in terms of HVL and TVL:

HVL = $ln2/\mu$ (4) TVL = $ln10/\mu$ (5)

The interaction between two successive interactions; is mathematically the inverse of the linear attenuation coefficient is called mean free path and can be calculated by the equation:

$$MFP = 1/\mu \qquad (6)$$

where μ is the linear attenuation coefficient [21, 22].

Materials and methods

Characterization of Natural Bentonite

The properties of the studied cylindrical pellet samples are presented in Table (1). The density of the sample matrix is calculated using Archimedes principle using xylene as an immersion liquid at room temperature. The measurement accuracy was approximately \pm 0.015 g/cm³ [24-26]. The chemical composition of the bentonite/PVA matrix sample used in material card of MCNPX code is presented in Table (2). The PVA polymer represents 10% weight from the all weight of the samples. The percentages of each element in bentonite clay/PVA polymer by weight that used in material card of MCNP code is given in Table (3).

Table (1): The properties of bentonite/PVA matrices samples										
Sample	Pellet (cm)	thickness	Pellet (cm)	diameter	Pellet (g/cm ³)	density				
Natural bentonite/ PVA polymer	0.5 1 1.5 2 2.5		2.2		1.48					

. .

Table (2):Chemical composition of the bentonite/PVA sample.

Oxides (%)	SiO ₂	Al ₂ O ₃	P ₂ O ₅	TiO ₂	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	H ₂ O	C ₂ H ₄ O
Natural Bentonite	27	12.2	0.31	0.31	2.9	13.7	3.63	1.3	0.6	28.05	10

Table (3): The percentages of the atomic composition for bentonite clav/PVA matrix

Element	Si	Al	Р	Ti	Fe	Ca	Mg	Na	K	Н	0	С
Atomic number	14	13	15	22	26	20	12	11	19	1	8	6
Atomic composition (%)	12.5	6.5	0.14	0.2	2.03	9.8	2.2	0.96	0.5	4.06	55.66	5.45

Natural bentonite is considered a mineral ore as it contains several elements in the form of oxides (Table 2). Therefore, it can be used as a shield material for gamma rays. The sample has a water content and organic matter of 28.05 % from all sample contents (loss of ignition value). Silicon oxide and calcium oxide represent the highest oxide contents in the chemical analysis of the studied sample. Polymeric composites become the most popular shield against gamma rays because protectthe shielding material they from environmental conditions, also they prevent nuclear waste leakage through porosity of bentonite clay. The chemical composition of the PVA polymer is C_2H_4O .

MCNPX Code

MCNPX is a simulation program for radiation transport and modeling of the interaction between radiation and materials at different energies [23]. The samples consist of natural bentonite coated by polyvinyl alcohol polymer (PVA) as a matrix. The PVA polymer represents 10% weight from the all weight of the samples. The samples are modeled in acylindrical pellet geometry. The cylindrical sample and planer source are set inside a cylindrical collimator with inside cylindrical gap of 2.2 cm thickness. The diameter of the sample also is 2.2 cm. The distance between source and sample is 1 cm. A collimated monoenergetic

narrow beam gamma ray transmits through the sample and hit the detector. The distance between the collimator and the detector is 0.1 cm, while the distance between sample and the detector varies according to the sample thickness. When sample thickness is 0.5 cm, the distance between sample and the detector is 2.1 cm (0.1 cm is the space between collimator and detector while the distance from sample and the end of collimator is 2 cm). The geometry of the simulation system is shown in the Fig. (1).

A one cylindrical with 3"×3" NaI (Tl) of crystal height and diameter of 7.62 cm. The all geometry simulation is inside 55 mm thick lead shield to isolate the all geometry from external radiation (cosmic rays and earth crust radiation). The geometry of the simulation is set up as experimental conditions. Tally (F₄) has been used for obtaining simulation data. Simulation is calculated using one million histories and all simulated results were reported with error $\leq 0.1\%$. In this work, each surface must define in input file in terms of geometric dimension and coordinates also each cell must defined in terms of material content and density of that material. The monoenergetic energies used in the simulation are 662, 1173 and 1332 keV produced by ¹³⁷Cs and ⁶⁰Co. These energies are the same as used in the experimental conditions for comparison purpose.

Fig.(1): Geometry of the modeled configuration

Validation

Applying the Monte Carlo method is the one of the best solutions for the investigation of different complex materials behavior since experimental duplication of investigation is quite complicated. So, it is more suitable to apply some numerical methods such as Monte Carlo. In this paper, a validation for input code was performed. On the other hand, XCOM program was also used to calculate the gamma ray mass attenuation coefficients of the studied shielding materials. XCOM program is a user friendly calculation program and input parameter specifications are quite flexible and easy to access. In the XCOM program, firstly, shielding material types were defined by their elemental mass fractions, which are totally the same as in MCNPX Monte Carlo

code input. Secondly, the gamma ray energies have been defined. The attenuation coefficients of the selected materials were finally calculated by the program.

Results And Discussion

Mass attenuation coefficient is a fundamental property of a material for photon interaction to represent interaction and shielding effectiveness. Mass attenuation coefficient of an element is found to be constant at a particular photon energy, whereas mass attenuation coefficient of a compound or mixture depends upon composition of elements. The linear attenuation coefficient, half-value layer thickness, tenth-value layer thickness and effective atomic number are derived parameters from mass attenuation coefficient [12].

Linear and Mass Attenuation Coefficients

Shielding factors of a natural bentonite/PVA sample has been calculated experimentally using the same geometry used in MCNPX code at the same energies. Equation (1) of Beer-Lambert is used in linear attenuation coefficient determination. By plotting the relation between Ln (Io/I) versus sample thickness (x), the slope is equal to the linear attenuation coefficient value. The obtained data for natural bentonite/PVA samples is given in Table (4) and drawn in Fig.(2).

Table (4):Measured gamma photons with and without natural bentonite/PVA samples										
Energy (KeV) Thickness (cm)	662	1173	1332							
0	18189	2918	2276							
0.629	17219	2784	2231							
1.079	16643	2692	2153							
1.661	16024	2605	2094							
2.012	15619	2513	2018							
3	13503	2301	1848							
3.55	12440	2143	1750							

Fig.(2):Gamma transmission through natural bentonite/PVA sample at different thicknesses and different energies

Shielding parameters of natural bentonite/PVA samples (μ , μ_m , HVL, TVL and mfp) calculated experimentally using equations 1, 3, 4, 5 and 6 are summarized in Table (5). The density of bentonite/PVA samples is 1.48 g/cm³ which was measured using Archimedes principle.

MCNPX simulation has been used for linear and mass attenuation coefficients calculations of bentonite/PVA samples with different thicknesses. The linear and mass attenuation coefficients for attenuator samples were calculated for the three different gamma energies 662, 1173 and 1332 keV and shown in Table (6) and Fig.(3). It is found that the linear and mass attenuation coefficients of the studied samples are decreasing with increase in photon energy. This variation of mass attenuation coefficients can be explained using the photon interaction fundamental process of photoelectric effect, Compton scattering and pair production for low-, intermediate- and high energy photons, vary with atomic number of elements of compositions. Additionally, at low photon energy, photoelectric interaction is the dominance, and is the reason for mass attenuation coefficient reduction (662 keV) while at 1173 keV and 1332 keV Compton scattering and pair production are dominant [27]. The variations of average linear and massattenuation coefficients versus photon energy (keV) are illustrated in Fig.(4). The mass and linear attenuation coefficients exhibit the same behavior.

Shielding parameter Energy (KeV)	μ (cm ⁻¹)	$\mu_{\rm m}$ (g/cm ²)	HVL (cm)	TVL (cm)	Mfp (cm)	
662	0.112	0.076	6.188	20.55	8.92	
1173	0.088	0.059	7.876	26.16	11.36	
1332	0.083	0.056	8.351	27.74	12.04	

Table (5): Experimental calculation of shielding parameters for bentonite/PVA sample

 $Table \ (6): \ Simulated \ linear \ [\mu \ (cm^{-1})] \ and \ mass \ [\mu_m \ (cm^{2}/g)] \ attenuation \ coefficients \ of \ bentonite/PVA \ polymer \ samples \ and \ an$

Energy(keV)	662		1173		1332	1332		
Thickness	μ	$\mu_{ m m}$	μ	$\mu_{\rm m}$	μ	$\mu_{\rm m}$		
0.5	0.114	0.07619	0.0826	0.05582	0.0775	0.05312		
1	0.11086	0.07481	0.0804	0.05433	0.07511	0.05144		
1.5	0.1093	0.07376	0.07735	0.05226	0.07358	0.05077		
2	0.10703	0.07222	0.07506	0.05072	0.07151	0.04907		
2.5	0.10555	0.07123	0.07329	0.04951	0.0677	0.04679		
Average	0.10934	0.07364	0.07774	0.052528	0.07408	0.0502		

Fig.(3): Linear (µ)and mass (µ_m) attenuation coefficients of bentonite/PVA samples estimated using MCNPX at different energies

Arab J. Nucl. Sci. & Applic. Vol. 53, No. 2 (2020)

The μ_m values for bentonite/PVA samples were calculated using the MCNPX and XCOM codes for photon energies 662, 1173 and 1332 keV. The simulation results were compared with the experimental results (Table 5). The simulated MCNPX and XCOM results of μ_m are plotted together with the previous experimental results as shown in Fig.(5) at the aforementioned photon energies. It can be seen from Fig.(5) that there is a satisfactory agreement between the theoretical (XCOM) method and experimental results. However, the μ_m values calculated by MCNPX were found to be slightly lower than the

experimental results at different photon energies. The discrepancies between the simulated μ_m values and experimental data can be attributed to deviation from narrow beam geometry in the source-detector arrangement.

In Fig.(6), the relative deviation (RD), differences between simulation and theoretical results with experimental data of mass attenuation coefficients for 662, 1173 and 1332 keV gamma ray energies are plotted for MCNPX code and XCOM program using Eq.(7) [28]:

RD =(Theoretical – experimental) x 100/ Experimental(7)

Fig.(4): Variations of average linear and mass attenuation coefficients with gamma energies

 Table (7): Comparison between average simulated (MCNPX-code), theoretical (XCOM) and available experimental (Exp.)

 mass attenuation coefficients data at different energies

Energy (keV)	MCNPX	XCOM	Exp.	
662	0.07364	0.0793	0.076	
1173	0.05253	0.0605	0.059	
1332	0.0502	0.0567	0.056	

Fig.(5):Comparison between average simulated, theoretical and experimental mass attenuation coefficients at different energies

Fig.(6): Difference (%) between experimental data and MCNPX and XCOM results

The relative deviation (RD) values are -3.1 %, -10.96 %& -10.35% and 4.3 %, 2.5 %& 1.25 % for MCNPX and XCOM results relative to experimental mass attenuation coefficient at 662, 1173 and 1332 keV photon energies, respectively,

for all samples. It was found from Fig.(6) that approximately a good agreement was observed between experimental and theoretical values and the discrepancies are not being considered to be large, because the differences are in the magnitude of the reported experimental errors which is less than 5.05% in average [29]. There is a little difference between experimental and simulated mass attenuation coefficient reaching 11%. It should be noted that the difference between data and both experimental and simulated theoretical data are attributed to the difference between the employed techniques and database for each method and also to the utilized extended nuclear cross section libraries. Natural bentonite/PVA polymer matrix sample is a promising mixture, as its mass attenuation coefficient represents 69 % percentage in comparison with theoretical lead value 0.1101 cm^2/g [20]. The natural bentonite represents a mixture of elements as it consists of a variety of mineral oxides that effective in shielding gamma rays.

Half Value Layer (HVL), Tenth Value Layer (TVL) and Mean Free Path (MFp)

It is more useful in the radiation fields to express attenuation of gamma rays in terms of half value layer (HVL), which is defined as the thickness from the absorber material that reduces initial intensity of gamma rays 50% from its value. Another factor plays the same role as half value layer is the tenth value layer (TVL) which defined as the thickness from the absorber material that reduces initial intensity of gamma rays to one tenth of its value. Both HVL and TVL describe the effectiveness of the shielding material. The mean free path (MFP) parameter is one of the basic quantities required for gamma rays shielding and are calculated for bentonite/PVA matrix sample at 662, 1173 and 1332 keV using MCNPX code. The results of linear attenuation obtained from MCNPX program were used for obtaining the value of HVL, TVL and MFP using equations (4), (5) and (6), respectively. The calculated HVL, TVL and MFP values are listed in Table (8) and drawn in Fig.(7). These Figures show that the HVL, TVL and MFPvalues of the samples increase with the increase in thethickness of the sample and the incident photon energy. The average HVL, TVLand MFPvalues are (6.343, 8.933 and 9.505 cm), (21.072, 29.675 and 31.574 cm) and (9.151, 12.887 and 13.712 cm) for 662, 1173 and 1332 keV, respectively.

Table (8): HVL, TVLandMFP(cm) values of bentonite/PVA polymer samples at different energies

Energy(keV)	662			1173			1332		
Thickness	HVL	TVL	MFP	HVL	TVL	MFP	HVL	TVL	MFP
0.5	6.08	20.198	8.771	8.391	27.876	12.106	8.943	29.710	12.903
1	6.252	20.770	9.020	8.621	28.639	12.437	9.228	30.656	13.313
1.5	6.342	21.066	9.149	8.961	29.768	12.928	9.420	31.293	13.590
2	6.476	21.513	9.343	9.234	30.676	13.322	9.693	32.199	13.984
2.5	6.567	21.815	9.474	9.457	31.417	13.644	10.238	34.011	14.771
Average	6.343	21.072	9.151	8.933	29.675	12.887	9.505	31.574	13.712

Fig.(7): HVL, TVL and mfpvariations with thickness at different photon energies

 Table (9): Comparison between simulated (MCNPX) and experimental (Exp.) shielding factors (HVL, TVL and MFP)

 Shielding Factor
 HVL
 TVL
 MFP
 Relative

 Energy (keV)
 MCNPX
 Exp.
 MCNPX
 Exp.
 Optimized (%)

Ellergy (kev)	MUNPA	Exp.	MUNPA	Exp.	MUNPA	Exp.	(%)
662	6.343	6.188	21.072	20.55	9.151	8.92	2.5
1173	8.933	7.876	29.675	26.16	12.887	11.36	13.4
1332	9.504	8.351	31.574	27.74	13.712	12.04	13.8

Fig.(8) Comparison between simulated and experimental values for HVL, TVL and MFP at different energies

Arab J. Nucl. Sci. & Applic. Vol. 53, No. 2 (2020)

The comparisons between simulated and experimental data for shielding factors (HVL, TVL and mean free path) at different energy values are given below in Table(9) and Fig.(8). The comparison between shielding factors (HVL, TVL and MFP) showed that the three factors have the same behavior where they increase with the increasing of photon energy for experimental and simulated data. The shielding factors (HVL, TVL and MFP) have the same relative deviations between experimental and simulated data and there average values are 2.5, 13.4 and 13.8 (%) at 662, 1173 and 1332 (keV), respectively.

Conclusion

Radiation shielding parameters (mass attenuation coefficient, linear mass attenuation coefficient, HVL, TVL and mean free path) were calculated for bentonite clay /PVA polymer matrix sample at 662, 1173 and 1332 keV using MCNPX program and XCOM program and were compared with the experimental data. It was found that theoretical mass attenuation coefficient is in a very good agreement with the experimental data and have relative deviation of 4.3, 2.5 and 1.25 % while, the calculated shielding parameters (mass, linear, HVL, TVL and MFP) from MCNPX program has a little difference with experimental data. The comparison showed relative deviations of -3.1, -10.96 and -10.35 (%) at 662, 1173 and 1332 (keV), respectively, for mass attenuation coefficient while the average relative deviations of other shielding parameters (HVL, TVL and MFP) of 2.5, 13.4 and 13.8 (%) at the same energies. The data obtained from MCNPX program is a reliable data for bentonite/PVA sample within ± 13 % in comparison with experimental data and \pm 5% in comparison with theoretical data. The difference percentage in comparison with different techniques, is due to different database and different utilized extended nuclear cross section libraries.

References

- 1-Krocher J. F.,Browman R.E. (1984),Effects of radiation on materials and components. Reinhold (Eds.), New York.
- 2-Singh N., Singh K.J., Singh K., Singh H. (2004),<u>Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials</u>. Nucl. Instru. Meth. Physi. Rese. B, 225(3), 305-309.
- 3-<u>Glasgow G.P</u>. (2006), Structural shielding design and evaluation for megavoltage X- and gamma-ray

radiotherapy facilities.<u>Med. Phys.</u>, 2006 Sep, 33(9), 3578.

- 4-BashterI.I., Abdo A.E.,MakariousA.S. (1996),<u>A</u> comparative study of the attenuation of reactor thermal neutrons in different types of concrete. Ann. Nucl. Ener. 23(14), 1189-1195.
- 5-Laxman C., Dayanand R. (2012), Attenuation coefficient of soil samples by gamma ray energy, Res.J.Rece. Sci., 1(9), 41-48.
- 6-Abdo A.E.S., Ali, M.A.M., Ismail M. R. (2003), Natural fibre high-density polyethylene and lead oxide composites for radiation shielding. Radi.Physi. Chem., 66(3), 185-195.
- 7-Lee B. J., McDonald A. G., James B. (2001), Influence of fiber length on the mechanical properties of wood fiber/polypropylene prepreg sheets. Mater. Resea. Innova., 4(2-3), 97-103.
- 8-Abdo A.E. S., El-SarrafM.A., GaberF.A. (2003),<u>Utilization of ilmenite/epoxy composite for</u> <u>neutrons and gamma rays attenuation</u>. Ann.Nucl. Ener., 30(2), 175-187.
- 9-Atta E.R, Zakaria K.M.,Madbouly A.M. (2015),Study on polymer clay layered nanocomposites as shielding materials for ionizing radiation, Inter. J.Rece. Sci. Rese., 6(5), 4263-4269.
- 10-El-Tantawy F., Kamada K., Ohnabe H. (2002), On the 'curiosity' of electrical self-heating, static charge and electromagnetic shielding effectiveness from carbon black/aluminium flakes reinforced epoxyresin composites. Poly.Inter., 51, 635-646.
- 11-11 Kumar R.V., Palchik O., Koltypin Y., Diamant Y., GedankenA. (2002), Sonochemical synthesis and characterization of Ag₂S/PVA and CuS/PVA nanocomposite. Ultras. Sono., 9, 65–70.
- 12-Tekin H. O., Singh V. P., Manici T., Altunsoy E.E. (2017), Validation of MCNPX with Experimental Results of Mass Attenuation Coefficients for Cement, Gypsum and Mixture. J.Radi.Prote.Resea., 42(3), 154-157.
- 13-MCNPX[™] 2.4.0, RSICC Computer Code Collection. MCNPX User's Manual Version 2.4.0. Monte Carlo N-ParticleTransport Code System for Multiple and High Energy Applications, Los Alamos National Laboratory, Los Alamos, New Mexico (2002).
- 14-Khadem-Abolfazli M., Mahdavi S.R., Ataei G. (2015), Studying effects of gold nanoparticle on dose enhancement in megavoltage radiation. J.Biom. Phys.Engi., 5-4, 185-190.
- 15-Dong Y., Chang S., Zhang H., Ren C., Kang D.M., Dai Y. (2012), Effects of WO₃ particle size in WO₃/epoxy resin radiation shielding material. Chin. Phys. Lett., 29, 1-4.
- 16-Ghorbani M.,Pakravan D. I., Bakhshabadi M.,Meigooni A.S. (2012), Dose Enhancement In Brachytherapy In The Presence Of Gold Nanoparticles: A Monte Carlo Study On The Size Of

Arab J. Nucl. Sci. & Applic. Vol. 53, No. 2 (2020)

Gold Nanoparticles And Method Of Modelling. NUKLEONIKA. 57-3, 401–406.

- 17-Tekin H. O., Sayyed M. I., Altunsoy E. E and Manici T. (2017), Shielding properties of WO₃ and PbO on mass attenuation coefficients by using MCNPX code , Digest Journal of Nanomaterials and Biostructures, Vol. 12, No. 3, p. 861 – 867.
- 18-Rammah Y. S., Sayyed M. I., Ali A. A., Tekin H. O. and El-Mallawany R. (2018), Optical properties and gamma-shielding features of bismuth borateglasses, Applied Physics A 124:832, https://doi.org/10.1007/s00339-018-2252-7
- 19-El-Fiki S., El Kameesy S. U., Nashar D. E.E., Abou-Leila M. A., El-Mansy M. K., Ahmed M. (2015), Influence of bismuth contents on mechanical and gamma ray attenuation properties of silicone rubber composite. Inter. J. Adv. Rese., 3(6), 1035-1039.
- 20-Berger M. J., Hubbell J.H. (1999), XCOM: Photon cross sections data base, Web Version, 1.2. National Institute of Standards and Technology, Gaithersburg, MD20899, USA. (Originally published as NBSIR 87-3597 ''XCOM: Photon Cross Sections on a Personal Computer''), http://physics.nist.gov./xcomS.
- 21-Akkurt I.,Altindag R.,Gunoglu K.,Sarikaya H. (2012), Photon attenuation coefficients of concrete including marble aggregates. Ann.Nucl. Ener., 43, 56–60.
- 22-TsoulfaniidisN., (1983), Measurement and detection of radiation, Hemisphere PublishingCorporation: Mcgraw-Hill Book Company, 151-163.
- 23-TekinH.O., Singh V.P., Manici T. (2017), Effects of micro-sized and nano-sized WO₃ on mass attenuation

coefficients of concrete by using MCNPX code, Appl. Radia. Isot., 121, 122-125.

- 24-Hager I. Z., Rammah Y. S., Othman H.A., Ibrahim, E.M., Hassan S. F., Sallam F.H. (2019), Nanostructured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation, Journal of Theoretical and Applied Physics, https://doi.org/10.1007/s40094-019-0332-5.
- 25-Alam M. N., Miah M.M. H., Chowdhury M. I., Kamal M., Ghose S., Rahman R. (2001), Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276-1332 keV. Technical note, Appl. Radiat. Isot., 54(6), 973-976.
- 26-Othman H.A., ElkholyH.S, Hager I.Z. (2016),FTIR of binary lead borate glass: Structural investigation, Journal of Molecular Structure 1106 286-290.
- 27-Hassan H.E.,BadranH.M.,Aydarous A.,Sharshar T. (2015),<u>Studying the effect of nano lead compounds</u> <u>additives on the concrete shielding properties for γrays</u>. Nucl. Instru. Meth. Phys. Rese. B, 360, 81-89.
- 28-Bagheri R., Shirmardi S. P., Adeli R. (2017), Study on gamma-ray shielding characteristics of lead oxide, barite and boron ores using MCNP-4C Monte Carlo code and experimental data. J. Test. Eval., 45(6), 2259-2266.
- 29-Un A., Sahin Y. (2011), Determination of mass attenuation coefficients, effective atomic and electron numbers, mean free paths and kermas for PbO, barite and some boron ores, Nucl. Instrum. Meth., B 269, 13, 1506-1511.