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ABSTRACT 
 

Analyze the genetic diversity of 22 bread wheat genotypes by principal component and cluster analyses 

were conducted at the Exper. Farm Fac. Agric., Minia Univ. Egypt during two seasons of 2017/18 and 2018/19. 

Principal component analysis (PCA) extracted three main components had eigenvalue >1 explained 79.59% of 

the total variation by 36.93% of PC1, 29.38% of PC2 and 13.28% of PC3. The most traits contributing in 

variation of first principal component were weight of spikes/plant, no. of grains/spike, weight of grains/spike, 

grain yield/plant, spike density and spikelet fertility. Cluster analysis divided the 22 bread wheat genotypes into 

five clusters. Each of them contained 8, 1, 3, 9 and 1 genotypes for cluster 1, 2, 3, 4 and 5, respectively. Average 

observed gain of cluster 1 showed positive increase for days to heading (DH), no. of spikelets/spike (NST/S) 

and spike density (SD) in percentage of mean overall genotypes. Cluster 3 had the highest yield potential. 

Nielain is separated in the second cluster and showed positive observed gain for plant height, NST/S and SD. 

Also, Genotype Emara1 is separated in cluster 5 and showed high positive observed gain for the most traits in 

percentage of mean all genotypes. So, hybridization between Nielain of cluster 2 and Emara1 of cluster 5 could 

give new recombination and transgressive segregations with long spike and high spike density in the progenies 

derived from their crossing. 

Keywords: Eigenvalue, cluster, recombination, transgressive, segregations. 
 

INTRODUCTION 
 

Breeding wheat through hybridization, followed by 

selection for desirable individuals in the segregating 

generations depended on presence of genetic diversity 

between the crossed parents. The first step in breeding wheat 

program by hybridization is choice of parents.  

Genetic diversity analysis of genetic resources is a 

prerequisite for their more efficient exploit in plant breeding 

program. Accurate determination of the genotype is very 

important during all the breeding program steps from parent 

choice for crossing to obtain new cultivars which utilize in 

crop production. Conversation the genetic diversity helps 

wheat breeders to find desired characters to improve wheat 

varieties and achieve high yield potential (Mwale et al., 2016). 

Estimation of genetic diversity based on genetic 

distance is useful for wheat breeding as one of tools for 

parental selection to enhance the new genetic recombination 

for increase yield  Khodadadi et al. (2011) and Poudel et al. 

(2017).   

Multivariate analysis by principal component and 

cluster analysis can be effective to determine genetic 

diversity and parental selection. Also, it used to identify 

components that are correlated with a certain traits which 

cause high variation and determine performance of 

genotypes and their effects on different traits. Principle 

component analysis (PCA) was used to classify a large 

number of traits into major components.  

Euclidean distance used to estimate the genetic 

distance between parents to maximize the trangressive 

segregation. Babay et al. (2015) observed a high variation 

among the genotypes, as a result of wide range of Euclidean 

distance among the genotypes. Poudel et al. (2017) revealed 

that selection of genotypes from cluster 2 would lead to 

selection of the superior genotypes used in breeding wheat. 

Rani et al. (2018) conducted cluster analysis with WARD 

method and Square Euclidean distance coefficient grouped 

40 genotypes into 6 clusters. Cluster V had highest grain 

yield (1014.4 g), spikes/meter2 (143.46) and second lowest 

plant height. Thus; the genotypes presence in clusters have 

excellent chances for improvement by wide hybridization. 

Pooja and  Binewal (2018) revealed that results of cluster 

analysis could be exploited in planning and execution of 

future breeding improvement program in wheat. Kandel et 

al. (2018) identified superior genotypes after clustering 

them based on their genetic diversity in performance. 

Santosh et al. (2019) revealed that the genotypes bearing the 

desired traits from different clusters can be exploited in 

future breeding wheat program for the improving yield. 

Cluster analysis results showed that the cultivars were 

genetic different from each other could gave the farmers a 

wider range to choice from it Motlatsi and Mothibeli (2020). 

The objectives of the study were to analyze the genetic 

diversity of 22 bread wheat genotypes, determine the 

genetic relationships among different traits which contribute 

more towards grain yield and determine the promising 

excellent genotypes which could be parents in wheat 

breeding program.  
 

MATERIALS AND METHODS 
 

The experiment was conducted at Fac. Agric. Edu. 

Farm, Minia Univ., Egypt., 22 bread wheat genotypes 

included 10 F9:10 recombinant inbred lines (G1, G48, G62, 
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G104, G124, G306, G352, G389, G395 and G463) from 

cross Giza168 x Sids4 were derived from the materials of 

Ph.D. study of the author, 11 varieties (Misr1, Misr2, Sids1, 

Sids4, Sids13, Giza168, Giza171, Gemmieza11, 

Gemmieza12, Sakha94 and Nielain) and long spike line 

Emara1. The 22 genotypes were sown in two seasons i.e. 

2017/2018 and 2018/2019 on 20th Nov. A randomized 

complete block design of three replicates was used. The plot 

size was one row, 1.5 m long, 20 cm apart and 5 cm between 

grains within a row. The pedigree of the 12 bread wheat 

genotypes is given in (Table 1). 

 

Table 1. The pedigree of the twelve bread wheat genotypes. 

Genotypes Pedigree 

Misr1 OASIS/SKAUZ//4*BCN/3/2*PASTOR 

Misr2 SKAUZ/BAV 92 

Sids1 HD2172/Pavon“S”//1158/Maya74“S” 

Sids4 Maya ( S ) /Man ( S ) //CMH 74A-592/3/Giza 157*2 

Sids13 ALMAZ.19KAUZ"S"// TSI/ SNB"S"     

Giza168 MIL/Buc//Seri CM93046-8M-04-0M-2Y-0B  

Giza171 SAKHA 93 / GEMMEIZA 9 S.6-1GZ-4GZ-1GZ-2GZ-0S 

Gemmieza11 BOW"S"/KVZ"S"//7C/SER182/3 /GIZA168/SAKHA 61 

Gemmieza12 OTUS/3/SARA/THB//VEECMSS97Y00227S-5Y-010M-010Y-010M-2Y1M-0Y-0GM 

Sakha94 OPATA/RAYON//KAUZCMBW90Y3180-0TOPM-3Y-010M-010M-010Y10M-015Y-0Y-0AP-0S 

Nielain S948.A1/7*SANTA ELENA (CMH72A.390-0SDN) 

Emara1 Kindly provided by Prof. Dr. Ezzat Mahdy – Prof. of plant breeding in Agronomy Dept. – Fac. of Agriculture. Assiut Univ. 
 

The following 12 studied traits were taken, days to 

50% heading [DH], plant height [PH, cm], spike length [SL, 

cm], no. of spikes/plant [NS/P], weight of spike/plant 

[WS/P], no. of spikelets/spike [NST/S], no. of grains/spike 

[NG/S], weight of grains/spike [WG/S, g], grain yield/plant 

[GY/P, g], 1000-grain weight [1000-GW, g], spike density 

SD = [NST/SL], spikelet fertility SF = [NG/S] / [NST/S]. 

The monthly mean of air temperature and relative 

humidity during the experiment period of the two growing 

seasons are shown in Fig. 1.  

Statistical procedures: 

Data were subjected to proper statistical analysis of 

variance of RCBD according to Steel and Torrie (1980), 

using MSTAT-C 2.1 software. Heritability in broad sense 

“H” was estimated according to Walker (1960). The 

phenotypic (PCV%) and genotypic (GCV%) coefficients of 

variability were calculated as outlined by Burton (1952). 

After standardization data, multivariate analysis performed 

on average the two growing seasons by principal component 

and cluster analyses using SPSS version 21 and XLSTAT 

software. Cluster analysis was carried out based on squared 

Euclidian distances by Ward’s method. The optimum 

number of clusters was determined by values of Pseudo F 

according to Calinski and Harabazs (1974). 

 

 
 

RESULTS AND DISCUSSION 
 

Significant differences (P≤0.5 or 0.01) were found 

for all the studied traits in the two seasons (Table 2). In 1st 

season high estimates of heritability in broad sense were 

observed for most traits with range from 78.03% for days to 

heading to 96.97% for plant height except moderate 

heritability were estimated for NG/S (68.17), WG/S (65.83) 

and SF (65.82%). In 2nd season, most of traits recorded high 

values of heritability with exception low values for weight 

of spike/plant (47.04) and grain yield/plant (43.083%) were 

observed. High estimates of genotypic (GCV%) and 

phenotypic (PCV%) coefficients of variation were found for 

most of traits except low estimates were found for DH in 

first season 2017/18 and NST/S in second season 2018/19. 

Similar results were in agreement with Al-Ashkar et al. 

(2015), Birhanu et al. (2017) and Devesh et al. (2019). 

Based on average of two seasons (Table 3) days to 

heading, plant height, spike length, weight of spikes/plant, 

no. of grains/spike, 1000 grain weight and grain yield/plant 

ranged from (92.17 to 108.33), (89.58 to 150.51 cm.), (10.22 

to 22.18 cm.), (19.57 to 35.75 g.), (39.04 to 71.04), (50.62 

to 69.18 g.) and (10.15 to 22.82g.) respectively, reflecting 

high variance of these traits.  
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Table 2. Mean squares, heritability in broad sense (H%), genotypic (GCV%) and phenotypic (PCV%) coefficients 

of variation of the studied traits in first 2017/18 and second 2018/19 seasons.  
Season First season 2017/18 
SV Rep Genotypes Error H% GCV% PCV% 
df 2 21 42 - - - 
DH 5.65 17.34** 3.81 78.03 2.25 2.55 
PH 5.52 365.56** 11.07 96.97 11.71 11.89 
SL 1.23 16.42** 1.57 90.43 16.26 17.1 
NS/P 3.13 1.95** 0.32 83.49 16.62 18.18 
WS/P 4.12 62.88** 4.72 92.5 21.52 22.38 
NST/S 0.7 6.95** 1.1 84.12 6.23 6.8 
NG/S 310.29 220.33** 70.12 68.17 14.24 17.25 
WG/S 2.68 0.97** 0.33 65.83 15.52 19.13 
1000GW 97.11 67.64** 19.89 70.6 6.64 7.9 
GY/P 4.75 30.42** 2.97 90.24 20.62 21.71 
SD 0.01 0.17** 0.02 88.13 13.42 14.29 
SF 0.69 0.45** 0.15 65.82 14.06 17.33 
  Second season 2018/19 
DH 67.56 207.57** 13.53 93.48 7.69 7.96 
PH 10.29 586.85** 28.37 95.17 11.69 11.99 
SL 4.26 15.63** 1.08 93.08 15.08 15.63 
NS/P 4.27 7.07** 1.66 76.48 21.74 24.86 
WS/P 64.43 87.13* 46.15 47.04 12.29 17.92 
NST/S 1.72 6.6** 0.78 88.14 5.56 5.93 
NG/S 116.29 146.49** 41.98 71.34 9.42 11.15 
WG/S 0.52 0.89** 0.15 83.58 13.88 15.18 
1000GW 24.2 130.61** 30.08 76.97 10.04 11.45 
GY/P 28.83 43.95* 24.09 43.83 13.98 21.12 
SD 0.02 0.17** 0.01 92.38 13.26 13.79 
SF 0.1 0.15** 0.06 57.9 6.88 9.04 
*and ** significant at 0.05 and 0.01 level of probability. 
 

Table 3.Mean, minimum and maximum for the studied traits of 22 genotypes in first 2017/18, second 2018/19 and 

average of the two seasons. 
Season First season 2017/18 Second season 2018/19 Average 
Traits Min. Max. Mean Min. Max. Mean Min. Max. Mean 
DH 87.67 98.67 94.38 91.33 120.00 104.56 92.17 108.33 99.47 
PH; cm  74.90 134.02 92.86 90.00 167.00 116.70 89.58 150.51 104.78 
SL; cm  9.80 22.53 13.68 10.63 21.83 14.60 10.22 22.18 14.14 
NS/P 2.67 5.93 4.43 3.67 10.23 6.18 3.17 8.03 5.30 
WS/ P; g. 11.83 28.04 20.46 22.77 46.90 30.07 19.57 35.75 25.26 
NST/S 20.63 27.57 22.40 22.70 29.37 25.04 21.90 28.47 23.72 
NG/S 30.29 64.82 49.69 47.78 77.42 62.68 39.04 71.04 56.18 
WG/S; g. 1.71 4.05 2.97 2.42 4.43 3.60 2.07 4.18 3.28 
1000GW; g. 51.33 69.47 60.09 45.83 68.90 57.65 50.62 69.18 58.87 
GY/P; g. 7.37 19.69 14.67 12.46 27.45 17.97 10.15 22.82 16.32 
SD 1.23 2.47 1.67 1.34 2.42 1.75 1.29 2.45 1.71 
SF 1.25 2.85 2.23 1.87 2.87 2.53 1.56 2.79 2.37 

 

Principal component analysis (PCA) performed to 

indicate the traits which responsible for maximum variation 

amongst traits. Hence, PCA abbreviate a large number of 

variables to a small number of variables (traits) caused 

maximum variation. Principal component analysis extracted 

12 components from the 12 studied traits (Fig. 2); the first 

three components of them had eigen values > one which 

explained 79.59% of the total variation by 36.93% of PC1, 

29.38% of PC2 and 13.28% of PC3 (Table 4).  

 

 
Figure 2. Scree plot of eigenvalue and cumulative variability (%) of 12 principal components extracted. 
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Table 4. Principal component analysis for the studied 

traits. 

  Factor loadings 

Trait\PC PC1 PC2 PC3 

DH -0.33 0.45 0.39 

PH -0.08 0.75 0.22 

SL 0.42 0.80 0.26 

NS/P -0.09 -0.72 0.65 

WS/P 0.64 -0.52 0.49 

NST/S -0.07 0.81 0.32 

NG/S 0.82 0.40 0.15 

WG/S 0.93 0.13 -0.23 

1000GW 0.54 -0.20 -0.59 

GY/P 0.66 -0.61 0.36 

SD -0.79 -0.32 0.01 

SF 0.91 0.00 -0.02 

Eigenvalue 4.43 3.53 1.59 

Variability (%) 36.93 29.38 13.28 

Cumulative % 36.93 66.30 79.59 
 

  According to values of factor loading of traits, the 

traits with highest absolute factor loading value close to one 

refer to high contribution of these traits in variation of the PC 

rather than traits close to zero. Hence, the most traits 

contributing in variation of PC1 were WS/P (0.64), NG/S 

(0.82), WG/S (0.93), GY/P (0.66), SD (-0.79) and SF (0.91) 

(Table 4). Their relative contributions in variation were 9.24, 

15.19, 19.39, 9.7, 14.26 and 18.7%, respectively (Fig.3). 

Similarly, in PC2 the major traits contributing were DH 

(0.45), PH (0.75), SL (0.80), NS/P (-0.72) and NST/S (0.81) 

(Table 4). Their contributions in variation were 5.72, 15.79, 

17.94, 14.64 and 18.52%, respectively (Fig. 3). Only 1000 

GW (-0.59) represent the major contribution in variation of 

PC3. Boshev et al. (2016) and Devesh et al. (2019) revealed 

that the first three main principal components explained 

71.39% of the total variation among the genotypes. PC1 

explained 30.60% of the variation which reflects the genotype 

yield potential. 5.22% and 15.49% of the total variance were 

attributed for PC2 and PC3, respectively. 
 

 
Figure 3. Contribution of the studied traits of the total 

variation in PC1 and PC2. 
 

The first two principal components PC1 and PC2 

explained 66.30% of the total variation. The factor loadings 

for 12 traits of these two PC were plotted on Fig. 4 to display 

the relationship between the 22 genotypes and their traits. The 

vectors of trait revealed angles between studied traits, angles 

< 90° refer to a positive correlation between traits, while 

angles > 90° refer to a negative correlation. Further, angles 

near 0° and 180° refer to increase in association intensity. 

Moreover, length of trait vector indicates the extent of 

variation caused by this trait in PCA (Boshev et al. (2016).  

High significant (p≤0.01) positive correlation was 

observed by acute angle (Fig. 4) between grain yield/plant 

and weight of spikes/plant (0.94), between no. of 

grains/spike with spikelet fertility (0.88) and weight of 

grains/spike (0.82) (Table 5). 
 

Table 5. Simple correlation coefficients matrix for the studied traits. 

Traits DH PH SL NS/P WS/P NST/S NG/S WG/S 1000GW GY/P SD 

PH 0.18**           

SL 0.14 0.62**          

NS/P -0.02 -0.36** -0.43**         

WS/P -0.32** -0.23** 0.09 0.63**        

NST/S 0.46** 0.57** 0.56** -0.42** -0.27**       

NG/S -0.05 0.14 0.73** -0.30** 0.34** 0.37**      

WG/S -0.25** -0.11 0.52** -0.34** 0.42** 0.05 0.82**     

1000GW -0.33** -0.27** 0.06 -0.24** 0.23** -0.35** 0.12 0.64**    

GY/P -0.34** -0.42** 0 0.60** 0.94** -0.37** 0.30** 0.46** 0.34**   

SD 0.09 -0.25** -0.80** 0.24** -0.31** -0.01 -0.66** -0.68** -0.40** -0.30**  

SF -0.31 -0.15* 0.46** -0.11 0.50** -0.12 0.88** 0.85** 0.31** 0.51** -0.69** 
*and ** significant at 0.05 and 0.01 level of probability. 
 

Furthermore, spike length showed significant 

(p≤0.01) positive correlation with PH (0.62), NST/S (0.56), 

NG/S (0.73), WG/S (0.52) and SF (0.46). Also, significant 

(p≤0.01) positive correlation was recorded between grain 

yield/plant with each NS/P, NG/S, WG/S and 1000GW. 

Similarly, significant (P≤0.01) negative correlation was 

found by obtuse angles (Fig. 4) between spike density and 

spike length (-0.80) and between spikelet fertility and spike 

density (-0.69). Plant height gave significant (p≤0.01) 

negative correlation with all traits except positive correlation 

with SL (0.62) and NG/S (0.14) (Table 5). Also, DH showed 

negative correlation with all traits except with PH, SL and 

NST/S and weak positive correlation with SD (0.09). 

Strongest positive correlations >0.81 (Table 5) were 

revealed by acute angles among three traits, NG/S, WG/S 

and SF. One of them, WG/S, had highest effect on grain 

yield, where its vector was the tallest (Fig. 4). Boshev et al. 

(2016) revealed that biplot graph showed strongest positive 

association between tillers, weight of grains/spike and grain 

yield/plant. Genotypes with high values for specific traits 

will be included in the future breeding programs.  

Location of the genotype is distance it from the 

biplot origin which refer to differ the genotype from a 

“average” genotype located at the biplot origin that has an 

average level for all traits Yan and Fregeau (2008). 

According to this, long vectors of the two genotypes Emara1 
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and Nielain showed that they possess high values for one or 

more studied traits. Furthermore, Emara1 is concerned 

superior genotype, where it is located in region with high 

positive values nearly for all studied traits (Fig. 4).  
 

 
Figure 4. Biplot of PC1 and PC2 representing correlation between the 22 genotypes and traits. Small letters a, b, c, 

d, and e beside genotypes sign to cluster 1, 2, 3, 4 and 5, respectively. 
 

Cluster analysis 

The dendrogram generated from cluster analysis of 

the standardized data of the studied traits divided the 22 

bread wheat genotypes into five clusters at cutting point 

distance 6 (Fig. 5). 

The first cluster contained eight genotypes (36.36% 

of total genotypes); Giza171, Sids1, Gemmieza11, 

Gemmieza12, G1, Sakha94 and G104, Misr2, (Table 6).  
 

Table 6. The five cluster grouping 22 bread wheat 

genotypes based on the studied traits. 

Cluster 1 2 3 4 5 

Frequency 8 1 3 9 1 

Cluster 

membership 

Giza 171 Nielain G463 G48 Emara 1 

Sids 1  Sids 13 G62  

Gemmieza 11  Misr 1 G306  

Gemmieza 12   G389  

G1   G395  

Sakha 94   G352  

G104   G124  

Misr 2   Sids 4  

   Giza168  
 

The average observed gain for the eight genotypes in 

cluster 1 showed positive increase for days to heading 

(4.01%), no. of spikelets/spike (1.57%) and spike density 

(4.19%) in percentage mean overall genotypes (Table 7). 

Nielain is separated in the second cluster (Table 6) and 

showed positive observed gain for PH (12.70%), NST/S 

(4.91%) and spike density (43.15%). The third cluster 

included 3 genotypes (13.64% of total genotypes); G463, 

Sids13 and Misr1 (Table 6). Average observed gain values 

of NS/P, WS/P, NG/S, WG/S, GY/P, SD and SF of this 

cluster showed positive increase by 35.30, 29.64, 4.12, 1.27, 

30.70, 0.42 and 6.55%, respectively in percentage of mean 

all genotypes (Table 7). The cluster three recorded the 

highest mean for no. of spikes/plant (7.18), weight of 

spikes/plant (32.75 g.) and grain yield/plant 21.33 g (Table 

7).  Cluster 3 had the highest yield potential compared to the 

others clusters. The fourth cluster represents 40.91% of total 

genotypes, including nine genotypes; G48, G62, G306, 

G389, G395, G352, G124, Sids4 and Giza168 (Table 6). 

Where, this cluster includes seven recombinant lines and 

their two original parents; Sids4 and Giza168. The average 

observed gain in percentage of mean all genotypes for the 

nine genotypes in cluster 4 showed positive increase in 

weight of spikes/plant, grains/spike, weight of grains/spike, 

1000 grain weight, grain yield/plant and spikelet fertility by 

1.65, 3.48, 8.87, 5.33, 3.10 and 7.03% respectively (Table 

7). Furthermore, cluster 4 showed earliness in days to 

heading by -3.08% this attributed to the earlier variety Sids4 

one of their two parents the seven genotypes included in 

cluster 4. Also, Genotype Emara1 is solely separated in 

cluster five and showed high distance from the others 

genotypes due to its high values of the most studied traits, 

where it showed positive observed gain for PH (43.65%), 

SL (64.73%), NST/S (20.03%), NG/S (26.45%), WG/S 

(5.74%) and SF (5.48%) but it was late in days to heading 

by 5.06% in percentage mean all genotypes. Emara1 had 

long spike (22.53 cm.) but its spike density was low (1.29). 

While, Nielain had short spike (9.80 cm.) and its spike 

density was high (2.45). So, hybridization between Nielain 

of cluster 2 and Emara1 of cluster 5 could give new 

recombination and transgressive segregation with long 

spike and high spike density in the progenies. Birhanu et al. 
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(2017) revealed that cluster analysis grouped 64 genotypes 

into eight clusters. The crosses between genotypes selected 

from cluster-V with cluster-VIII and cluster V with cluster 

VII are expected to produce better genetic recombination 

and segregation in their progenies. Kabir et al. (2017) found 

that multivariate analysis of 16 lines and four commercial 

cultivars of bread wheat, 5 genotypes showed maximum 

divergence from others. They concluded that high genetic 

variation among the genotypes may help for further 

breeding and selection. Parents selected from clusters which 

had significant genetic distance for crossing and obtain 

genetic recombination and transgressive segregation in the 

following generations. Kandel et al. (2018) revealed that 

cluster analysis of 41 wheat genotypes formed four clusters. 

Cluster 4 and 2 had highest value of spikes, spike length, 

grains/spike, 1000 grain weight, grain yield and days to 

heading. Cluster 3 had high days to heading, plant height, 

1000 grain weight and grain yield. Santosh et al. (2019) 

revealed that cluster-II had maximum number of genotypes 

and clusters IV, V and VI each had single genotype only. 

Cluster-I exhibited highest cluster means for grains 

weight/spike and grain yield/plot. The genotypes bearing the 

desired values from different clusters can be exploited in 

future breeding program for the improving the wheat 

genotypes for yield. 

 

Table 7.Means and observed gain of traits for each cluster in percentage of average all genotypes. 

Cluster 1 2 3 4 5 

Trait Mean OG% Mean OG% Mean OG% Mean OG% Mean OG% 

DH 103.46 4.01 96.33 -3.16 97.39 -2.09 96.41 -3.08 104.50 5.06 

PH 101.65 -2.99 118.08 12.70 96.07 -8.31 103.90 -0.84 150.51 43.65 

SL 13.49 -1.36 9.80 -28.35 13.01 -4.87 13.51 -1.21 22.53 64.73 

NS/P 5.17 -2.57 5.19 -2.26 7.18 35.30 4.99 -5.97 3.75 -29.31 

WS/P 22.98 -9.05 19.57 -22.56 32.75 29.64 25.68 1.65 23.04 -8.80 

NST/S 24.09 1.57 24.89 4.91 23.13 -2.47 22.93 -3.35 28.47 20.03 

NG/S 53.39 -4.96 39.04 -30.52 58.50 4.12 58.14 3.48 71.04 26.45 

WG/S 3.07 -6.54 2.07 -37.07 3.32 1.27 3.57 8.87 3.47 5.74 

1000GW 58.01 -1.46 51.83 -11.95 56.39 -4.22 62.01 5.33 51.96 -11.74 

GY/P 15.10 -7.51 10.15 -37.81 21.33 30.70 16.83 3.10 12.71 -22.16 

SD 1.78 4.19 2.45 43.15 1.72 0.42 1.61 -5.91 1.29 -24.77 

SF 2.20 -6.79 1.56 -34.05 2.52 6.55 2.53 7.03 2.50 5.48 
 

 
Figure 5. Dendrogram showing 22 bread wheat genotypes based on ward’s method and squared Euclidean distance. 

 

CONCLUSION 
 

The most traits contributing in variation of the first 

principal component were weight of spikes/plant, no. of 

grains/spike, weight of grains/spike, grain yield/plant, spike 

density and spikelet fertility. Hybridization between Nielain 

of cluster 2 and Emara1 of cluster 5 could give new 

recombination and transgressive segregations in the 

progenies derived from their crossing. 
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 قمح الخبزتراكيب وراثية لالمكونات الاساسية والتحليل العنقودى لتقدير التنوع الوراثى فى تحليل 
 حسن محمد فؤاد

 مصر –المنيا  –جامعة المنيا  –كلية الزراعة  –قسم المحاصيل 
 

 ية. وزرعت التراكيب الوراثيل العنقودىتركيب وراثى من قمح الخبز باستخدام تحليل المكونات الاساسية والتحل 22اجرى تحليل التنوع الوراثى على 

بتصميم القطاعات الكاملة العشوائية بثلاث مكررات  2102/2102و  2102/2102مصر خلال الموسمين  –جامعة المنيا  –فى مزرعة التجارب بكلية الزراعة 

بين  من التباين الكلى %22.92وهذه المكونات الثلاثة فسرت  0ثلاثة مكونات اساسية بقيم خاصة اكبر من  وجود ج تحليل المكونات الاساسيةائنتأوضحت و،

واكثر الصفات المساهمة فى  للمكون الاساسى الثالث. %03.22للمكون الاساسى الثانى و  %22.32للمكون الاساسى الاول و  %39.23منها  الصفات الدراسية

ول هى وزن سنابل النبات وعدد ببوب السنبلة ووزن ببوب السنبلة ومحصول الحبوب/نبات وكثافة السنبلة وخصوبة السنيبلة. كما ادى تباين المكون الاساسى الا

نى والثالث تركيب وراثى للعنقود الاول والثا 0،  2،  0،  2كل منهم ابتوى على عدد عناقيد  9وراثى لقمح الخبز الى  تركيب 22التحليل العنقودى الى تقسيم الـ 

توسط التقدم المشاهد فى العنقود الاول بالنسبة للمتوسط العام لكل التراكيب الوراثية زيادة موجبة فى عدد ايام ت النتائج ان ماظهر والخامس على الترتيب ،والرابع 

واظهر تقدم  الثانىود بالعنق بمفردهالصنف نيلين ، وقد انفرد ث اعلى قدرة محصولية لسنبلة ، كما اظهر العنقود الثالطرد السنابل وعدد سنيبلات السنبلة وكثافة ا

فى العنقود الخامس واظهر تقدم  بمفرده 0التركيب الوراثى عمارة م لكل التراكيب الوراثية ، كما انفصل امشاهد موجب عالي لمعظم الصفات بالنسبة للمتوسط الع

 الثانىونيلين للعنقود  الخامسللعنقود  0التراكيب الوراثية عمارة التهجين بينب توصى الدراسةسنبلة ،مشاهد موجب لطول النبات وعدد سنيبلات السنبلة وكثافة ال

    هما.ى الانسال الناتجة من تهجينيمكن ان يعطى تراكيب جديدة وانعزالات متجاوزة للحدود فى صفات السنبلة الطويلة وكثافة السنبلة العالية ف

  


