Al-Azhar Bull. Sci. Vol. 19, No. 1 (June.): pp. 67-90, 2008.
SYNTHESIS AND REACTIONS OF SOME PYRIDINE AND THIENO [2,3-b] PYRIDINE DERIVATIVES WITH EXPECTED BIOLOGICAL ACTIVITY

A.Y. HASSAN ${ }^{1}$ AND F.M. FAYZ ${ }^{2}$
${ }^{1}$ Chemistry Department, Faculty of Science (Girl's), Al-Azhar University, Nasr City, Cairo, Egypt
${ }^{2}$ Chemistry Department, Girl's College of Education, Saudi Arabia, Riyadh

Abstract

A synthesis of pyridine-2(1H)-thione derivative 2 and thieno-[2,3-b] -pyridine derivatives $\mathbf{4 , 5}$ utilizing cyanothioacetamide and arylhydrazone of benzoylacetone $\mathbf{1}$ as starting compounds is described. Pyridinethione derivative 6 reacted with aromatic aldehyde to give styrylpyridinethione derivative 7 . Compound 7 was reacted with chloroacetone to obtain thienopyridine derivative 8. Cycloaddition reaction was carried out on 8 with dienophiles, to afford the corresponding cycloadduct 9 . Pyridinethione derivative 6 reacted with halogen-containing materials to give the corresponding thienopyridine derivatives $\mathbf{1 0}$, 17. the reaction of $\mathbf{1 0}$ with triethyl orthoformate or formic acid led to the formation of pyridothienopyrimdine derivative 11. The hydrazino derivative 13, gave with triethyl orthoformate triazolo-pyrimidothienopyridine derivative 14 . Compound 10 reacted with nitrous acid to gave pyridothienotrizinone derivative $\mathbf{1 5}$. Thienopyridine derivative $\mathbf{1 7}$ reacted with triethyl orthoformate to give 18. Triazipinopyrimidothienopyridine derivative 20 obtained from compound 18 after reaction with hydrazine hydrate and acetylacetone. Compound $\mathbf{1 7}$ reacted with carbon disulfide to give pyrimidinedithione derivative $\mathbf{2 1}$.

Introduction

In recent years several papers dealing with the mechanism by which anticancer drugs exert their action at the molecular level have aroused considerable interest. Many different targets have been identified and characterized, including DNA and enzymes involved in processing nucleic acids, such as topoisomerases [1-3]. Intercalation of planer aromatic or heteroaromatic compounds with DNA is one of the important modes of actions in DNA drug interaction [4,5], based on the ability of the chromophore to bind strongly between the base pairs. In this field, the promising antitumor properties shown by ellipticine [6,7], as part of a program designed to investigate the biological activity of tricyclic and tetracyclic systems containing a thiophene ring as central nucleus [8,9].

Results and Discussion

In the present paper we reported reactions of cyanothioacetamide with arylhydrazone of benzoyl acetone $\mathbf{1}$ and benzoylacetone for the syntheis of substituted pyridine-2(1H)-thione and their condensed derivatives. Thus, it has been
found that benzoylacetone coupled with aryldiazonium chloride in ethanol containing sodium acetate [10] to afford the corresponding monoarylhydrazone derivative $\mathbf{1}$ in good yield. Compound $\mathbf{1}$ reacts with cyanothioacetamide in refluxing ethanol sodium ethoxide for 5 h to give the 3 -cyanopyridine $2(1 \mathrm{H})$-thione derivative 2. Compound 2 reacted with ethyl iodide in DMF-sodium hydroxide to afford the corresponding S-ethyl derivative 3. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3}$ a revealed to a triplet at δ 1.40 ppm and a quartet at $\delta 4.53 \mathrm{ppm}$ assignable to S -ethyl group of compound 3 . Further confirmation of the structure $\mathbf{3}$ was given via their cyclization using sodium ethoxide solution to afford thieno[2,3-b] pyridine derivative 4. The IR spectrum of 4 showed no band of CN group and instead the band of newly NH_{2} group was detected. The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{4}$ also revealed no signals of $-\mathrm{SCH}_{2}$-protons but revealed signals at $\delta 5.27 \mathrm{ppm}$ for NH_{2} protons. Considering the previous results, we can conclude that both- $\mathrm{SCH}_{2^{-}}$and CN group in $\mathbf{3}$ may involved in the cyclization step to afford 4. When 2 was treated with phencyl bromide in ethanol-sodium ethoxide, S-alkylated derivative could not be isolated, but their cyclizations product, thieno[2,3-b] pyridine derivative $\mathbf{5}$ was obtained. The IR spectrum of $\mathbf{5}$ revealed the absence of a CN band and ${ }^{1} \mathrm{H}$-NMR spectrum showed besides the aromatic proton signals at δ 7.21-7.98 ppm, abroad band at $\delta 4.38 \mathrm{ppm}$ assignable to an amino function.

3-Cyano-6-phenyl-2-(1H)-pyridinethione 6 as starting material was prepared via condensing benzoylacetone with cyanothioacetamide [11], and used as starting material, therefore, interaction of 6 with 2-furaldehyde afforded 3-cyano-6-phenyl-4-styryl-2(1H)-pyridinethione 7, which was converted into 2-acetyl-3-amino-6-phenyl-4-styrylthieno[2,3-b]-pyridine $\mathbf{8}$ via reaction of 7 with chloroacetone in dimethyl formamide in presence of anhydrous potassium carbonate. IR spectrum of 8 showed disappearance of ($\mathrm{C} \equiv \mathrm{N}$) band and presence of bands at v3390, 3330 $\mathrm{cm}^{1}\left(\mathrm{NH}_{2}\right)$. The dienic nature of $\mathbf{8}$ was investigated through their reaction with N phenylmaleimide as dienophiles. Thus, 8 reacted with N-phenylmaleimide in ethanol [12] to afford cycloadducts 9 , which could be formulated as the pyrrolo[3,4-f] quinolino[2,3:6', 7^{\prime}] thiophene derivative. The IR spectrum showed the two widely separated band of $-\mathrm{CO}-\mathrm{N}-(\mathrm{Ph})-\mathrm{CO}-$ grouping at v 1750 and $01700 \mathrm{~cm}^{-1}$ characteristic of the cycloadducts [12]. Its mass spectrum gave a molecular ion peaks at $\mathrm{m} / \mathrm{e}=529(8.11 \%)$ (Figure I), (Scheme I).

Interaction of 3-amino-4-methyl-6-phenyl thieno [2,3-b] pyridine-2carboxamide $\mathbf{1 0}$ [13], with triethyl orthoforamate or formic acid [5,6] gave pyrido thieno pyrimidinone derivative 11. The chloro compound $\mathbf{1 2}$ was synthesized by
refluxing the pyrimidinone $\mathbf{1 1}$ in phosphorous oxychloride. The chlorine atom in $\mathbf{1 2}$ underwent displacement reaction when reacted with hydrazine hydrate to afford 4-hydrazino-9-methyl-7-phenylpyrido [$3^{\prime}, 2^{\prime}: 4,5$] thino [2,3-d] pyridine $\mathbf{1 3}$ in good yield. The hydrazino compound $\mathbf{1 3}$ was used as a key intermediate to synthesize new ring system, namely, triazolothienopyrimidopyridine derivative $\mathbf{1 4}$ through the reaction with triethyl orthoformate. Its ${ }^{1} \mathrm{H}$-NMR spectrum revealed the signal at δ 9.86 ppm corresponding to triazolo $\mathrm{H}-4[14]$. Its mass spectrum gave molecular ion peak at $\mathrm{m} / \mathrm{e}=317$, (3.39\%) Fig. II. Based on the above data compound $\mathbf{1 4}$ was formulated as 11-methyl-9-phenyl-[1,2,4] triazolo[4",3": $\left.1^{\prime}: 6^{\prime}\right]$ pyrimido [4',5',:4,5' thieno [2,3-b] pyridine 14. Moreover compound $\mathbf{1 0}$ reacts with nitrous acid to give the self-cyclized reaction product 15 . The IR spectrum of the latter compound showed the band of NH triazine ring at $v 3315 \mathrm{~cm}^{-1}$ and CO of triazine ring at v $1668 \mathrm{~cm}^{-1}$ [15]. Its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum revealed a singal at $\delta 8.13 \mathrm{ppm}$ corresponding to NH. Its mass spectrum gave a molecular ion peak at m/e 294 (73.87%) (Fig. III). Based on the above data compound $\mathbf{1 5}$ was formulated as 9-methyl-7-phenyl pyrido [5,4-b] thieno [3',2'-d] [1,2,3] triazin-4-(3H)-one 15, (Scheme II).

Compound 6 reacts with chloroacetonitrile to afford the isolated reaction product 17. The IR spectrum of the latter compound showed the absorption band at $v 3335$, $3231 \mathrm{~cm}^{-1}$ corresponding to NH_{2} group, at $v 2191 \mathrm{~cm}^{-1}$ due to $\mathrm{C} \equiv \mathrm{N}$. It's ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum revealed the signal of NH_{2}. The formation of $\mathbf{1 7}$ most likely proceeded via the initial formation of the corresponding 2-S-alkyl pyridine intermediate $\mathbf{1 6}$ which under cyclization into $\mathbf{1 7}$ under the applied reaction conditions. Based on the above data the reaction product was identified as thieno [2,3-b] pyridine derivative 17. The reaction of compound $\mathbf{1 7}$ with triethyl orthoformate in acetic anhydride afforded the ether derivative $\mathbf{1 8}$ which in turn was reacted with hydrazine hydrate in dioxan on cold to afford 3-amino-4-imino-9-methyl-7-phenyl pyrimido [4',5':4,5'] thieno [2,3b] pyridine 19. The latter compound was reacted with acetyl acetone to give 20. Its ${ }^{1} \mathrm{H}$-NMR spectrum revealed signal at $\delta 6.28$ corresponding to triazpino $\mathrm{H}-6$ [14] and the mass spectrum was compatible with the molecular formula $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}$ $\left(\mathrm{M}^{+}=371\right)$, (Fig. IV). Based on the elemental analysis and spectral data, the latter isolated product was identified as 5,7,13-trimethyl-11-phenyltriazipino [2",3":1', $\left.6^{\prime}\right]$ pyrimido [4',5':5,5] thieno[2,3-b]pyridine 20. the pyrimidindithione derivative 21 was obtained from the reaction of compound $\mathbf{1 7}$ with carbon disulfide in pyridine, (Scheme III).

(1)

(2)

(8)

(9)

Scheme I

Scheme II

(6)
(16)

$\downarrow \mathrm{AcCH}_{2} \mathrm{COCH}_{3}$
(18)
(21)

Scheme III

Fig. I. Mass fragmentation pattern of compound 9

Fig. II. Mass fragmentation pattern of compound 14.

$\mathrm{m} / \mathrm{z}=51(8.08 \%)$
$\mathrm{m} / \mathrm{z}=76(7.49 \%)$
$\mathrm{m} / \mathrm{z}=153(6.53 \%)$

Fig. III. Mass fragmentation pattern of compound 15

Fig. IV. Mass fragmentation pattern of compound 20.

Experimental

Melting points were taken on Gallen Kamp Melting apparatus and are uncorrected. Infrared spectra were obtained on Nexus 470-670, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ run on JEOL-400 MHZ in DMSO- d_{6}. The mass spectra were recorded on Ms-S988 operating at 70 eV . Microanalysis were performed by using pekin-Elmer 2400 CHN analyzer. The newly synthesized compounds were screened in vitro antitumor activity at Cairo University, National Cancer Institute, Cancer Biology Department, Pharmacology Unit.

Arylhydrazone of benzoylacetone (1):

A solution of benzoylacetone $(2.24 \mathrm{~g}, 0.01 \mathrm{~mol})$ in ethanol $(100 \mathrm{ml})$ containing sodium acetate (3.0 g) was cooled to $0^{\circ} \mathrm{C}$, stirred and treated gradually with a cooled solution of aryldiazonium chloride (prepared from 0.01 mol of amine and appropriate quantities of HCl and NaNO_{2}). The solid product formed on standing was collected and crystallized from ethanol; m.p. $85^{\circ} \mathrm{C}$; yield 84% IR $v\left(\mathrm{~cm}^{-1}\right): 3250$ (NH), 3040 (CH-Ar), 2900 (CH aliph.), 1668 (C=O), 1640 (C=N) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$) : $\delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.20-7.79(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C; 63.89; H, 4.32; N, 9.31; Cl, 11.81. Found: C, 63.82; H, 4.30; N, 9.30; Cl, 11.80.

3-Cyano-5-(p-chlorophenylhydrazone)-4-methyl-6-phenyl-2(1H)-pyridinethione(2).

A mixture of $1(0.01 \mathrm{~mol})$ and cyanothioacetamide $(1 \mathrm{~g}, 0.01 \mathrm{~mol})$ was dissolved in ethanol (30 ml) containing sodium ethoxide ($0.68 \mathrm{~g}, 0.01 \mathrm{~mol}$). The mixture was refluxed for 5 h , and then allowed to cool at room temperature and acidified with cold dilute hydrochloric acid. The resulting solid product was collected by filtration and crystallized from dioxan; m.p>360 ${ }^{\circ} \mathrm{C}$; yield 70%.

IR $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$: 3294 (NH); 3088 (CH-Ar); 2840 (CH aliph.); $2195(\mathrm{C} \equiv \mathrm{N}){ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$): $\delta 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.22-7.84(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 12.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS}$, $\mathrm{m} / \mathrm{z}=364\left(\mathrm{M}^{+}\right)$Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{~S}: \mathrm{C}, 62.55 ; \mathrm{H}, 3.56 ; \mathrm{N}, 15.36 ; \mathrm{S}, 8.77$, Cl,9.73. Found: C, 62.50; H, 3.60; N, 15.30; S, 8.70; Cl, 9.70.

2- Ethylthio-5(p-chlorophenyl hydrazone)-6-phenyl-4-methyl Pyridine-3-carbonitrile (3).

A mixture of $2(0.01 \mathrm{~mol}), \mathrm{NaOH}(0.4 \mathrm{~g}, 0.01 \mathrm{~mol})$ and ethyl iodide $(0.01 \mathrm{~mol})$ in dry DMF (50 ml) was stirred at room temperature for 24 h , then dilute with cold water (100 ml) and the resulting solid product was collected by filtration and
crystallized from ethanol; m.p. $260^{\circ} \mathrm{C}$ IR $v\left(\mathrm{~cm}^{-1}\right)$: 3022 (CH-Ar), 2936 (CH aliph.), $2219(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right) \delta 1.40\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 2.51(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $4.53\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.20 \mathrm{~Hz}\right) 7.60-8.12(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{~S}$: C, $64.20 ; \mathrm{H}, 4.33 ; \mathrm{N}, 14.26 ; \mathrm{S}, 8.15 ; \mathrm{Cl}, 9.04$ Found : C, $64.12 ; \mathrm{H}$, 4.30; N 14.20; S, 8.10, Cl, 9.00. ${ }^{13} \mathrm{C}: \delta 22.24\left(\mathrm{CH}_{3}\right) ; 22.62\left(\mathrm{CH}_{3}\right) ; 60.00\left(\mathrm{CH}_{2}\right)$; $116.18(\mathrm{CN})$ and $121.92 ; 122.24123 .40 ; 129.91 ; 130.01 ; 131.11 ; 132.30 ; 133.41$; 134.13.

3-Amino-5-(p-chlorophenyl hydrazone)-2,4-dimethyl-6-phenyl thieno[2,3-b] pyridine (4).

Compound 3 was heated under reflux in ethanolic sodium ethoxide solution $(0.5 \mathrm{~g}, 0.02$ mol-atom of sodium in 25 ml of ethanol) for 1 h . After cooling, the solid product was filter, wash with water and recrystallized from dioxan; m.p.> $360^{\circ} \mathrm{C}$; yield $60 \% \mathrm{IR} \mathrm{v}\left(\mathrm{cm}^{-1}\right): 3310,3210\left(\mathrm{NH}_{2}\right) ; 3050(\mathrm{CH}-\mathrm{Ar}) ; 2700-2900(\mathrm{CH}-\mathrm{aliph}$.$) .$
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6}): $\delta 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ pyridine ring), $2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ thiophene ring), $5.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) 7.38-7.94(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$

Anal.calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{~S}$: C, 64.20; $\mathrm{H}, 4.33 ; \mathrm{N}, 14.26, \mathrm{~S}, 8.15, \mathrm{Cl}, 9.04$ Found: C, 64.11, H, 4.32; N, 14.20; S, 8.14; Cl, 9.00

3-Amino-2-benzoyl-5-(p-chlorphenylhydrazone-)-4-methyl-6-phenylthieno[2,3-b] pyridine (5).

A mixture of $2(0.01 \mathrm{~mol})$, sodium ethoxide $(0.68 \mathrm{~g}, 0.01 \mathrm{~mol})$ and phencyl bromide $(2.09 \mathrm{~g}, 0.01 \mathrm{~mol})$ in dry ethanol $(50 \mathrm{ml})$ was refluxed for 5 h and then allowed to cool to room temperature and acidified with cold dilute hydrochloric acid. The resulting solid was collected by filtration and crystallized from ethanol; m.p. $150^{\circ} \mathrm{C}$; yield 60% IR $v\left(\mathrm{~cm}^{-1}\right)$: $3435,3317\left(\mathrm{NH}_{2}\right), 3055(\mathrm{CH}-\mathrm{Ar}), 2926(\mathrm{CH}$ aliph.), 1671 (CO-H bonded), 1604 (C=C).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6}): $\delta 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.21-7.98(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-$ H). Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{OS} ; \mathrm{C}, 67.15 ; \mathrm{H}, 3.93,11.60 ; \mathrm{S}, 6.63 ; \mathrm{Cl}, 7.35$.

Found: C, 67.10; H, 3.90; N, 11.62; S, 6.60; Cl, 7.30.
${ }^{13} \mathrm{C}-\delta 22.24\left(\mathrm{CH}_{3}\right) ; 121.92 ; 122.24 ; 123.40 ; 129.91 ; 130.01 ; 131.11 ; 132.30 ; 133.44$; 134.19; 134.99; 135.11; 135.81; 136.01; 136.25 and 204.40 (CO).

3-Cyano-6-phenyl-4-styryl-2-(1H)-pyridinethione (7).

To a solution of $6(0.01 \mathrm{~mol})$ in dioxan $(20 \mathrm{ml}), 2$-furaldehyde $(0.01 \mathrm{~mol})$ and catalytic amount of piperidine were added, the reaction mixture was refluxed for 45 hr. After cooling, the precipitate was filtered and recrystallized from ethanol, m.p. $250^{\circ} \mathrm{C}$; yield 75%.

IR $v\left(\mathrm{~cm}^{-1}\right): 3421(\mathrm{NH}), 3050(\mathrm{CH}-\mathrm{Ar}), 2214(\mathrm{C} \equiv \mathrm{N}){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 6.87(\mathrm{~s}$, 1 H , pyridine $\mathrm{H}-5$), $7.56-8.00(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.57,8.28$ ($2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}$ styryl, J=5.87 Hz), $8.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal.calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 71.05$; H, 3.94; N, 9.21; S, 10.52, Found : C, $71.00 ;$ H, 3.90, N, 9.20; S, 10.50.

2-Acetyl-3-amino-6-phenyl-4-styryl thieno[2,3-b] pyridine (8).

To a solution of $7(0.01 \mathrm{~mol})$ in dimethylformamide (50 ml), potassium carbonate anhydrous ($2.76 \mathrm{~g}, 0.02 \mathrm{~mol}$) and chloroacetone (0.01 mol) were added. The reaction mixture was stirred at room temperature for 7 h and then diluted with cold water (50 ml). The resulting solid product was collected by filtration, washed with water, dried and recrystallized from ethanol, m.p. $200^{\circ} \mathrm{C}$;yield 72% IR $v\left(\mathrm{~cm}^{-1}\right)$: 3390, $3300\left(\mathrm{NH}_{2}\right), 3078$ ($\mathrm{CH}-\mathrm{Ar}$); 2985 (CH aliph.), 1663 (C=O Acetyl), 1604 (C=C). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.04(\mathrm{~s}$, 1 H , pyridine $\mathrm{H}-5$), $8.21-8.25(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.69,9.07(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}$ styryl, J $=6.30$ Hz).
${ }^{13} \mathrm{C}: \delta 27.76\left(\mathrm{CH}_{3}\right), 116.74 ; 117.16,117.78 ; 127.40 ; 127.95 ; 128.07 ; 132.33$, $133.80,141.00,143.00$ and 200.14 (CO).

Anal.Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 70.00$; H, 4.44; $\mathrm{N}, 7.77$; S, 8.88. Found: C, 70.10; H, 4.40; N, 7.75; $\delta, 8.90$.

Pyrrolo[3,4-f] quinolino[2,3: 6',7'] thiophene derivative (9).

A solution of $8(0.01 \mathrm{~mol})$ with N -phenyl maleimide in ethanol $(50 \mathrm{ml})$. The reaction mixture was heated under reflux for 7 hrs . The solid product obtained after cooling were filtered off and crystallized from dioxan, m.p. $350^{\circ} \mathrm{C}$, yield 65%.

IR $v\left(\mathrm{~cm}^{-1}\right)$: $3350,3175\left(\mathrm{NH}_{2}\right), 3079(\mathrm{CH}-\mathrm{Ar}), 2979(\mathrm{CH}$ aliph.), 1750, $1700(-\mathrm{CO}-$ NPh-CO-), 1625 (CO-H bonded), 1604 (C=C).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right): \delta 2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.29-7.95(\mathrm{~m}, 13 \mathrm{H}$, ArH); MS, m/z=529(M ${ }^{+}$) Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{~S}: \mathrm{C}, 70.32$; H, 3.59, $\mathrm{N}, 7.93$;

S, 6.04. Found: C, $70.30, \mathrm{H}, 3.60$; N, 7.95 ; S. 6.00 . The mass spectrum of (9) showed a molecular ion peak $\mathrm{m} / \mathrm{z}=529$ (Fig. I)

9-Methyl-7-phenyl pyrido [3',2':4,5] thieno[3,2-d] pyrimidine-4 (3H)-one (11).

Method A:

A mixture of $\mathbf{1 0}(0.01 \mathrm{~mol})$ and triethyl orthoformate (3 ml) was refluxed for 5 h in ethanol in the presence of few drops of acetic acid. The solid product separated from the hot mixture was filtered and recrystallized from Dioxan, m.p. $260^{\circ} \mathrm{C}$, yield 85%.

IR $v\left(\mathrm{~cm}^{-1}\right)$: $3434(\mathrm{OH}), 3046(\mathrm{CH}-\mathrm{Ar}), 2920(\mathrm{CH}-\mathrm{aliph}$.$) , 1667(CO pyrimidine),$ 1600 ($\mathrm{C}=\mathrm{C}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6} : $\delta 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.53-7.58\left(\mathrm{~m}, 6 \mathrm{H}\right.$, ArH and pyridine $\mathrm{C}_{8}{ }^{-}$ $\mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine CH$), 8.24(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}: \delta 21.00\left(\mathrm{CH}_{3}\right), 113.74,119.04,127.78(\mathrm{CH}-$ pyridine $), 129.62,166.90(\mathrm{CH}-$ pyrimidine), $168.60(\mathrm{C}=\mathrm{O}), 127.78,129.62$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 65.52 ; \mathrm{H}, 3.75 ; \mathrm{N}, 14.33 ; \mathrm{S}, 10.92$.
Found : C, $65.50 ;$ H, 3.81. N, 14.30. S, 10.90. Mass spectrum showed a molecular ion peak $\mathrm{m} / \mathrm{z}=293(100 \%)$, other significant peaks appear at $267(11.96 \%) 237$ (8.01\%) 193 (3.08\%).

Method B

A solution of $\mathbf{1 0}(0.01 \mathrm{~mol})$ and formic acid $(20 \mathrm{ml})$ was heated under reflux for 4 h . The solid product was collected filtrated washed with ethanol, dried then crystallized from dioxane to give $\mathbf{1 1}$.

4-Chloro-9-methyl-7-phenyl pyrido[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ thieno[3,2-d] pyrimidine (12).

A sample of the pyrimidinone derivative $11(3 \mathrm{~g})$ in phosphorous oxychloride (15 ml) was refluxed for 4 h , then cool. The reaction mixture was poured into ice/water mixture and the solid product was collected by filtration and recrystallized from ethanol, m.p. $165^{\circ} \mathrm{C}$, yield 65% IR v(cm^{-1}): 3032 (CH-Ar), 2957 (CH aliph.), 1640 $(\mathrm{C}=\mathrm{N}), 1561(\mathrm{C}=\mathrm{C}) ; \mathrm{MS} ; \mathrm{m} / \mathrm{z} 311\left(\mathrm{M}^{+}\right)$.

Anal.Calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{~S}: \mathrm{C}, 61.63 ; \mathrm{H}, 3.21 ; \mathrm{N}, 13.48 ; \mathrm{S}, 10.27 ; \mathrm{Cl}, 11.39$, Found : C, 61.60; H, 3.20; N, 13.50; S, 10.20; Cl, 11.40.

4-Hydrzino-9-methyl-7-phenyl-pyrido [3',2': 4,5] thieno [2,3-d]
pyrimidine (13).
A mixture of the chloro compound $\mathbf{1 2}(0.01 \mathrm{~mol})$ and hydrazine hydrate $(0.12$ mol) in ethanol (50 ml) was refluxed for 2 h . The solid product separated from the hot mixture was filtered off and recrystallized from dioxan; m.p. $320^{\circ} \mathrm{C}$; yield 75%.

IR v(cm^{-1}): $3390,3210,3150\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 3050$ (CHAr), 2950 (CH aliph.); 1625 ($\mathrm{C}=\mathrm{N}$); $1590(\mathrm{C}=\mathrm{C})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ DMSO- $\left.\mathrm{d}_{6}\right): \delta 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) 6.90(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-$ 8), 7.28-7.49 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) 7.70(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine $\mathrm{H}-2), 10.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ Anal.Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$: C, 62.54; H, 4.23; N, 22.80; S,10.42. Found: C, 62.50; H, 4.25; N, 22.80, S, 10.40.

11-Methyl-9-phenyl-1,2,4-triazolo[4',3':1',6']pyrimido[4',5':4,5'] thieno[2,3-b] pyridine (14).

A mixture of $\mathbf{1 3}(0.01 \mathrm{~mol})$ and triethyl orthoformate $(2 \mathrm{ml})$ in ethanol $(30 \mathrm{ml})$ in the presence of a few drops of acetic acid was refluxed for 5 h . The solid crystals separated from the hot mixture was filtered off and recystallized from acetic acid; m.p. $280^{\circ} \mathrm{C}$; yield 70%.

IR $v\left(\mathrm{~cm}^{-1}\right)$: $3046(\mathrm{CH}-\mathrm{Ar}), 2890\left(\mathrm{CH}\right.$ aliph.), $1654(\mathrm{C}=\mathrm{N}){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$ $\delta 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right): 7.53-7.55(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ pyridine); 8.23, $9.86(2 \mathrm{~s}, 2 \mathrm{H}$, CH -pyrimidine and CH -triazol).
${ }^{13} \mathrm{C}: \delta 21.40\left(\mathrm{CH}_{3}\right) ; 127.40$ (CH-pyridine), 129.90, 131.13, 132.45, 134.60 and 161.97 (CH-pyrimidine); 171.00 (CH-triazole).

Mass spectrum showed a molecular ion peak $\mathrm{m} / \mathrm{z}=317$ (100\%) (Fig. II)
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{~S}$: C, 64.35; H, 3.47; N, 22.08; S,10.09. Found: C, 64.40; H, 3.50; N, 22.01; S, 10.00.

9-Methyl-7-phenylpyrido[5,4-b]thieno[3',2'-d]-(1,2,3)-triazin-4(3H)-one (15).

A cold solution of sodium nitrite $(0.01 \mathrm{~mol})$ was added to a cold solution of $\mathbf{1 0}$, ethanol (20 ml) and conc. Hydrochloric acid (0.5 ml) portionwise during period of 30 min . The reaction mixture was stirred for further 2h. in ice bath. After stirring was completed, the solid product obtained was collected by filtration, washed with water, dried, then crystallized from ethanol, m.p. $210^{\circ} \mathrm{C}$; yield 60%.

IR $v\left(\mathrm{~cm}^{-1}\right)$: $3432(\mathrm{OH}), 3315(\mathrm{NH}), 3070(\mathrm{CH}-\mathrm{Ar}) 2942(\mathrm{CH}$ aliph.), $1668(\mathrm{C}=\mathrm{O})$ triazine); $1590(\mathrm{C}=\mathrm{C}){ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6}): $\delta 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.20(\mathrm{~s}, 1 \mathrm{H}$, pyridine-H), 7.49-7.75 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$; MS: $\mathrm{m} / \mathrm{z}=294$ (73.87\%) (Fig. III), Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 61.22 ; \mathrm{H}, 3.40$; N, 19.04; S, 10.88,. Found : C, 61.20, H, 3.44; N, 19.00; S, 11.00.

3- Amino-2-cyano-4-methyl-6-phenyl-thieno [2,3-b] pyridine 17.

To a solution of $6(0.005 \mathrm{~mol})$ in ehtanolic sodium ethoxide solution in $(0.5 \mathrm{~g}$, 0.02 -atom of sodium 25 ml of ethanol), chloroacetonitrile (0.005 mol) was added and the mixture was heated under reflux for 1 h . After cooling, the solid product was collected and recrystallized from ethanol: m.p. $130^{\circ} \mathrm{C}$; yield 75%.

IR v($\left.\mathrm{cm}^{-1}\right): 3335,3231\left(\mathrm{NH}_{2}\right), 3050(\mathrm{CH}-\mathrm{Ar}), 2900(\mathrm{CH}-$ aliph.), $2191(\mathrm{C} \equiv \mathrm{N}), 1580$ $(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.58(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-5$), 7.17-7.84 (m, 5H-Ar-H).
${ }^{13} \mathrm{C}: \delta 20.00\left(\mathrm{CH}_{3}\right), 116.29(\mathrm{C} \equiv \mathrm{N}), 122.67,127.55,129.04,129.44,130.53,137.68$.
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}$: C, 67.92; H, 4.15; $\mathrm{N}, 15.84 ; \mathrm{S}, 12.07$. Found : C, 67.90; H, 4.00; N, 15.90; S, 12.00.

2-Cyano-3-ethoxymethyleneamino-4-methyl-6-phenylthieno[2,3-b]pyridine (18).

A mixture of $17(0.01 \mathrm{~mol})$ and triethyl orthoformate $(0.02 \mathrm{~mol})$ in acetic anhydride (10 ml) was refluxed for 5 h , then cool. The solid product was filtered off, washed several times with cold ethanol and recrystallized from ethanol; m.p. $170^{\circ} \mathrm{C}$, yield 80%.
IR v(cm^{-1}): 3050 (CH-Ar), 2985-2870 (CH-aliph.) $2194(\mathrm{C} \equiv \mathrm{N}), 1590(\mathrm{C}=\mathrm{C})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 0.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=14.30\right) 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.06(\mathrm{q}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=11.10$) 7.23-7.83 (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$) and pyridine $\mathrm{H}-5$) $8.21(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}$).
${ }^{13} \mathrm{C}: \delta 14.63\left(\mathrm{CH}_{3}\right), 20.24\left(\mathrm{CH}_{3}\right), 63.94\left(\mathrm{CH}_{2}\right) ; 114.88(=\mathrm{CH}) ; 120.14(\mathrm{C} \equiv \mathrm{N}) ; 127.00$ (CH-pyridine) and 128.11, 129.00, 130.01, 137.35, 137.80. Anal. Calcd for : $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 67.28 ; \mathrm{H}, 4.67 ; \mathrm{N}, 13.08 ; \mathrm{S}, 9.96$.

Found : C, 67.30; H, 4.60; N, 13.00; S, 9.90.

3-Amino-4-imino-9-methyl-7-phenyl pyrimido [4',5': 4,5] thieno[2,3-b] pyridine

 (19).A sample of compound $\mathbf{1 8}(0.01 \mathrm{~mol})$ was dissolved in dioxan $(50 \mathrm{ml})$ and then hydrazine hydrate $(0.01 \mathrm{~mol})$ was added drop wise while stirring . Stirring was continued for 4 h , during this period of time, solid crystals were separated. The mixture was heated on water bath for $1 \mathrm{~h}, \mathrm{cool}$ and the solid product was collected by filtration. Recrystallized from dioxan; m.p. $270^{\circ} \mathrm{C}$. yield 90% IR (cm^{-1}): 3305 , 3259, $3140\left(\mathrm{NH}_{2}, \mathrm{NH}\right) 1640(\mathrm{C}=\mathrm{N}), 1605(\mathrm{C}=\mathrm{C})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6}): $\delta 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.32-8.04(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-$ H and pyridine $\mathrm{H}-8$), $8.59(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine $\mathrm{H}-2), 12.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{~S}$: C, 62.54 ; H, 4.23; N, 22.80; S, 10.42. Found: C, 62.50; H, 4.20; N, 22.80; S, 10.40.

5,7,13-Trimethyl-11-phenyltriazipino [2', 3':1', 6'] pyrimido [4',5': 4,5']thieno[2,3-b] pyridine (20).

A mixture of compound 19 (0.005 mol) and acetyl acetone (0.005 mol) in ethnol (30 ml) was refluxed for 8 hrs . The solid crystals separated from the hot mixture was filtered off and recrystallized from dioxan, m.p. $180^{\circ} \mathrm{C}$; yield 90% IR $v\left(\mathrm{~cm}^{-1}\right): 3055$ (CH-Ar), 2900-2800(CH-aliph.) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMS-d d_{6}): $\delta 2.01$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-triazipin ring), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-triazpin ring), $2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ pyridine ring), $6.28(\mathrm{~s}, 1 \mathrm{H}$, triazipin-H-6), 7.49-8.34 (m, 6H, Ar-H and H-pyridine), $9.05(\mathrm{~s}, 1 \mathrm{H}$, pyrimidin, $\mathrm{H}-$ 2); Mass spectrum m/z 371 (43.11%) (Fig. IV). ${ }^{13} \mathrm{C}: \delta 16.30\left(\mathrm{CH}_{3}\right) ; 19.72\left(\mathrm{CH}_{3}\right)$; $20.42\left(\mathrm{CH}_{3}\right) ; 127.77$ (CH -pyridine); 129.44 (CH-triazipin); 130.00, 130.66, 131.02, 132.68, 133.11 and 151.57 (CH-pyrimidine).

Anal, Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}$: C, 67.92; H, 4.58; $\mathrm{N}, 18.86 ; \mathrm{S}, 8.62$ Found: C, 67.90; H, 4.60; N, 18.80; S, 8.58.

9-Methyl-7-phenyl pyrimido[4',5': 4,5] thieno[2,3-b] pyridine-2,4(1H, 3H)dithione 21.

A sample of $\mathbf{1 7}(0.5 \mathrm{~g})$ and carbon disulfide (3 ml) in pyridine (10 ml) was heated on water bath until the hydrogen sulfide ceased 10 hr ., then, cool. The solid product was filtered off, washed several times with ethanol and recrystallized from dioxan; m.p. 280° C; yield 85%

IR $\mathrm{v}^{\left(\mathrm{cm}^{-1}\right)}$: 3412 (NH); 3050 (CH-Ar); 2950 (CH-aliph); 2700 (SH) ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ (DMSO-d d_{6}): $\delta 2.50$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}: 6.61$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{3}$-Hpyridine); 7.42-8.02 (m, 5H, ArH); 8.16, 8.61 ($2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}$).
${ }^{13} \mathrm{C}: \delta 21.00\left(\mathrm{CH}_{3}\right) ; 127.61130 .95,136,11,133.11 ; 135.95,136.11$ and 184.00 $(\mathrm{C}=\mathrm{S})$; $186.40(\mathrm{C}=\mathrm{S})$, Mass spectrum: $\mathrm{m} / \mathrm{z} 341(0.5 \%)$ with base peak $\mathrm{m} / \mathrm{z}=$ 265(100\%).

Anal.Calcd for: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}_{3}$: C, 56.30; H, 3.22; N, 12.31; S, 28.15, Found: C 56.11; H, 3.50; N, 12.00; S, 28.80.

Biological Results and Structure Activity Correlation

Antitumor activity (in vitro-study)

Potential cytotoxicity of the synthesized compounds was tested using the method of Skehan et al. [16]. Cells were plated in 96-muli well plate (10 cells/Well) for 24 hrs before treatment with the compound to allow attachment of cells to the wall of the plate. Different concentration of the compounds under test $(0,10,25,50$ and 100 $\mu \mathrm{g} / \mathrm{m}$) were added to the cell monolayer triplicate wells were prepared for each individual dose. Monolayer cells were incubated with the compounds for 48 hrs at $37^{\circ} \mathrm{C}$ and in atmosphere of $5 \% \mathrm{CO}_{2}$. After 48 hrs , cells were fixed, washed and stained with slufo-Rhodamine-B-stains. Excess stain was washed with acetic acid and attached stain was recovered with Tris EDTA buffer. Color intensity was measured in an ELISA reader. The relation between surviving fraction and compound drug concentration is plotted to get the survival curve of each tumor cell line after the specified compound.

The relation between surviving fraction and compound concentration was plotted to obtain the survival curve of tested cell, the response parameter calculated was IC_{50} value. The data to tested compounds are summarized in Table I and II.

In Vitro Anti-HPG2 testing

Fig. 4

Fig. (5)

Fig. (6)
Fig. 4,5,6: The inhibitory effect of compounds $\mathbf{6 , 7 , 9 , 1 0 , 1 5 , 1 7 , 1 8}$ and 21 concentration on HEPG2 cells activity.

Compounds 6 and 7 having thiol group are nearly active as the positive control Doxorubicin [17] with $\mathrm{IC}_{50}, 44.8$ and $48.2 \mu \mathrm{~g} / \mathrm{ml}$. Pyrrolo [3,4-f] quinolino [2,3:6,7] thiophene $\mathbf{9}$ is more effective than the positive control (Doxorubicin) with $\mathrm{IC}_{50} 8.7 \mu \mathrm{~g} / \mathrm{ml}$. Compound $\mathbf{1 0}$ proved to posses moderate activity against HEPG2 cell lines. On the other hand cyclization of compound $\mathbf{1 0}$ yielded pyridothienotriazinone derivative $\mathbf{1 5}$ proved to be active toward the HEPG2 cell IC_{50} $52.8 \mu \mathrm{~g} / \mathrm{ml}$. Compound $\mathbf{1 7}$ and $\mathbf{1 8}$ showed cytotoxicity to HEPG2 cells at $\mathrm{IC}_{50}(98.7$ and $99.3 \mu \mathrm{~g} / \mathrm{ml}$). Compound 21 proved to be active member than the positive control (Doxorubicin) among the pyrimidine dithione molecule with $\mathrm{IC}_{50} 26.2 \mu \mathrm{~g} / \mathrm{ml}$ (Table I).

Table I. In Vitro Anti-HEPG2 ${ }^{\text {a }}$ Testing Results

Comp	$\mathrm{IC}_{50}{ }^{\mathrm{b}} ; \mu \mathrm{g} / \mathrm{ml}$
6	44.8
7	48.2
9	8.7
15	52.8
17	98.7
18	99.3
21	26.6
Doxorubicin $^{\mathrm{c}}$	43.6

${ }^{\text {a }}$ Liver carcinoma cell line ${ }^{\text {b }}$ concentration of compounds which cause 50% inhibition of cell growth, ${ }^{\text {c }}$ positive control ${ }^{[17]}$.

Table II. In vitro Anti-MCF7 ${ }^{\text {a }}$ Testing Results.

Comp	$\mathrm{IC}_{50}{ }^{\mathrm{b}} ; \mu \mathrm{g} / \mathrm{ml}$
7	9.4
10	9.4
15	93.6
17	100
21	48.3
Doxorubicin $^{\mathrm{c}}$	43.6

[^0]In Vitro Anti-MCF7 testing

Fig. 7

Fig. (8)

Fig. (9)

Fig. (10)
Fig. 7,8,9, 10: The inhibitory effect of compounds $6,7,9,10,15,17,18$ and 21 concentration on MCF7 cells activity.
Compounds $\mathbf{6}$ and 9 proved to posses moderate activity against MCF7 cell line but compound 7 with increase magnitude of active at $\mathrm{IC}_{50} 9.4 \mu \mathrm{~g} / \mathrm{ml}$ is more effective than the positive control (Doxorubicin, due to olefinic function of the styryl pyridinethione [18]. MCF7 cell lines proved to be sensitive toward compound $\mathbf{1 0}$ than the positive control (Doxorubicin with $\mathrm{IC}_{50} 9.4 \mu \mathrm{~g} / \mathrm{ml}$, while proveded to be moderate activity towards compounds $\mathbf{1 5}, \mathbf{1 7}$ and $\mathbf{1 8}$. Also compound 21 having thiol group is nearly as active as the positive control (Doxorubicin) with $\mathrm{IC}_{50} 48.3$ $\mu \mathrm{g} / \mathrm{ml}$ (Table II).

The attempt to connect the variation in the back bone of the synthesized heterocycles and the pattern of substitution on those heterocyclic ring system proved to be most active antitumor agent.

References

1. L. F. Liu, Ann. Rev. Biochem., 58, 351-375 (1989).
2. G. C.apranico, M.Binaschi, M. E. Borghetto, F. Zunino and M. Palumbo. trends Pharm. Sci., 18, 323-329 (1997).
3. Y.Pommier, G. Gapranico. A. Orr, and K.W. Kohn, J. Mol. Biol., 222, 909 (1991).
4. W.A. Denny, Cancer Chemotherapeutic Agents, W.Foya, ed., ACS, Washington D. C., PP 218-239 (1995).
5. U.Pindur and G. Fisher, Curr. Med. Chem. 3, 379 (1996).
6. G.W. Gribble, the Alkaloids, 39, A. Brossi, ed, Academic press, New York, P. 239 (1990).
7. M. Ohashi and T. Oki, Exp. Opin. Ther. Patents, 6, 1285 (1996).
8. M.M. Ghorab, H. I. Heiba and Mona, A.El-gawish; Phosphorus, Sulfur and Silicon, 106, 85-90 (1995).
9. M.M. Ghorab; Az. J. Pharm. Sci., 12, 1-14 (1993).
10. G.E. El-gemeie, I. S. Alnaimi and H. F. Alarab; J. Heterocyclic, 34. (1992).
11. Mitteil and U. Schmidt, Chem. Ber. 92, (1959).
12. F.A. Attaby and Z. M.ABD El-Fattah; J.Phosphorus, Sulfur, and Silicon; 155, (1999).
13. M.M. Ghorab, A. Y. Hassan and O.M. Nassar; J. Phosphorus, Sulfur an Silicon; 134 (1998).
14. A.A. Geies; J., Phosphorus, Sulfur and Silicon; 148, (1998).
15. M. A. A. El-Neairy; J. Phosphorus, Sulfur and Silicon; 148, (1998).
16. P. Skehan and R. Storeng, New-coloremtric cytotoxicity assay for anti-Cancer drug screening J. Natl Cancer Inst. 82: 1107-1112 (1990).
17. F.A. Fornair; J. K. Randolph; J. C. Yalowich, M.K. Ritke; M.K. Gewirtz; D.A. Interference by Doxorubicin with DNA Unwinding in MCF7 Breast Tumor Cells. J. Molecular Pharmacology, 456, 649 (1999).
18. B. Y. Er; J, G. yong; Z.Kai,; Y. Z. Chen; M. Peter, J. Biochemica et Biophysica Acta 1550, 144-152 (2001).

الــمـلـخص الـعـربـى
تحضبير وتفاعلات مشنتقات البيربدين وثينو [2، 3 - ب] بيريدين المنوقع لها نشاط بيولوجى

$$
\begin{aligned}
& \text { 18 }{ }^{1} \text { عائشة يوسف حسن هلالى - }{ }^{2} \text { فايزه محمد فايز } \\
& \text { 1- قسم الكيمياء العضوية - كلية العلوم - جامعة الأزهر }
\end{aligned}
$$

2- فسم الكيمياء العضوية - كليية التربية - الرياض - المملكة العربية السعودية
يتضمن هذا البحث تشييد عدد من المركبـات الحلقـة غير المتجانسـة وذلك باستخدام
مركب سبانوثيوأسيناميد حيث ينفاعل مع مركب أربل هيدرازون لمركب البنزوبل أسينون (1) ليعطى (2) الذى يتفاعل مـع كل مـن فينسيل بروميد ليعطى المركب (5) ويوديد الإيثيـل ليعطى المركب (3) الذى يتم تحلقه وذلك بالغليان فى أثنيوكسبد الصوديوم ليعطى المركب (4). كمـا تمـت مفاعلـة مركب سيانوثيوأسيتاميد مـع البنزويـل أسيتون ليعطى المركب (3) الذى يـتم مفاعلتـه مـع 2-فيوألدهيد ليعطـى المركب (7) الذى يتفاعـل مـع الكلورواسـينون
ليعطى المركب (8) حيث يتفاعل مع N- فينيل ماليمبد ليعطى المركب (9).

وقد تمت مفاعلة المركب (6) مـع كلورواسيتاميد ليعطى المركب (10) الذى تمت
مفاعلته مـع كل مـن تراى إيثيـل فورمـات أو حمض الفورميك ليعطى المركب (11) الذى يتفاعل مـع أوكسى كلوريد الفوسفور ليعطى المركب (12) الذى يتم مفاعلته مـع هيدرازين هيدرات ليعطى المركب (13) الذى يتم تحلقه وذلك بمفاعلنته مـع تراى ايثيل فورمات ليعطى مشـتق تـراى ازول مركب (14) وأيضــاَ نمـت مفاعلــة المركـب (10) مـع حمـض النيتـروز ليعطى المركب (15).

ينفاعل مركب (6) مع كلوريد أسينونبتريل ليعطى المركب (17) الذى يتم مفاعلته مـع تراى إيثيـل فورمـات ليعطى مركب (18) حيث يتم تحلقه ليعطى المركب (19) وذلك بتفاعله مـع هيدرازين هيدرات وأيضـاَ تم الحصول على المركب (20) وذلك بتفاعل المركب

19 مـع اسيتيل اسينون. كمـا تمـت مفاعلـة المركب (17) مـع الكربون داى سلفيد ليعطى المركب (21).

وقد تـم دراســة التـأثنثر البيولـوجى للمركبـات المحضـرة على خلايـا الكبـد والثـدى
المسرطنة وقد أظهرت المركبات 6، 7 ، 9 15، 17، 18، 21 نأثنير سُمى تجاه خلايا الكبد المسرطنة بينما أظهرت المركبات 6/ 9 ، 7 سُمية تجاه خلايا الثڭى المسرطنة ولقد أظهر المركب 10 سُمية تجـاه خلايـا الثدى المسرطنة بينمـا كان متوسط التأثنير تجـاه خلايـا الكبد المسـرطنة ولقد أظهرت المركبـات 15 ، 17، 18 تـأثير منوسط تجـاه السمية لخلايـا الثدى المسرطنة.

ولقد أمكن اثبـات التركبب البنائى لهذه المركبـات اعنمـاداً على التحليل الكيميائى
العنصـرى ودراسـة أطياف الأشعة تحت الحمراء والرنين النووى المغناطيسـى والكربون -13 وطيف الكتلة.

[^0]: ${ }^{\text {a }}$ Breast carcinoma cell line, ${ }^{\text {b }}$ concentration of compounds which cause 50% inhibition of cell growth, ${ }^{\text {c }}$ positive control

