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ABSTRACT 
One of the main problems in developing fast image processing and computer vision systems 
is the memory speed. Memory speed represents the performance bottleneck due to the large 
gap between processor and memory speeds. Cache memory is very fast, but it is small to store 
all required data and instructions. In this paper , image processing and computer vision 
algorithms are optimized to enhance performance by increasing the cache memory utilization. 
This optimization increases the spatial locality and temporal locality and improves the system 
performance. The proposed optimization is applied on a set of image processing operations 
such as image intensity transformation, image filtering, geometric transformation, and  CNN. 
The time analysis of the systems has shown a speed improvement of 30% to 70% compared 
with direct algorithm implementation. 
 
KEYWORDS: Cache Memory, Image Processing, Computer Vision, Locality  
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كرة المخبأة لتنفیذ خوارزمیات الرؤیة بالحاسب و معالجة الصورا تركیز الذتحسین  
 

 أشرف المراكبي
 قسم ھندسة النظم والحاسبات، كلیة الھندسة ،جامعة الأزھر، القاھرة ، مصر

E-mail: a.marakeby@azhar.edu.eg للباحث البرید الإلكتروني  :  
 

 الملخص
إن . سرعة الذاكرة تمثل واحدة من أھم المشكلات التي تواجھ عملیة تطویر أنظمة سریعة لمعالجة الصور والرؤیة بالحاسب

الذاكرة . سرعة الذاكرة تمثل عنق الزجاجة في تحقیق أداء جید نظرا للفجوة الكبیرة بین سرعة الذاكرة وسرعة المعالج
في ھذا البحث یتم عمل . كنھا تخزین جمیع البیانات والتعلیمات المطلوبةمة جدا ولكنھا صغیرة ولا یالمخبأة ھي ذاكرة سریع

 لخوازمیات الرؤیة بالحاسب ومعالجة الصور من أجل تحسین الأداء عن طریق زیادة استغلال أفضل للذاكرة تحسین
الأمثلة المقترحة تم تطبیقھا على العدید من . سین الأداءھذه الأمثلة تزید من التركیز المكاني والتركیز الوقتي لتح. المخبأة

إن . عملیات معالجة الصور مثل تحویلات الوضوح و مرشحات الصور و التحویلات الھندسیة و الشبكات العصبیة
مقارنة بالطرق المباشرة لتنفیذ ھذه % ٧٠إلى % ٣٠لھذه الأنظمة أثبتت تحسینات في السرعة تصل من تحلیلات الوقت 

  .لخوارزمیاتا
 

.،تحسین الأكواد الذاكرة المخبأة ، معالجة الصور ، الرؤیة بالحاسب ، تركیز المرجعیة:الكلمات المفتاحیة  
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1. INTRODUCTION 
Processors can consume data much faster than memory can supply it[4]. Main memory 
latency is around 200-300 processor cycles, causing a large speed impact [11]. The memory 
speed bottleneck can be solved by good utilization of cache memory.  Cache memory 
operates between 10 to 100 times faster than main memory. The cache memory size 
represents the main problem in obtaining high performance specially when working with 
large data sets. Image processing and computer vision algorithms requires very large size 
memory buffers which can’t be stored in cache memory.  With the new high resolution 
cameras, a single frame can reach more than 10 M Pixels , and working with real time  video 
streams requires more than 100 M Byte memory buffers per sec. The size of L1  (Level 1) is 
about 128 KB while the LLC (Last level cache) can be in the range of 4-16 MB. Exploiting 
locality of reference improves the hit ratio of cache memory and hence improves the total 
performance of the system. Locality of reference is the tendency to access the same set of 
memory locations repetitively over a specific period. Locality of reference can be divided into 
two types: temporal locality , and spatial locality. The temporal locality indicates that, 
recently referenced items are likely to be referenced in the near future. The spatial locality 
refers to the use of data elements  stored in locations close to the currently referenced item. 
When memory locations are accessed in a regular method, the locality of reference is 
increased and the performance is improved. Some image processing and computer vision 
algorithms have a regular data access nature, while others have irregular and randomly access  
patterns of memory locations. In both cases, taking cache memory locality into consideration 
has a large impact on the system performance. Because, software developers have no direct 
access to cache memory and this memory is completely controlled by hardware, many cache 
issues are neglected while writing codes. This neglection leads to producing many inefficient 
vision systems.  The best solution is to control cache memory indirectly.   Indirect control of 
cache memory is applied using many optimization techniques. This optimization can be done 
on the algorithmic level, and also in the implementation level. Simple algorithm modification 
can lead to large impact on time. The modifications and optimizations are  based on the good 
understanding of hardware architecture,  memory operation, image format , and algorithm 
nature. Profiling tools are used to obtain many measurements and to analyze  the time hot 
spots. While cache memory stores data and instructions,  profiling tools helps in the 
prediction of the next instruction and branching to  prefetch the expected instructions. In this 
work , the focus is on image processing and computer vision systems. These systems have a 
special nature of containing huge data , but the  number of instructions is very small. A simple 
algorithm may contain only tens of instruction but run over several Megabytes of data. This 
make the optimization more directed on data not instructions profiling and optimization. In 
this work, the optimization of image processing and computer vision algorithms to increase 
cache memory locality is presented. Profiling tools are used to detect the bottlenecks and time 
hot spots. The comparison of direct algorithm implementation and optimized algorithm are 
given which indicates the performance improvements. In section 2  related work is given. 
Section 3 introduces the hardware architecture of cache memory and the metrics used to 
measure the performance. Image processing and computer vision algorithms optimizations are 
given in section 4 . Experimental results are illustrated in section 5. Finally, a conclusion is 
given in section 6.                                                                                                                                                 
 
2. RELATED WORK 
Cache locality optimizing have been studied for different systems and applications. Tran , et. 
al. have developed a system for optimizing cache locality for irregular data accesses on many-
core Intel Xeon Phi accelerator chip [9]. They studied   a multiple patterns string matching 
algorithm commonly used in computer and network security, bioinformatics, using Aho-
Corasick (AC) algorithm.  They presented a cache locality optimizing parallelization on the 
many-core accelerator chip, the Intel Xeon Phi. A given set of pattern strings is partitioned 
into multiple sets of a smaller number of patterns so that multiple small DFAs are constructed 
instead of single large DFA. The accesses to multiple small DFAs lead to significantly 
smaller cache footprints in each core’s cache and result in impressive performance 
improvements. Experimental results on the Intel Xeon Phi 5110P show that their approach 
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delivers up to 2.00- times speedup compared with the previous approach using single large 
DFA. In the field of image processing , Tao and Shahbahrami [8] worked in data locality 
optimization based on comprehensive knowledge of the cache miss reasons. They developed 
a set of toolkits including data profiling, pattern analysis, and performance visualization tools 
to help the user to optimize the source program towards a better runtime data locality. They 
demonstrated how the toolset can be used step-by-step to understand the cache access 
behavior of the applications and then achieve optimized program code. The Discrete Wavelet 
Transform (DWT), is applied as an example. Kim and Kweon have proposed a rolling cache 
design optimized for image format and algorithms [2]. Their method reduced the miss penalty 
by moving the cache horizontally and vertically. They compared the suggested design  with 
other types of caches and the average memory access time and the memory bandwidth are 
decreased by 28% and 74%, respectively, for a 2048 x 2048 image size. Petko et. al. have 
studied cache performance of video computation workloads[5] . The workloads studied 
include PEG, MPEG-2 and H263 and the impact of cache sizes, block sizes and associativity 
on cache performance.  Pesterev et. al. have studied locating cache performance bottlenecks 
using data profiling[4].  They presented two case studies of using a profiling tool called DProf 
to find and fix cache performance bottlenecks in Linux and achieved throughput 
improvements of  16-57% .  Other work can be found in [1][6][10]. 
 
3. CACHE HIERARCHY  AND PERFORMANCE METRICS 
There are many different architectures for cache memories, but usually the cache memory 
consists of 3 or 4 levels as shown in fig.1.   For multi-core processors L1 and L2 caches are 
separated for each core, while L3 or LLC are usually shared and common for all cores. L1 
cache is the fastest cache and the most close memory to CPU after registers and it has a 
latency of 4-5 cycles. L1 cache size is typically goes up to 256KB but some powerful 
processors have 1MB L1 cache. There are two types of L1 cache: L1 D for data , and L1 I for 
instructions. L2 cache is bigger than L1 and it can store more data, but the access time is a bit 
slower than L1 (about 7 cycles). L2 is used for the both of instructions and data[3][12].  
 
 

 
 
 
 
 
 
 
 
 
 

Fig.1 L1,L2, and LLC Cache memories 
Last Level Cache (LLC)  is the largest and slowest memory shared to all cores in the 
processor. LLC has a size within the range of  2-8 MB and it has a latency of 20-30 cycles. 
Because, cache memory  can’t store big data , a part of data is stored in the cache and the 
remaining still stored in the main memory. When the processor request a memory location 
(read or write ), it first checks for a corresponding entry in the cache, and  If the processor 
finds that the memory location is in the cache, a cache hit has occurred. If the processor does 
not find the memory location in the cache, a cache miss has occurred. The cache allocates a 
new entry and copies data from main memory in the miss case. Data and instructions are 
transferred between main memory and cache in blocks of specific  size, called cache lines.  
The cache controller attempt to store data which will be accessed in the future by the 
processor [7].  This is done by loading additional data other than that being requested by the 
processor during a replacement process. Spatial locality  is based on retrieving additional data 
from the neighboring address space of the requested data.  Temporal locality refers to the 
reuse of specific data  within a relatively small time duration.  The performance of the cache 
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memory is measured using different metrics. While the main target is to reduce the time of 
program execution, different measures and metrics are required for better understanding of 
latency reasons. Profiling tools are used to get different metrics. Intel VTune Profiler[11] is 
commonly used for intel processors profiling and can be used to catch  different cache 
memory events. The hit ratio, or percentage of accesses satisfied in the cache, can be used as 
a measure of cache performance. To get th\e hit ratio, LLC Miss Count metric is used  which 
shows the total number of last-level cache misses. Some cache misses don’t cause latency  
due to  the pipelining in modern processors. So, another metric called Memory Bound is 
commonly used  which has extra meaning and usage.  Memory Bound metric shows a 
fraction of cycles spent waiting due to demand load or store instructions or data. L1 Bound , 
L2 Bound, and L3 Bound, are the detailed metric for each cache level and these metrics give 
better understanding of latency causes. The time analysis and the hardware events collected 
by the profiling tolls help in optimizing the algorithms to get better cache locality and hence 
improve the performance. 
 
4. OPTIMIZATION OF VISION AND IMAGE PROCESSING ALGORITHMS 
Storing multidimensional arrays in linear storage can be done using row-major order or 
column-major order. In the case of image pixels, using the row-major or column major  
affects the pixels adjacency patterns. Fig.2 shows a sample image stored in memory using 
row-major order.  

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.2 Major-Row ordered and spatial locality 

Pixels in the same row are stored in  sequential in adjacent memory locations, while pixels in 
the same column are stored far from each other’s. column-major order has a reversed pattern. 
Simple image scan algorithms  can be optimized by taking into account the major order used 
in representing images. Hence spatial locality can be increased by adjusting the inner and 
outer loops in the algorithm.  Taking into consideration the cache memory issues, improves 
the performance and reduce the time required for many image processing operations. Not all 
operations are simple and have  direct optimization solution like the previous example. Many 
operations and algorithms requires deep thinking , iterations , time analysis, and using 
profiling tools. For example image rotation algorithm requires reading from a memory buffer 
and writing  in another buffer in a different  sequence. Improving the reading sequence may 
cause inefficient spatial locality for writing , and vice versa. Fig.3 illustrates image tiling 
technique which divide the image into small parts and execute  the operations over these 
small parts. Working with small parts increase the probability of cache hits due to reducing 
data size. The  tile  size depends on many factors such as cache size , type of operations , and 
image size.  

for x=0:width 

  for y=0:height 

     Pixels[x,y]=NewVal 

  end  

end 

for y=0:height 

  for x=0:width 

     Pixels[x,y]=NewVal 

  end  

end 

Code 1 (Slow) Code 2 (Fast) 
Improved Spatial Locality 
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  Input image    output image  Image rotation using tiling 

Fig.3 Using image tiling to improve locality of reference. 
 

2D convolution and correlation are widely used for many applications in image processing 
and computer vision such as image filtering, image transformation, feature selection, feature 
extraction , and Convolutional Neural Networks  (CNN) . When the kernel of convolution or 
correlation is small, there is no problem in cache operation. Using large size kernels or large 
number of kernels can increase the cache miss ratio and decrease the temporal locality.  
 

 
 
 
 
 
 
 
 
 
 

 
     Input image              kernels                      output image  

Fig.4 multiple convolutional kernels and temporal locality (CNN). 
 
For some applications like simple edge detection, image smoothing or sharpening, 
convolution kernels from small 3 x 3 up to 7 x 7 are typically enough.  For other applications 
like object tracking, estimation filtering, or pattern recognition, larger kernels can be 
required[10]. CNN is widely used in image analysis, video analysis,  and computer vision 
with high accuracy. The number of kernels in CNN can be in the range of 16 kernels to 64 
kernels.  To increase the temporal locality for such problems, the kernels should be stored in 
cache memory. Putting the kernel loop as outer loops improves the temporal locality of the 
kernel data, but can lower the spatial locality of image data. Optimization of algorithms based 
on profiling tools, hardware events , and other metrics help in designing and implementing 
high performance systems by increasing temporal and spatial locality.  
 
5. EXPERIMENTAL RESULTS 
A computer with 128 KB  L1 cache, 512 KB L2 cache , 3MB L3 cache is used to test and 
analyze different image processing and computer vision algorithms. Different images with  
sizes are used to test the effects of cache memory capacity.  Intel VTune Profiler software 
[12] is used to collect different hardware events and memory metrics and to analyze the code 
to detect different hot spot points and to get different statistics.  In Fig.1 a simple brightness 
adjustment is applied to an image with different resolutions and using two different codes 
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shown in fig.2 (code-1 and code-2 ). The image is stored in memory in row-major order, so 
using vertical index as outer loop improves the spatial locality. 
 
 
 
 
 
 
 
 
 
 
 
  a) original image     b) increasing brightness             c) decreasing brightness  
      Fig.4 intensity transformation  
 
 
 
 
 
 
 
 
 
 
   Code-1 analysis    Code-2 analysis 

Fig.5 Performance  Metrics for code-1 and code-2 
 

 
 

Fig.6 Time required for brightness adjustment for different image sizes 
 
Fig.5 illustrates some metrics measured using profiling tools for the two different codes. It is 
clear that memory bound is high in code-1 due to the bad   locality of reference. Code-2 has 
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better memory bound rates and it is faster. Not only memory bound metrics are used but also, 
there are many other metrics used to get better understand of the reasons of latency such as 
L1D_Miss_Count, L2_Miss, L3_Miss, and other time analysis metrics. The time consumed 
by the brightness adjustment algorithms are shown in fig.6 for code-1 and code-2. For small 
image sizes the cache memory can store all data and hence , there is no big difference 
between the two codes. For large image sizes the difference is very clear, while the cache 
memory speed with better spatial locality improves the performance. For image size 3500 
(3500 x 3500) code-1 requires 67 ms, while  code-2 requires only 17 ms for the same 
operation. Working with image rotation and other geometric transformation , simple loop  
interchange is not enough to optimize the algorithm for better locality of reference. For 
example, the simple rotation shown in fig.3 copies data from input buffer in horizontal 
sequence and store in output in vertical sequence. The loop arrangement will be efficient for 
reading operation and will be inefficient for the writing or vice versa. Image tiling is used to 
improve the spatial locality for both operation and keep active part in cache memory for  the 
both of input and output buffers. Fig.7 shows the time required for a rotation using tiling 
optimization and without tiling for fixed image size and using different tile sizes.it is clear 
that tile size selection affects the time and the best selection depends on many factors such as 
image size , cache size , and many other factors. Hotspots analysis is used in addition to many 
other metrics captured using profiling tools to get the best parameters for efficient algorithm 
implementation. Fig.8 shows the hotspots analysis which indicates the functions and line 
codes which consumes more CPU time. For convolution operation commonly used in many 
image processing and computer vision the temporal locality improvement is required to store 
the kernels in cache memory. Table.1 shows the values of a Gaussian kernel of size 9x9. For 
such sizes the temporal locality is high, but an optimization is required when the size is large 
or when the number of kernels is large. 

 
Fig.7 Rotation algorithm time with different tiling sizes  

 
 



 
 
 

Cache Memory Locality Optimization for Implementation of Computer Vision and Image Processing Algorithms 
 

                                                                                                                                                                                                               JAUES, 15, 55, 2020 

 

611 

 
 
 

 
 

Fig.8 Hotspots by CPU utilization for rotation algorithm 
 

Table.1  Gaussian kernel for size 9x9 
0 0.000001 0.000014 0.000055 0.000088 0.000055 0.000014 0.000001 0 
0.000001 0.000036 0.000362 0.001445 0.002289 0.001445 0.000362 0.000036 0.000001 
0.000014 0.000362 0.003672 0.014648 0.023205 0.014648 0.003672 0.000362 0.000014 
0.000055 0.001445 0.014648 0.058434 0.092566 0.058434 0.014648 0.001445 0.000055 
0.000088 0.002289 0.023205 0.092566 0.146634 0.092566 0.023205 0.002289 0.000088 
0.000055 0.001445 0.014648 0.058434 0.092566 0.058434 0.014648 0.001445 0.000055 
0.000014 0.000362 0.003672 0.014648 0.023205 0.014648 0.003672 0.000362 0.000014 
0.000001 0.000036 0.000362 0.001445 0.002289 0.001445 0.000362 0.000036 0.000001 
0 0.000001 0.000014 0.000055 0.000088 0.000055 0.000014 0.000001 0 
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Fig. 9 Gaussian filter and temporal locality optimization for large kernels 
 

Table.2  Convolution time for different kernel sizes 
Kernel 

Size 
Time in ms 

(no optimization) 
Time in ms 

(after optimization) 
9x9 155 153 

15x15 415 299 
51x51 3,960 1,900 

101x101 15,160 10,700 
 
In fig.9 the temporal locality of large kernels is analyzed to store these kernels in cache 
memory by different loop transformations based on the metrics collected by profiling tools. 
Table.2 show the results after improving temporal locality for different kernel sizes. It is clear 
that for small kernel sizes there is no big differences. While, this work is little different from 
other works, but comparing totally these  results with the results in 3 and 4 , it is found that 
the proposed optimization in this work has achieved better results.  
 
6. CONCLUSION  
Direct implementation of image processing and computer vision algorithms without taking 
cache memory operation into account, leads to producing low performance and inefficient 
systems. Algorithm and code optimization achieved speed improvements from 30% to 70% 
compared with direct implementation. Profiling tools are helpful in determining latency 
causes, time hot spots, cache misses and hits, and other performance metrics. Using loop 
transformation,   image titling and other algorithmic and implementation optimizations 
improve the cache hit ratio and increase the performance. 
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