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ABSTRACT

One of the main problems in developing fast image processing and computer vision systems
is the memory speed. Memory speed represents the performance bottleneck due to the large
gap between processor and memory speeds. Cache memory isvery fast, but it is small to store
al required data and instructions. In this paper , image processing and computer vision
algorithms are optimized to enhance performance by increasing the cache memory utilization.
This optimization increases the spatial locality and temporal locality and improves the system
performance. The proposed optimization is applied on a set of image processing operations
such as image intensity transformation, image filtering, geometric transformation, and CNN.
The time analysis of the systems has shown a speed improvement of 30% to 70% compared
with direct algorithm implementation.

KEYWORDS: Cache Memory, I mage Processing, Computer Vision, L ocality
Of Reference, Code Optimization.
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Cache Memory Locality Optimization for Implementation of Computer Vision and Image Processing Algorithms

1. INTRODUCTION

Processors can consume data much faster than memory can supply it[4]. Man memory
latency is around 200-300 processor cycles, causing a large speed impact [11]. The memory
speed bottleneck can be solved by good utilization of cache memory. Cache memory
operates between 10 to 100 times faster than main memory. The cache memory size
represents the main problem in obtaining high performance specially when working with
large data sets. Image processing and computer vision agorithms requires very large size
memory buffers which can’t be stored in cache memory. With the new high resolution
cameras, a single frame can reach more than 10 M Pixels, and working with real time video
streams requires more than 100 M Byte memory buffers per sec. Thesize of L1 (Level 1) is
about 128 KB while the LLC (Last level cache) can be in the range of 4-16 MB. Exploiting
locality of reference improves the hit ratio of cache memory and hence improves the total
performance of the system. Locality of reference is the tendency to access the same set of
memory locations repetitively over a specific period. Locality of reference can be divided into
two types: tempora locality , and spatial locality. The temporal locality indicates that,
recently referenced items are likely to be referenced in the near future. The spatial locality
refers to the use of data elements stored in locations close to the currently referenced item.
When memory locations are accessed in a regular method, the locality of reference is
increased and the performance is improved. Some image processing and computer vision
algorithms have aregular data access nature, while others have irregular and randomly access
patterns of memory locations. In both cases, taking cache memory locality into consideration
has a large impact on the system performance. Because, software developers have no direct
access to cache memory and this memory is completely controlled by hardware, many cache
issues are neglected while writing codes. This neglection leads to producing many inefficient
vision systems. The best solution is to control cache memory indirectly. Indirect control of
cache memory is applied using many optimization techniques. This optimization can be done
on the agorithmic level, and also in the implementation level. Simple algorithm modification
can lead to large impact on time. The modifications and optimizations are based on the good
understanding of hardware architecture, memory operation, image format , and algorithm
nature. Profiling tools are used to obtain many measurements and to analyze the time hot
spots. While cache memory stores data and instructions, profiling tools helps in the
prediction of the next instruction and branching to prefetch the expected instructions. In this
work , the focus is on image processing and computer vision systems. These systems have a
specia nature of containing huge data, but the number of instructionsis very small. A simple
algorithm may contain only tens of instruction but run over severa Megabytes of data. This
make the optimization more directed on data not instructions profiling and optimization. In
this work, the optimization of image processing and computer vision algorithms to increase
cache memory locality is presented. Profiling tools are used to detect the bottlenecks and time
hot spots. The comparison of direct algorithm implementation and optimized algorithm are
given which indicates the performance improvements. In section 2 related work is given.
Section 3 introduces the hardware architecture of cache memory and the metrics used to
measure the performance. Image processing and computer vision algorithms optimizations are
given in section 4 . Experimental results are illustrated in section 5. Finally, a conclusion is
given in section 6.

2. RELATED WORK

Cache locality optimizing have been studied for different systems and applications. Tran , et.
al. have developed a system for optimizing cache locality for irregular data accesses on many-
core Intel Xeon Phi accelerator chip [9]. They studied a multiple patterns string matching
algorithm commonly used in computer and network security, bioinformatics, using Aho-
Corasick (AC) agorithm. They presented a cache locality optimizing parallelization on the
many-core accelerator chip, the Intel Xeon Phi. A given set of pattern strings is partitioned
into multiple sets of a smaller number of patterns so that multiple small DFASs are constructed
instead of single large DFA. The accesses to multiple small DFAs lead to significantly
smaller cache footprints in each core’s cache and result in impressive performance
improvements. Experimenta results on the Intel Xeon Phi 5110P show that their approach
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delivers up to 2.00- times speedup compared with the previous approach using single large
DFA. In the field of image processing , Tao and Shahbahrami [8] worked in data locality
optimization based on comprehensive knowledge of the cache miss reasons. They developed
a set of toolkits including data profiling, pattern analysis, and performance visualization tools
to help the user to optimize the source program towards a better runtime data locality. They
demonstrated how the toolset can be used step-by-step to understand the cache access
behavior of the applications and then achieve optimized program code. The Discrete Wavelet
Transform (DWT), is applied as an example. Kim and Kweon have proposed a rolling cache
design optimized for image format and agorithms [2]. Their method reduced the miss penalty
by moving the cache horizontally and vertically. They compared the suggested design with
other types of caches and the average memory access time and the memory bandwidth are
decreased by 28% and 74%, respectively, for a 2048 x 2048 image size. Petko et. a. have
studied cache performance of video computation workloads[5] . The workloads studied
include PEG, MPEG-2 and H263 and the impact of cache sizes, block sizes and associativity
on cache performance. Pesterev et. a. have studied locating cache performance bottlenecks
using data profiling[4]. They presented two case studies of using a profiling tool called DProf
to find and fix cache performance bottlenecks in Linux and achieved throughput
improvements of 16-57% . Other work can be found in [1][6][10].

3. CACHE HIERARCHY AND PERFORMANCE METRICS

There are many different architectures for cache memories, but usually the cache memory
consists of 3 or 4 levels as shown in fig.1. For multi-core processors L1 and L2 caches are
separated for each core, while L3 or LLC are usually shared and common for all cores. L1
cache is the fastest cache and the most close memory to CPU after registers and it has a
latency of 4-5 cycles. L1 cache size is typically goes up to 256KB but some powerful
processors have 1IMB L1 cache. There are two typesof L1 cache: L1 D for data, and L1 | for
instructions. L2 cacheis bigger than L1 and it can store more data, but the accesstime is a bit
slower than L1 (about 7 cycles). L2 is used for the both of instructions and data[3][12].

‘ LLC (Last Level Cache) \

Fig.1L1,L2, and LLC Cache memories
Last Level Cache (LLC) is the largest and slowest memory shared to al cores in the
processor. LLC has a size within the range of 2-8 MB and it has a latency of 20-30 cycles.
Because, cache memory can’t store big data, a part of data is stored in the cache and the
remaining still stored in the main memory. When the processor request a memory location
(read or write ), it first checks for a corresponding entry in the cache, and If the processor
finds that the memory location is in the cache, a cache hit has occurred. If the processor does
not find the memory location in the cache, a cache miss has occurred. The cache alocates a
new entry and copies data from main memory in the miss case. Data and instructions are
transferred between main memory and cache in blocks of specific size, called cache lines.
The cache controller attempt to store data which will be accessed in the future by the
processor [7]. Thisis done by loading additional data other than that being requested by the
processor during a replacement process. Spatial locality is based on retrieving additional data
from the neighboring address space of the requested data. Temporal locality refers to the
reuse of specific data within arelatively small time duration. The performance of the cache
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memory is measured using different metrics. While the main target is to reduce the time of
program execution, different measures and metrics are required for better understanding of
latency reasons. Profiling tools are used to get different metrics. Intel VTune Profiler[11] is
commonly used for intel processors profiling and can be used to catch different cache
memory events. The hit ratio, or percentage of accesses satisfied in the cache, can be used as
ameasure of cache performance. To get th\e hit ratio, LL C Miss Count metric isused which
shows the total number of last-level cache misses. Some cache misses don’t cause latency
due to the pipelining in modern processors. So, another metric called Memory Bound is
commonly used which has extra meaning and usage. Memory Bound metric shows a
fraction of cycles spent waiting due to demand load or store instructions or data. L1 Bound ,
L2 Bound, and L 3 Bound, are the detailed metric for each cache level and these metrics give
better understanding of latency causes. The time anaysis and the hardware events collected
by the profiling tolls help in optimizing the agorithms to get better cache locality and hence
improve the performance.

4. OPTIMIZATION OF VISION AND IMAGE PROCESSING ALGORITHMS

Storing multidimensional arrays in linear storage can be done using row-major order or
column-mgor order. In the case of image pixels, using the row-maor or column maor
affects the pixels adjacency patterns. Fig.2 shows a sample image stored in memory using
row-major order.

Memory for x=0:width for y=0:height
for y=0:height for x=0:width
Acld. | 1:1a
Pixelgx,y]=NewVal Pixelgx,y]=NewVal
image
_ [T end end

Pog [ POl 1*.]3 1=[]? TonL | P01 ] ]
PLg | Pl El2 Fl3 ooz | poz en en

el = e 23
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i:g i;i Eg ii: Lood_| Pio Code 1 (Slow) Code 2 (Fast)
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Fig.2 Major-Row ordered and spatial locality

Pixels in the same row are stored in sequentia in adjacent memory locations, while pixelsin
the same column are stored far from each other’s. column-major order has a reversed pattern.
Simple image scan algorithms can be optimized by taking into account the major order used
in representing images. Hence spatial locality can be increased by adjusting the inner and
outer loops in the algorithm. Taking into consideration the cache memory issues, improves
the performance and reduce the time required for many image processing operations. Not all
operations are simple and have direct optimization solution like the previous example. Many
operations and agorithms requires deep thinking , iterations , time anaysis, and using
profiling tools. For example image rotation algorithm requires reading from a memory buffer
and writing in another buffer in a different sequence. Improving the reading sequence may
cause inefficient spatial locality for writing , and vice versa. Fig.3 illustrates image tiling
technique which divide the image into small parts and execute the operations over these
small parts. Working with small parts increase the probability of cache hits due to reducing
data size. The tile size depends on many factors such as cache size , type of operations, and
image size.
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Input image output image Imagerotation using tiling
Fig.3 Using imagetiling to improve locality of reference.

2D convolution and correlation are widely used for many applications in image processing
and computer vision such as image filtering, image transformation, feature selection, feature
extraction , and Convolutional Neural Networks (CNN) . When the kernel of convolution or
correlation is small, there is no problem in cache operation. Using large size kernels or large
number of kernels can increase the cache miss ratio and decrease the temporal locality.

Input image kernels output image
Fig.4 multiple convolutional kernelsand temporal locality (CNN).

For some applications like simple edge detection, image smoothing or sharpening,
convolution kernels from small 3 x 3 up to 7 x 7 are typically enough. For other applications
like object tracking, estimation filtering, or pattern recognition, larger kernels can be
required[10]. CNN is widely used in image anaysis, video analysis, and computer vision
with high accuracy. The number of kernels in CNN can be in the range of 16 kernels to 64
kernels. To increase the temporal locality for such problems, the kernels should be stored in
cache memory. Putting the kernel loop as outer loops improves the temporal locality of the
kernel data, but can lower the spatial locality of image data. Optimization of algorithms based
on profiling tools, hardware events , and other metrics help in designing and implementing
high performance systems by increasing temporal and spatial locality.

5.EXPERIMENTAL RESULTS

A computer with 128 KB L1 cache, 512 KB L2 cache , 3MB L3 cache is used to test and
analyze different image processing and computer vision algorithms. Different images with
sizes are used to test the effects of cache memory capacity. Intel VTune Profiler software
[12] is used to collect different hardware events and memory metrics and to analyze the code
to detect different hot spot points and to get different statistics. In Fig.1 a smple brightness
adjustment is applied to an image with different resolutions and using two different codes
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shown in fig.2 (code-1 and code-2 ). The image is stored in memory in row-major order, so
using vertical index as outer loop improves the spatial locality.

a) original image b) increasing brightness ¢) decreasing brightness
Fig.4 intensity transfor mation
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Fig.5 Performance Metricsfor code-1 and code-2
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Fig.6 Timerequired for brightness adjustment for different image sizes

Fig.5 illustrates some metrics measured using profiling tools for the two different codes. It is
clear that memory bound is high in code-1 due to the bad locality of reference. Code-2 has
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better memory bound rates and it is faster. Not only memory bound metrics are used but also,
there are many other metrics used to get better understand of the reasons of latency such as
L1D_Miss Count, L2 Miss, L3 Miss, and other time analysis metrics. The time consumed
by the brightness adjustment algorithms are shown in fig.6 for code-1 and code-2. For small
image sizes the cache memory can store all data and hence , there is no big difference
between the two codes. For large image sizes the difference is very clear, while the cache
memory speed with better spatial locality improves the performance. For image size 3500
(3500 x 3500) code-1 requires 67 ms, while code-2 requires only 17 ms for the same
operation. Working with image rotation and other geometric transformation , ssmple loop
interchange is not enough to optimize the algorithm for better locality of reference. For
example, the simple rotation shown in fig.3 copies data from input buffer in horizontal
sequence and store in output in vertical sequence. The loop arrangement will be efficient for
reading operation and will be inefficient for the writing or vice versa. Image tiling is used to
improve the spatial locality for both operation and keep active part in cache memory for the
both of input and output buffers. Fig.7 shows the time required for a rotation using tiling
optimization and without tiling for fixed image size and using different tile sizes.it is clear
that tile size selection affects the time and the best selection depends on many factors such as
image size, cache size, and many other factors. Hotspots analysisis used in addition to many
other metrics captured using profiling tools to get the best parameters for efficient algorithm
implementation. Fig.8 shows the hotspots analysis which indicates the functions and line
codes which consumes more CPU time. For convolution operation commonly used in many
image processing and computer vision the temporal locality improvement is required to store
the kernels in cache memory. Table.1 shows the values of a Gaussian kernel of size 9x9. For
such sizes the temporal locality is high, but an optimization is required when the size is large
or when the number of kernelsislarge.

time in ms
140

2000 1500 1000 500 100 50 20 10

Tile 52ie

without tilling

== == T1ling

Fig.7 Rotation algorithm time with different tiling sizes
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Fig.8 Hotspots by CPU utilization for rotation algorithm

Tablel Gaussian kernel for size 9x9
0 0.000001{0.000014{0.000055(0.000088]0.000055|0.000014{0.000001|0
0.000001]0.000036]0.000362]0.001445|0.002289]0.001445|0.000362/0.000036]0.000001
0.000014]0.000362]0.003672]0.014648|0.023205]0.014648]0.003672/0.000362|0.000014
0.000055]0.001445]0.014648]0.058434]0.092566|0.058434{0.014648|0.001445]0.000055
0.000088}0.002289]0.023205{0.092566(0.146634|0.092566|0.023205|0.002289|0.000088
0.000055{0.001445|0.014648]0.058434(0.092566|0.05843410.014648/0.001445|0.000055
0.0000140.000362|0.003672|0.014648|0.023205{0.014648]0.003672/0.000362/0.000014
0.000001{0.000036{0.000362(0.001445(0.002289|0.001445|0.000362/0.000036/0.000001
0 0.000001{0.000014{0.000055(0.000088]0.000055|0.000014{0.000001|0
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Fig. 9 Gaussian filter and temporal locality optimization for large kernels

Table.2 Convolution timefor different kernel sizes

Kerne Timein ms Timein ms
Size (no optimization) | (after optimization)
9x9 155 153

15x15 415 299

51x51 3,960 1,900

101x101 15,160 10,700

In fig.9 the temporal locality of large kernelsis analyzed to store these kernelsin cache
memory by different loop transformations based on the metrics collected by profiling tools.
Table.2 show the results after improving temporal locality for different kernel sizes. It isclear
that for small kernel sizes thereis no big differences. While, thiswork is little different from
other works, but comparing totally these results with theresultsin 3 and 4 , it isfound that
the proposed optimization in thiswork has achieved better results.

6. CONCLUSION

Direct implementation of image processing and computer vision algorithms without taking
cache memory operation into account, leads to producing low performance and inefficient
systems. Algorithm and code optimization achieved speed improvements from 30% to 70%
compared with direct implementation. Profiling tools are helpful in determining latency
causes, time hot spots, cache misses and hits, and other performance metrics. Using loop
transformation,  image titling and other algorithmic and implementation optimizations
improve the cache hit ratio and increase the performance.
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