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Factor Structure of the Women’s Heptathlon: Applications of Traditional 

Factor Analysis and Structural Equation Modelling  

Ian Tim Heazlewood 

The women’s junior and senior Heptathlon in the sport of Athletics is an event that is conducted over two 

consecutive days using seven event performances in the following order; day 1 consists of the 100m hurdles, 

high jump, shot put and 200m; and day 2 consists of the long jump, javelin throw and 800m. Training 

recommendations are based on conceptual models and suggested motor fitness constructs between the 

different events within the Heptathlon. In this model, sprint events such as the 100m hurdles and 200m; jump 

events such as long jump and high jump; throws such as shot put and javelin and the 800m should represent 

four underpinning factors that represent the seven the events. The predominant research issue was do two 

statistical multivariate analytical approaches, one based on traditional factor analysis and the second based 

on structural equation modelling (SEM) support the four factor conceptual model? The statistical method 

known as confirmatory factor analysis was applied to a set of IAAF top 173 heptathlon scores in 2010 to 

uncover the latent structure or factors of the seven events. The traditional factor analysis, principal 

component analysis, generated the simplest and interpretable factor structure that supported the 

hypothesised four factor model. The SEM approach produced more paradoxical results. The results suggest 

training modules can be developed based on the factor structure of the Heptathlon. 

Introduction 

The women’s junior and senior Heptathlon in 

the sport of Athletics is an event that is 

conducted over two consecutive days using 

seven event performances in the following 

order; day 1, consists of 100m hurdles, high 

jump, shot put and 200m; and day 2, consists of 

long jump, javelin throw and 800m. The 

individual event performances are converted to 

point scores using International Association of 

Athletic Federations (IAAF) scoring tables, 

which are then summed to assess rank 

performance (IAAF, 2009). Literature on 

training for the Heptathlon in terms of evidence 

based training is minimal and limited 

recommendations that exist for adult athletes are 

based on case study research (Daly, 1984), 

extrapolating from how the high performance 

athlete trains (Daly, 1984), training 

recommendations that are based on conceptual 

models (Hancock, 1987; Mackenzie, 2007; 

Marra, 1985; Sarponov, 1982; Telfer, 1988) and 
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suggested exercise physiological links between 

the different events within the Heptathlon 

(Mackenzie, 2007), based on motor fitness 

constructs of endurance, strength, speed, skill 

mobility and so on. In the conceptual-exercise 

physiological model, sprint-power events, such 

as the 100m hurdles, 200m, long jump and high 

jump should be correlated and some training 

transfer should occur between these events. That 

is, sprint training should assist long jump 

performance. In terms of an evidenced based 

approach Heazlewood (2008) evaluated the 

factor structure of the Heptathlon based on the 

top 100 heptathletes from the 2006 IAAF 

athletic year and derived a three factor model to 

partially explain the interrelationships or factor 

structure between the seven events. In this 

model factor 1 displayed significant factor 

loadings with 110m hurdles, 200m, high jump 

and long jump; factor 2 with shot put and 

javelin and factor 3 with 800m.  Some factor 

complexity was associated with shot put, 200m 

and 800m, which loaded across more than one 

factor.  However, whether or not this factor 

structure is invariant across different 
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competitive seasons has not been established. 

The conceptual-exercise physiological model of 

Mackenzie (2007) is represented in table 1, 

represents a more complex explanation on 

which motor fitness factors are associated with 

each event in terms of high, medium or low 

dependence, although no explanation is 

provided as to how the weightings of high, 

medium and low were derived or what exact 

quantities they represent.  

Table 1. Hypothesised Factor Structure Based on Motor Fitness Factors Contributing to  

              Each Event (Mackenzie, 2007).  

Event 
Aerobic 

Endurance 

Gross 

Strength 
Skill 

Relative 

Strength 

Running 

Speed 
Mobility 

Explosive 

Strength 

Speed 

Endurance 

Strength 

Endurance 

100m 

hurdles 
- Med High High High High High Med - 

High 

jump 
- Low High High High High High - - 

Shot put - High High Med Low Med High - - 

200m Low Med Med High High High High High High 

Long 

jump 
- Low High High High High High - - 

Javelin - Med High High Low High High - - 

800m High - Low Low Med Low - - High 

Explained in greater detail based on motor 

fitness constructs or factors, the 100m hurdles is 

conceptualised to depend highly on skill, 

relative strength, running speed, mobility, 

explosive strength, and to a medium degree on 

gross strength and speed endurance; the high 

jump to depend highly on skill, relative strength, 

running speed, mobility, explosive strength, and 

to a low degree gross strength; whereas the 

200m sprint will depend highly on relative 

strength, running speed, mobility, explosive 

strength, speed endurance and strength 

endurance to a medium degree on gross strength 

and skill and to a low degree on gross strength. 

The other four events in table 1, that is, shot put, 

long jump, javelin and 800m are also described 

in terms of factors contributing to successful 

performance in these events. This model has 

some merit; however relative contribution to the 

underlying factors to the events has not actually 

been quantified, so the actual statistical weights 

for the factors have not been identified.  

The statistical methods to indentify the 

interrelationships between variables can be 

solved at the bivariate level such as bivariate 

correlation or at a more complex explanatory 

level using traditional factor analysis methods 

or “moving beyond the basic techniques” by 

applying the multivariate technique of structural 

equation modelling (abbreviated as SEM) (Hair 

et al., 2006, p. 705). Both multivariate 

approaches can be applied to evaluating the 

interrelationships between the seven heptathlon 

events and then assessed for their ability to 

provide factor simplicity and interpretability. In 

the context of this research confirmatory factor 

analysis will be applied using both methods. 

Confirmatory factor analysis attempts to 

confirm an underlying theoretical structure of a 

relatively large set of possible explanatory 

variables. The researcher's a priori assumption is 

that explanatory variables may be associated 

with specific factors. This is the most common 

form of factor analysis. There is a prior theory 

and the researcher uses factor loadings to 

explore and identify the factor structure of the 

data (Kim & Mueller; 1978; Norusis, 1985, Hair 

et al.; 1998; Hair et al.; 2006; Costello & 

Osborne, 2005). The advantage of confirmatory 

factor analysis is that it allows for testing 

hypotheses about a particular factor structure. 

Confirmatory factor analysis is theory based 

unlike exploratory factor analysis and 

confirmatory factor analysis is a complex 

procedure with some absolute guidelines and 

many options (Costello & Osborne, 2005).  

The more specific objectives of factor analysis 

(Kim & Mueller, 1978; Norusis, 1985; Hair et 

al., 2006) are to.  
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1. To identify underlying constructs or 

factors which explain the correlations 

among a set of variables? 

2. To test hypotheses about the structure of 

the variables. 

3. To summarise a large number of variables 

with a smaller number of derived latent 

variables or factors. 

4. To determine the number of dimensions to 

represent a number of variables and the 

correlation matrix. 

5. To achieve the simplest, most interpretable 

and pragmatically more meaningful factor 

solution. 

There are a number of methods for factor 

analysis and these are principal component 

analysis, maximum likelihood, image, principal 

axis, generalised least squares, unweighted least 

squares and alpha factoring . The statistical 

approach of each method is slightly different 

(Kim & Mueller; 1978; Norusis, 1985: Hair et 

al., 2006; Garson, 2011a). For example, 

principal component analysis transforms a set of 

observed variables into another reduced set of 

latent variables or factors; maximum likelihood 

is to solve the factor solution that best fits the 

observed correlations; image factoring 

distinguishes between the common variance part 

of a variable and the unique variance part; 

principal axis method attempts to reproduce the 

correlations of the variables and accounts for the 

covariation among the variables.  ; generalised 

least squares is to minimise the residual 

correlations after extracting a specific number 

of factors and to test the fiot between the 

reproduced correlations from the model to 

observed correlations; and in alpha factoring the 

variables included in the “analysis are 

considered a sample from a universe of 

variables” (Kim & Mueller, 1978. P. 26).  

Confirmatory factor analysis is a special case of 

the structural equation model (SEM), also 

known as the covariance structure and with 

confirmatory factor analysis it is possible to 

place substantively meaningful constraints using 

SEM on the factor model, such as setting the 

effect of one latent variable to equal zero on a 

subset of the observed variables. SEM consists 

of two components; a measurement model 

linking a set of observed variables to a usually 

smaller set of latent variables and a structural 

model linking the latent variables through a 

series of recursive and nonrecursive 

relationships. Confirmatory factor analysis 

corresponds to the measurement model of SEM 

and as such is estimated using SEM software, 

such as Amos (Albright, 2006; Arbuckle, 2006, 

2009).  

Research Questions 

The predominant research question is do 

different statistical analytical approaches 

support the conceptual model where four 

underlying factors represent the 

interrelationships between the seven events 

based on factors of sprint, jumps, throws and 

endurance abilities or factors? In the context of 

training, will heptathletes expect some training 

and performance transfer between events or do 

the seven events represent unique constructs 

that have to be trained individually? That is, do 

a number of events really represent a smaller 

number of factors that may be utilised to 

develop training approaches based on events 

that load on specific factors or are events unique 

and must be trained in isolation? If significant 

correlations exist among the seven individual 

events, factor analysis and structural equation 

modelling can be utilised to reduce the larger 

variable set, the seven events, into a smaller 

number of latent non-measured variables or 

factors. In terms of a conceptual model a four 

factor model can be hypothesised where 100m 

hurdles and 200m should be dependent on sprint 

speed, jump events dependent on “explosive” 

power, throwing events dependent on strength-

power and the 800m dependent on endurance. 

Hypotheses  

The two predominant hypotheses are:  

1. If the interrelationships of the seven 

events in the heptathlon are invariant across 

different athletic seasons then the three factor 

model of Heazlewood (2008) should be 

reproduced.  

2. If the seven events load with the 

constructs of speed, explosive-power, strength- 

power and endurance then a four factor model 

should be derived. This model is presented in 
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figure 1. The path from the endurance factor to 

200m as well as to 800m is based on some 

previous research (Heazlewood, 2008) that 

correlations exist between 200m and 800m for 

the 2006 Heptathletes. This argument also 

applies to the path from the sprint factor to 

800m. 

3. If the factor structure represents true 

interrelationships between the seven individual 

events then he different factor analysis methods 

should provide reasonably consistent factor 

solutions that are simple and interpretable. The 

theoretical model is illustrated in figure one 

using a structural equation model where the four 

underpinning factors are endurance, sprint, 

jumps and throws ability. In the hypothesised 

model the observed or endogenous variables, 

seven events, are in rectangles and the 

unobserved, latent, factors or exogenous 

variables of endurance, sprint, jumps and throws 

are within ellipses. The double headed arrow is 

a method to examine the correlations between 

the different factors and to assess statistical 

independence (orthogonal or oblique factors). 

 

Figure 1. Hypothesised model of the interrelationships of the seven events as they related or are 

loaded with underpinning conceptual factors of sprint, jump, throw and endurance ability. Sprint to 

800m and endurance to 200m path coefficients are predicted to be causally weak. 

4. The factor structure if simple, interpretable 

and parsimonious can provide evidence 

based approaches to designing overall 

training programs and individual training 

sessions to optimise heptathlon training as 

the underpinning factors will represent 

specific event competition clusters and 

clusters on which training units can be 

developed. 

Methods 

The statistical method known as confirmatory 

factor analysis was applied to a set of IAAF data 

(IAAF, 2010) based on world athletic rankings 

for top 173 women’s Heptathlon scores in the 

2010 athletic season. The research aim was to 

confirm the structure or three factors of the 

seven events that were established by 

Heazlewood (2008) or the four factor model 

hypothesised in this research.  

The original scores for the seven events were 

input into an SPSS data file (PASW Statistics 

18.0, 2007) using distances and heights for field 

events to the nearest 0.01 metre and time to the 

nearest 0.01 second for track events. The 

performances determined by the IAAF with the 
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2010 performances to be significantly wind-

assisted were excluded from the analysis. A 

number of traditional statistical factor solution 

methods were applied and these were principal 

component analysis, maximum likelihood and 

principal axis factoring.  Two factor solutions 

were derived, which were to select significant 

factors that displayed eigenvalues greater than 1 

and to test a researcher defined four factor 

model based on the hypothesised conceptual 

factor structure of sprint speed, jumps 

explosive-power, throws strength-power and 

endurance. 

As well, structural equation modelling an 

alternative approach to evaluating factor 

structure was applied using Amos 18 (SPSS Inc, 

2007) software.  Amos is short for Analysis of 

MOment Structures. It implements the general 

approach to data analysis known as structural 

equation modelling (SEM), also known as 

analysis of covariance structures, or causal 

modelling. Structural equation modelling 

represents a combination of factor analysis and 

multiple linear regression analysis was applied, 

which is based on reproducing the covariance 

matrix based on the seven events (Arbuckle, 

2009), whereas the input matrix for the principal 

component analysis is the correlation matrix. 

The factor analytic method that provided the 

simplest, most interpretable and pragmatically 

meaningful factor solution was principal 

component analysis. Principal components 

analysis is a method of factoring a correlation 

matrix directly, without estimating 

communalities. Linear combinations of 

variables are estimated, which explain the 

maximum amount of variance in the variables. 

The components from principal components 

analysis reflect both common and unique 

variance of the variables and may be seen as a 

variance focused approach seeking to reproduce 

both the total variable variance with all 

components and to reproduce the correlations. 

Principal components analysis is far more 

common than principal factor analysis, 

however, and it is common to use "factors" 

interchangeably with "components."  

In principal factor analysis the first component 

accounts for the most variance in the variables, 

then the second component accounts for the 

most variance in the variables residualized for 

the first component, and so on. The method 

transforms a collection of measured variables 

into a set of orthogonal maximum variance 

linear combinations.  Orthogonal in this context 

means the principal components or factors are 

not correlated with one another.  Other factor 

solutions were considered and attempted, such 

as the maximum likelihood, alpha factoring, 

generalised least squares and principal axis 

factoring. A number of initial tests were applied 

to assess the structure and quality of the 

correlation matrix to be used in the factor 

analysis. Kaiser-Meyer-Olkin measure of 

sampling adequacy was applied and indicated 

that factor analysis was appropriate 

(value=0.587) and Bartlett's Test of Sphericity 

(approximate chi square = 93.5, df = 21, 

p<.001) was applied to test the hypothesis that 

the correlation matrix was not an identity 

matrix. The factor analysis derived the 

descriptive statistics, the correlation matrix, 

communalities, total variance explained, 

component matrix, a scree plot, rotated 

component matrix, component transformation 

matrix, and component plot in rotated space. 

There are different but common assessment 

criteria for determining the number of 

significant factors that have been identified. 

Specifically, (Kim & Mueller; 1978; Norusis, 

1985; Hair et al., 2006):  

1. The Kaiser rule to exclude all components or 

factors with eigenvalues less than one.  

2. The Cattell scree test, which plots the 

components as the X axis and the corresponding 

eigenvalues as the Y axis, is another test. As 

graph moves to the right, toward the less 

significant components/factors, the eigenvalues 

decrease. When the decrease ceases the curve 

makes a defection or scree toward a less steep 

decline and Cattell's scree test excludes all 

further components after the one starting the 

deflection.  

3. Variance explained criteria where you use the 

rule of keeping enough factors to account for 
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90% (sometimes 70% plus) of the variation. 

Where the research goal emphasizes parsimony 

(explaining variance with as few factors as 

possible) but notes the criterion can be as low as 

50%.  

4. The Joliffe criterion is a more liberal, which 

may result in twice as many factors as the 

Kaiser criterion as it excludes all components 

with eigenvalues under 0 .7.  

5. With a sample size of 150 plus significant 

factor loadings should be .45 or higher (Hair et 

al., 2006).  

6. Although not a strictly mathematical 

criterion, construct comprehensibility is an 

important criterion, for limiting the number of 

factors to those whose dimension of meaning is 

readily comprehensible or interpretable. This 

approach often identifies the first two or three 

components/factors as theoretically important.  

The path diagram that is illustrated in figure 1 

follows the normal convention for constructing 

the path diagram by which the SEM model 

solves or attempts to fit the model. This is an 

application of confirmatory factor analysis 

based on SEM principals in which there is 

unmeasured covariance between each possible 

pair of latent variables. In reference to figure 1, 

the straight arrows are from the latent variables 

to their respective indicators or actual events, as 

well as straight arrows from the error and 

disturbance terms to their respective variables or 

events. To re-emphasise, the double headed 

arrows connecting the four factors enables the 

computation of the bivariate correlations 

between these factors and indicates whether 

these are orthogonal or oblique (related) factors.

Results 

The descriptive statistics for the sample based 

on performances in the total points and for the 

seven individual events. The range, minimum 

score, maximum score, mean, and standard 

deviation are displayed in table 2.   

Table 2. Range, Minimum and Maximum Scores, Means and Standard Deviations of  

              Total Points and for each Event. 

Event Range Minimum Maximum Mean Std. Deviation 

Total Points 1312 5511 6823 5903 262.91 

100m Hurdles(s) 1.98 12.89 14.87 14.00 .37 

High jump(m) .37 1.54 1.91 1.74 .07 

Shot Put(m) 6.88 9.00 15.88 12.68 1.15 

200m(s) 12.69 23.21 35.90 24.98 1.04 

Long jump(m) 1.57 5.22 6.79 6.03 .25 

Javelin(m) 27.30 25.86 53.16 41.61 5.37 

800m(s) 30.01 126.43 156.44 137.73 5.13 

      

The correlation matrix, which is illustrated in table 3, a conceptual and statistical starting point in 

factor analysis, indicated very significant absolute correlations between events.  
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Table 3. Correlation Matrix Indicating Pearson Correlations and Level of  

              Significance for Each Event. 

Event 
100m 

Hurdles 

High 

Jump 

Shot 

Put 
200m 

Long 

jump 
Javelin 800m 

100m hurdles 1 -.080 -.127 .386
**

 -.223
**

 -.068 .159
*
 

High jump -.080 1 .109 -.097 .332
**

 -.023 -.046 

Shot put -.127 .109 1 .005 .101 .267
**

 -.102 

200m .386
**

 -.097 .005 1 -.255
**

 .099 .194
*
 

Long jump -.223
**

 .332
**

 .101 -.255
**

 1 .038 -.061 

Javelin -.068 -.023 .267
**

 .099 .038 1 .029 

800m .159
*
 -.046 -.102 .194

*
 -.061 .029 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

Specifically, the 100m hurdles and 200m (r= 

.386; p<.01), 100m hurdles and long jump (r= -

.223; p<.01), 100m hurdles and 800m (r= .159; 

p<.05), high jump and long jump (r= .332; 

p<.01), shot put and javelin (r= .267; p<.01), 

200m and 800m (r= .194; p<.05) and 200m and 

long jump (r= -.255; p<.01), and clustering of 

events suggesting the appropriateness of 

applying factor analysis.  

The resulting initial factor solution utilising 

principal component analysis based on a 

researcher conceptually defined four factor 

model, explained 73.064% of the total variance 

explained.  It is important to note that the fourth 

derived factor has an eigenvalues slightly less 

than one, the usual cut-off point in determining 

significant factors. A number of orthogonal 

factor rotations were applied to improve the 

factor loadings and the most interpretable factor 

solution was a varimax rotation with Kaiser 

normalisation. Both the initial and rotated factor 

solutions with total variance explained are 

presented in table 4. 

Table 4. Total Variance Explained by Four Significant Factors Model. Eigenvalues  

              Greater than One were Selected as Significant. 

Compon

ent Initial Eigenvalues 

Extraction Sums of 

Squared Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Varianc

e 

Cumulat

ive % Total 

% of 

Varianc

e 

Cumulat

ive % Total 

% of 

Varianc

e 

Cumulat

ive % 

 

1 1.818 25.968 25.968 1.818 25.968 25.968 1.455 20.789 20.789 

2 1.287 18.389 44.357 1.287 18.389 44.357 1.328 18.968 39.757 

3 1.102 15.740 60.097 1.102 15.740 60.097 1.301 18.583 58.340 

4 .908 12.967 73.064 .908 12.967 73.064 1.031 14.724 73.064 

5 .698 9.968 83.032       

6 .621 8.874 91.906       

7 .567 8.094 100.000       

a. Extraction Method: Principal Component Analysis. 

 b. Four factors or components derived. 

The initial component matrix is displayed in 

table 5 and the more important and interpretable 

varimax rotated component matrix in table 6. 

Factor loadings of .45 or greater are identified 

as significant based on a sample size of 150 plus 

cases (Hair et al., 2006; Norusis, 1985) and 
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factor loadings in to .90s are considered 

marvellous, .80s meritorious and .70s moderate 

according to (Kim & Muller, 1978). The focus 

of the results will be on table 6, the varimax 

rotated component matrix. The varimax method 

attempts to minimise the number of variables 

that have high loadings on a factor and 

simplifying the columns in the factor matrix and 

is generally considered the best method in a 

achieving a simplified factor structure. This four 

factor solution loaded 110m hurdles (.818), 

200m (.793) with factor 1; high jump (.876) and 

long jump (.711) on factor 2; the shot put (.750) 

and javelin (.818) on factor 3; and the 800m 

(.940) on factor 4. The positive and negative 

loadings on indicate directional concepts in 

magnitude change of the variables with each 

factor. What is important to emphasise is 

essentially no factor complexity occurred, 

making the final rotated solution simple, 

interpretable and parsimonious and suggesting 

strongly that the interrelationships between the 

seven events can be accurately represented by a 

four factor model. The factors in this model are 

orthogonal, which means the factors are not 

correlated (r=0) with each other.

 

Table 5.  The initial component matrix based on four factor model. 

Event 
Component 

1 2 3 4 

100m hurdles .673 .051 .341 .364 

High jump -.474 .061 .686 .284 

Shot put -.322 .707 -.116 .217 

200m .662 .388 .234 .228 

Long jump -.657 .017 .452 -.114 

Javelin -.084 .787 -.159 -.252 

800m .400 .107 .466 -.720 

a. Extraction Method: Principal Component Analysis. 

b. Four components or factors extracted. 

The varimax rotation approach attempts to 

minimise the number of variables that have a 

high loading on a factor, which should enhance 

the interpretability of the factor solution. Table 

6 indicates this approach has been very 

successful as the variable loadings across the 

four orthogonal factors display distinct factor 

simplicity.  

Table 6. The final varimax rotated component matrix as four factor model. 

Event 
Component 

1 2 3 4 

100m hurdles .818 -.037 -.180 .047 

High jump .072 .876 .003 -.085 

Shot put .015 .173 .750 -.266 

200m .793 -.125 .175 .144 

Long jump -.359 .711 .071 .092 

Javelin -.034 -.088 .818 .192 

800m .151 .001 -.021 .940 

a. Extraction Method: Principal Component Analysis.  

b. Rotation Method: Varimax with Kaiser Normalization. 

c. Rotation converged in 5 iterations. 

The structural equation models (SEM) are more 

complex in the analysis the model that is 

presented in figure cannot be solved due to 

unidentified of a model. Identification is 

essentially whether or not enough information 

exists to generate a solution in SEM for a set of 

structural equations. The identification problem 

results in an inability of the hypothesised factor 

structure or model to generate unique estimates, 

which can interfere with the SEM program 

producing solutions (Hair et al., 2006).  A 

model is under identified if there are more 

parameters to be estimated than there are 

elements in the covariance matrix. The 



Ian Tim Heazlewood1 

122 

 

mathematical properties of under identified 

models prevent a unique solution to the 

parameter estimates and prevent goodness of fit 

tests on the model (Garson, 2011b). As a 

consequence the path from the latent variable or 

factor endurance to the 200m and the path from 

sprint to 800m was included to “solve” the 

SEM, resulting in a model in figure 2. The 

standardised regression weight loadings in 

figure 2 are not as substantive as the factor 

loadings in table 6 nor do the loadings enable a 

simple and interpretable factor structure.  

The model fit based on goodness of fit indices 

or GOF (Hair et al., 2006; Garson, 2011b) 

indicated minimum was achieved, Chi-square = 

4.96, degrees of freedom = 8 and probability 

level = .76 (number of distinct sample moments 

28; number of distinct parameters to be 

estimated 20 and degrees of freedom 28 – 20 = 

8). This indicates a reasonable fit of the model 

to the data or the structural model with the 

measurement model as they are statistically 

different (null hypothesis supported), however it 

is not the only possible fit as the path diagram in 

figure 2 is an outcome of conceptual modelling 

based on arguments presented in the 

introduction. Other fit indices are presented in 

table 7. The goodness-of-fit-index (GFI) is a fit 

statistic is less sensitive to sample size issues 

such as Chi-square and values of .90 to .95 are 

considered to indicate good fit and it should be 

noted in the default model the GFI is .992, once 

again indicating good model fit. 

 

Figure 2. Evidenced based model of the interrelationships of the seven events as they related or are 

loaded with underpinning conceptual factors of sprint, jump, throw and endurance ability.  

The root mean square (RMR) of .223, is higher 

than the usual cut-off value of .08 and to a 

degree supports the model fitting the data. Table 

8 contains the normed fit index (NFI), Tucker 

Lewis index (TLI) comparative fit index (CFI) 

and values of .90 or above are considered to 

indicate good fit.  

Table 7. Root Mean Square (RMR) and  
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             Goodness-of-Fit-Index (GFI) Values.  

Model RMR GFI AGFI PGFI 

Default model .223 .992 .972 .283 

Saturated model .000 1.000 
  

Independence model .435 .854 .806 .641 

Table 8. Baseline Comparisons NFI, TLI and CFI. 

Model 
NFI 

Delta1 

RFI 

rho1 

IFI 

Delta2 

TLI 

rho2 
CFI 

Default model .948 .863 1.035 1.107 1.000 

Saturated model 1.000 
 

1.000 
 

1.000 

Independence model .000 .000 .000 .000 .000 

Table 9 indicates the root mean square error of approximation (RMSEA), which involves a 

correction for large sample sizes and values less than .10 are thought to represent good model fit. 

Table 9. Root Mean Square Error of Approximation (RMSEA). 

Model RMSEA LO 90 HI 90 PCLOSE 

Default model .000 .000 .062 .911 

Independence model .143 .115 .173 .000 

Collectively, all these indices of goodness-of- fit 

measures indicate good and acceptable model fit 

with the 2010 IAAF heptathlon data for SEM; 

however the regression weights for the seven 

events with the four factors do not display the 

factor simplicity that was evident when 

applying “more traditional” confirmatory factor 

analysis utilising principal component analysis. 

For example the regression weights are throws 

to shot is .56, throws to javelin .49; jumps to 

high jump .37 and jumps to long jump .91; 

sprints to 100m hurdles .72, sprints to 200m .26 

and sprints to 800m as expected a low; and 

endurance to 800m .14 and an unexpected value 

for endurance to 200m .71.  The maximum 

likelihood solution applied in SEM did not 

simplify or enhance interpretability when 

compared to principal component analysis.  

Discussion 

Comparing the two statistical approaches 

resulted in the more traditional multivariate 

factor analysis providing a simpler, more 

interpretable and parsimonious factor solution 

that confirmed the hypothesised four factor 

theoretical model that enables more practical 

applications to designing training modules 

based on clustering events based on the clear 

factor loadings using principal component 

analysis. That is 100m hurdles with 200m, high 

jump with long jump, shot put with javelin and 

800m or endurance as a stand alone training 

module. However, the factor structure based on 

the IAAF 2010 data was significantly different 

from the factor structure based on the IAAF 

2006 findings, which suggest the factor 

structure invariance over time may not exist. 

The SEM factor approach did not display the 

simple factor structure in terms of regression 

weights as did principal component analysis and 

paradoxical effects were especially noted where 

the endurance to 800m was causally low and the 

endurance to 200m value much larger 

expectantly. The correlations among the factors 

were assessed to be non-significant suggesting 

that theoretically they represent more discrete or 

unique factors and real underpinning abilities on 

which Heptathlon performance is dependent. 

The next step is to redraw a number of possible 

paths, however one statistical issue is the factor 

of endurance requires more than one measured 

variable path as to the 800m as the simultaneous 
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equation solutions of SEM have to be 

mathematically solvable.   

These findings suggest that training can be 

clustered into similar conceptual events to 

enhance transfer based on different energy 

systems and strength-power-speed requirements 

that underpin each event in the Heptathlon.  In 

this context, the training can clustered into four 

predominant training modules based on the 

sprints-hurdles (speed-power training), jumps 

(power-plyometric) training, shot put and 

javelin throws (strength-power training) and 

finally an isolated training session for the only 

endurance event the 800m.  It must be 

emphasised the initial principal component 

solution, which derived the simplest and most 

interpretable theoretical model had four derived 

factors as having zero correlations. This implies 

that the training models are representing unique 

or stand alone constructs, which must be trained 

as discrete and unique factors. As the 800m or 

endurance event appears as essentially a stand 

alone event based on the exploratory factor 

analysis and represents only 1/7 of the 

Heptathlon. The consequence of this finding 

suggests training for this event probably only 

requires only one seventh of the total allocated 

training time be donated to improving 800m 

scores as its impact is not as significant in point 

achieved in the Heptathlon.   

Conclusion  

The traditional factor analysis in this research 

provided a more substantive theoretical model 

of the seven events in the Heptathlon and 

confirmed the hypothesised factor structure 

based on motor fitness constructs of speed, 

power, strength and endurance underpinning 

each event, when compared to structural 

equation models of the Heptathlon factor 

structure using the IAAF 2010 rankings. These 

findings suggest methods of Heptathlon training 

into discrete training modules based of the four 

factor structure. Finally, the factor structures 

displayed in 2006 and 2010 indicate the 

correlations or interrelationships between the 

seven events are changing over time.  

Recommendations  

The IAAF data 2006 to 2010 inclusive, should 

be pooled and the identical approach applied to 

assess the factor structure from a larger data set 

as, well as to compare the factor structure for 

2006, 2007, 2008, 2009 and 2010 years using 

the SEM statistical multigroup approach to 

compare the structure across different 

competitive seasons. 

References  

Albright, J. J. (2006). Confirmatory factor 

analysis using Amos, Lisrel and Mplus. The 

Trustees of Indiana University: Indiana 

University. Retrieved 9/1/2006 from 

http://www.indiana.edu/~statmath 

Arbuckle, J. L. (2006). Amos 7.0: User's guide. 

Chicago: SPSS Inc.  

Arbuckle, J. L. (2009). Amos 18: User’s guide. 

Chicago: SPSS Inc.   

Costello, A., & Osborne, J. (2005). Best 

practices in exploratory factor analysis: Four 

recommendations for getting the most from 

your analysis. [Electronic version]. Practical 

Assessment, Research & Evaluation. 10 (7): 1-9. 

Daley, J. (1984). How Glynis Nunn trains. 

Modern Athlete and Coach, 22, 29-30. 

Garson, G. D. (2011a). Factor analysis. 

Statnotes: Topics in Multivariate Analysis. 

Retrieved 5/2/2011 from 

http://faculty.chass.ncsu.edu/garson/PA765/f

actor.htm 

Garson, G. D. (2011b). Structural equation 

modelling. Statnotes: Topics in Multivariate 

Analysis. Retrieved 5/2/2011 from 

http://faculty.chass.ncsu.edu/garson/pa765/ 

statnote.htm. 

Hair, J. E., Anderson, R. E., Tatham, R. L., & 

Black. W. C. (1998). Multivariate data analysis. 

(5
th

 Ed.) Upper Saddle River: Prentice Hall. 

Hair, J. E., Block, W., Babin, B. J., Anderson, 

R. E., & Tatham, R. L. (2006). Multivariate 

http://www.indiana.edu/~statmath
http://faculty.chass.ncsu.edu/garson/PA765/factor.htm
http://faculty.chass.ncsu.edu/garson/PA765/factor.htm
http://faculty.chass.ncsu.edu/garson/pa765/


Ian Tim Heazlewood1 

125 

 

data analysis. (6
th

  Ed.) Upper Saddle River: 

Pearson - Prentice Hall. 

Hancock, T. (1987). Problems confronting 

coaches in multiple events. Modern Athlete and 

Coach,. 25, 36-38. 

Heazlewood. T. (2008). Factor structure of the 

women’s Heptathlon: Implications for training. 

Proceedings of First Joint International Pre-

Olympic Conference on Sports Sciences and 

Sports Engineering. Volume I: Computer 

Science in Sport. Ed. Y. Jiang, A. Baca & H 

Zhang. Nanjing, China, August 4-7, 2008, 283-

288.  

International Association of Athletics 

Federations. (2009). Competition rules 2009. 

International Association of Athletics 

Federations (IAAF): Monaco. 

International Association of Athletics 

Federations. (2006). Heptathlon 2006 outdoor 

lists. Retrieved from IAAF website on 

December 1, 2007 

http://www.iaaf.org/statistics/toplists/inout=O/a

geGroup=N/season=2006/gender=W/discipline

=HEP/legal=A/index.html.  

International Association of Athletics 

Federations. (2010). Heptathlon 2010 outdoor 

lists. Retrieved from IAAF website on January 

5, 2011 

http://www.iaaf.org/statistics/toplists/inout=o/ag

e=n/season=2010/sex=W/all=n/legal=A/disc=H

EP/detail.html 

Kim, J. O., & Mueller, C. W. (1978). Factor 

analysis: Statistical methods and practical 

issues. London: Sage. 

Mackenzie, B. (2007). Heptathlon. Sports 

Coach. Retrieved 5/1/2006 from 

http://www.brianmac.co.uk/hepth/ 

Marra, H. (1985). Decathlon hints. Modern 

Athlete and Coach, 23, 15-18. 

Norusis, M. J. (1985). SPSSX. Sydney: 

McGraw-Hill Book Company. 

Sarponov, E. (1982). Looking at the future of 

Heptathlon. Modern Athlete and Coach, 20, 39-

40. 

SPSS Inc. (2007). PASW statistics 18.0: User’s 

guide. Chicago: SPSS Inc.  

Telfer, P. (1988). The javelin in the Heptathlon. 

Modern Athlete and Coach, 26, 32-34.

 

 

http://www.iaaf.org/statistics/toplists/
http://www.iaaf.org/statistics/toplists/inout=o/age=n/season=2010/sex=W/all=n/legal=A/disc=HEP/detail.html
http://www.iaaf.org/statistics/toplists/inout=o/age=n/season=2010/sex=W/all=n/legal=A/disc=HEP/detail.html
http://www.iaaf.org/statistics/toplists/inout=o/age=n/season=2010/sex=W/all=n/legal=A/disc=HEP/detail.html

