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SUMMARY 

 
Two simulation programs were used in this study, one to simulate a continuous 

trait and another to modify this trait into a binary trait.  Twelve populations were 
created (three levels of heritability (h2), 0.10, 0.25 and 0.50; four levels of number of 
progeny per sire, 5, 10, 15 and 20), each with three parities as the only fixed effect.  
Twenty replicates were generated for each population.  Each replicate was analyzed 
twice, once with sire model and another with animal model, using two algorithms for 
each model (MTDFREML or Gibbs Sampling (GS)).  Bias and mean squared errors 
(MSE) of heritability estimates were used to assess the quality of heritability 
estimates obtained by different models and different algorithms.  The effect of h2 
level, number of progeny per sire, type of algorithm, type of model, type of trait and 
the interactions on the bias and MSE were examined.  All main effects were highly 
significant (p<0.0001).  For estimating variance components, for a continuous trait, 
the animal model was the best in the case of using MTDFREML and GS at all levels 
of h2.  Also, at all levels of h2, the GS was the best algorithm in the analysis of a 
binary trait.  For a binary trait within GS, the sire model was the best at h2 equals to 
0.1 with number of progeny more than 5 whereas, at h2 equals to 0.25 or 0.5 with 20 
progeny per sire, the use of animal model was equivalent to the use of sire model.  At 
all levels of h2, the 20 progeny per sire had the lower MSE for heritability.  
 
Keywords: Continuous traits, binary traits, heritability estimates quality-Gibbs 
sampling, bias 
 
INTRODUCTION 

 
Estimation of variance components is always an important tool in developing 

animal breeding programs. Estimates of variance components must be accurate since 
error variance for predicted breeding values increases as differences between 
estimated and true value of variance components increase (Schaeffer, 1984). 

Type of trait (binary or continuous), number of progeny per sire, type of model 
(animal or sire model), type of algorithm (MTDFREML or Gibbs Sampling) and 
heritability magnitude (low, moderate or high) are all important factors that could 
affect the estimation of variance components.   
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For categorical traits, genetic parameters are usually computed from sire or 
animal variances and (co)variances.  Heritability estimates resulting from threshold 
model for such traits were higher than those resulting from linear model (Luo et al, 
2001); the primary reason for the difference being that the heritability from the linear 
model is expressed on the observed scale while heritability from the threshold model 
is on an underlying liability scale (Luo et al, 2001).   

In animal model, all relationships are considered, whereas in sire model only 
relationships among half-sib progeny of sires are taken into account; which could 
lead to some bias in the estimates from sire model (Mrode, 1996).  The threshold 
animal model using Gibbs Sampling (GS) may yield biased estimates, so the 
threshold sire model (or sire maternal grandsire model for maternal traits) is an 
alternative model for genetic analysis of categorical trait (Luo et al, 2001).  

The objective of this study was to investigate the effect of heritability level, 
number of progeny per sire, type of algorithm, type of model and type of trait on the 
quality of the heritability estimates as judged by bias and mean squared errors 
(MSE).  

 
MATERIALS AND METHODS 
 
Simulation procedure: 

Two methods of simulation were used to generate samples for the present study. 
One is concerned with the underlying continuous response variable generation and 
another with changing this continuous variable into a binary variable with two 
categories 0 and 1. The first method is a Mont Carlo simulation technique using SAS 
(1996) with assumed mean (0) and variance (1). Analla et al (1995) reported that this 
technique also assumes that the expected genetic value of the progeny Gk is equal to 
the average genetic values of the parents [sire (Si) and dam (Dj)] plus a deviation due 
to the Mendelian sampling as follows: 

225.0)(5.0 pjik hXDSG σ++=  ,                     (Model 1) 

 
where: 
Gk     is equal to the genetic value of an individual k, a progeny of sire (Si)  
         and dam (Dj), 
 X     is random number taken from normal distribution with mean 0 and  
         variance 1,  
h2      is the heritability and   
σ2

p     is the phenotypic variance. 
 
Table (1) shows values of parametric phenotypic, genetic, permanent 

environmental and residual variances used to generate the studied samples. 
With three levels of heritability (0.1, 0.25 and 0.5) and four classes for the 

number of half-sib progeny per sire (5, 10, 15 and 20), twelve populations were 
simulated with three levels of parity, as the only fixed effect, and twenty samples 
(replicates) for each population were generated.  Numbers of records generated in 
each level of parity are shown in Table (2). 
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Table 1. Assumed parametric values of phenotypic, genetic, permanent 
environmental and residual variances at three levels of heritability 

Heritability Parameter 0.10 0.25 0.50 
Phenotypic variance (σ2

p) 0.250 0.2500 0.250 
Additive genetic variance (σ2

a)  0.025 0.0625 0.125 
Permanent environmental variance(σ2

ep) 0.006 0.0150 0.030 
Residual variance (σ2

e) 0.219 0.1725 0.095 
Note: The mean of the simulated variable was constant at 0.5 (the best mean value of the 
simulated trait to maintain the average of the binary trait as it is in the continuous trait) and the 
permanent environmental variance (σ2

ep) was given as around one quarter of the additive 
genetic variance (σ2

a) (as indicated by Al-shorepy and Notter, 1996). 
 
Table 2. Number of records in the simulated population in each of the three 
levels of parity 

No. of sires Number of half-sib 
daughters for each sire No. of records 

50 05 0250 
50 10 0500 
50 15 0750 
50 20 1000 

 
Each sample was categorized using a random variety from a binomial distribution 

(RANBIN Function) with SAS (1996) to obtain the binary response variable studied. 
So, two copies of each generated sample were obtained, the first contained the 
underlying continuous variable and the second contained the binary response. 

 
Statistical analysis: 
 Heritability estimates of the studied variable were estimated for each copy of each 
sample in the 12 simulated populations (i.e. three levels of heritability and four 
family size), obtained from the animal and sire models each using two algorithms 
(multiple trait animal model program (MTDFREML) proposed by Boldman et al 
(1995) and Gibbs Sampling program proposed by Van Tassell and Van Vleck (1995). 

The linear animal model used for continuous and binary traits was: 
Y = Xβ + Zaa + Zcc + e,                                                  (Model 2) 

where,  
y    is the vector of observation; 
X    is the incidence matrix for fixed effects; 
β    is the vector of an overall mean and parity (3 classes); 
Z   is the incidence matrix for random effects; 
a   is the vector of direct genetic effects of cow; 
c   is the vector of permanent environment effects; and 
e     is a vector of random errors normally and independently distributed  
       with zero mean and variance σ2

eI. 
The linear sire model used for continuous and binary traits was: 

y  = Xβ + Zss + Zcc + e,                                                 (Model 3) 
where, 
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s is the vector of direct genetic effects of sire; and other terms in the model are 
defined as in model 2. 

The threshold model (Gianola and Foulley, 1983) was used for the analysis of 
binary response using Gibbs Sampling Program (Heringstad et al., 2001). 

To measure the correspondence between assumed parametric and estimated 
values, the estimates of bias in heritability estimates were calculated as the difference 
between the heritability values obtained from each analysis and the parametric value 
(Elsayed, 1997).  The bias was calculated as follows: 

Bias = [E(bR)-B]     (Neter et al., 1985) 
where, 
bR     the expected value of the deviation of the biased estimator from the true 
parameter B. 

The MSE (equals the variance of the estimator plus the squared bias) was 
calculated as follows : 

222 ])([)()( BbEbBbEMSE RRR −+=−= σ     (Neter et al, 1985), 
 Analysis of variance was performed to study the effect of heritability level, 

number of progeny per sire, type of algorithm, type of model and type of trait on the 
estimates of bias and MSE. 
The following model was applied using SAS (1996) to analyze the bias: 
            Yijklmn = μ+ hi + nj + ak + ml + tm + eijklmn,                                 (Model 4) 
All possible significant interactions were included in the analysis. 
where, 
Yijklmn   is the dependent variable of the nth record in the ith heritability, jth number of 
progeny, kth type of algorithm, lth type of model and mth type of trait;  
μ          the overall mean of bias; 
hi                the effect of the ith heritability, i=1 to 3;  
nj                the effect of the jth number of progeny, j=1 to 4;  
ak                the effect of the kth type of algorithm, k=1 and 2;  
ml               the effect of the lth type of model, l=1 and 2;  
tm                the effect of the mth type of trait, m=1 and 2 and  
eijklmn   the effect of random error, associated with each observation assumed to be 
normally and independently distributed with 0 mean and variance I σ2

e. 
The same model was used using SAS (1996) to analyze the mean squared errors. 
Preliminary analysis with full model (including all main effects and all possible 

interactions) was performed to identify significant terms, then the analysis was 
repeated with only significant terms retained.  
 
RESULTS AND DISCUSSION 
 
 Table (3) shows analysis of variance for the bias and MSE of h2 estimates.  The 
means of the main effects for these criteria are shown in Table (4).    
 The effects of the heritability level, number of progeny per sire, type of algorithm, 
type of trait and type of model on bias and MSE were all significant (p<0.0001).  
Table (4) shows that except for continuous trait, the general mean estimate of 
magnitude of bias as well as the means of all main effects were negative and different 
significantly from zero (p<0.0001).   
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Table 3. Analysis of variance of bias and mean squared errors (MSE) for 
heritability  estimates 

Bais MSE Source of variation D.F. M.S. Pr D.F. M.S. Pr 
Heritability (H) 2 0.75494 0.0001 2 0.03982 0.0001 
Number of Progeny (NO) 3 0.02320 0.0001 3 0.00309 0.0001 
Type of Algorithm (ALG) 1 1.93231 0.0001 1 0.02144 0.0001 
Type of model (MOD) 1 0.37325 0.0001 1 0.00818 0.0001 
Type of trait (TR) 1 6.68706 0.0001 1 0.14526 0.0001 
H*NO 6 0.00403 0.0209 6 0.00029 0.0004 
H*ALG 2 0.18814 0.0001 2 0.00517 0.0001 
H*MOD 2 0.00630 0.0205    
H*TR 2 1.02878 0.0001 2 0.03414 0.0001 
NO*ALG    3 0.00040 0.0005 
NO*MOD 3 0.02966 0.0001 3 0.00085 0.0001 
NO*TR       
ALG*MOD 1 0.19461 0.0001 1 0.00446 0.0001 
ALG*TR 1 0.52835 0.0001 1 0.05576 0.0001 
MOD*TR 1 0.03790 0.0001 1 0.00574 0.0001 
H*NO*MOD 6 0.00688 0.0003 6 0.00029 0.0004 
H*NO*TR       
H*ALG*MOD    2 0.00058 0.0002 
H*ALG*TR 2 0.08733 0.0001 2 0.01091 0.0001 
H*MOD*TR 2 0.01126 0.001    
NO*ALG*TR    6 0.00022 0.0034 
ALG*MOD*TR 1 0.05907 0.0001 1 0.00207 0.0001 
H*ALG*MOD*TR 4 0.00614 0.0045    
Remainder 1878 0.00162  49 0.00001  
C.V.%  102.3  9.7 
R2  0.8239  0.9938 

C.V.= Coefficient of variation,  R2 = Coefficient of determination  and   Pr = Probability of 
type I error. 
Model included only those significant effects indicated in a preliminary full model analysis. 
 
 Table (4) also shows that the estimates of the magnitude of bias and MSE 
generally increased as h2 increased whereas MSE decreased as number of progeny 
per sire increased but the magnitude of bias increased as number of progeny 
increased from 5 to 15 progeny (0.030, 0.043 and 0.044), then slightly decreased for 
20 progeny (0.041). This result is in agreement with those reported by Thomas et al. 
(2000) who reported that bias  in  estimates  of   heritability  decreased  with   
decreasing   simulated  heritability and increasing sample size and also with those 
reported by Thomas and Hill (2000) who showed that the MSE decreased as sample 
size increased and simulated heritability increased.  This result is also in agreement 
with the contents of a personal communication with Dr. Curt Van Tassell and Dr. 
Dale Van Vleck who  suggested  that  the  reason  of  decreased   bias  and   MSE   is   
the   constrain   on   estimating   variance components in REML so that negative 
estimates are not allowed and the range of bias in case of low h2 is smaller than in 
case of medium or high h2.  Generally, smaller magnitude of bias and MSE was 
found for GS compared to MTDFREML (0.008 vs 0.071 and 0.005 vs 0.016), for sire 
model compared to animal model (0.025 vs 0.053 and 0.010 vs 0.012) and for 
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continuous trait compared to binary trait (0.020 vs 0.098 and 0.002 vs 0.019). Table 4 
shows that smaller variance was found for MTDFREML compared to GS (0.001 vs 
0.002), for animal model compared to sire model (0.001 vs 0.002) and for continuous 
trait compared to binary trait (0.001 vs 0.002).  
 
Table 4. Mean±standard errors (SE) of main effects for bias and mean squared 
errors (MSE) for heritability estimates 

 Bias  MSE Factor  Mean ±SE  Mean ±SE 
μ  -0.039±0.00096  0.011±0.00074 
Heritability level     

0.10 
0.25 

        0.50 

 -0.009±0.0016 
-0.033±0.0016 
-0.076±0.0016 

 0.003±0.0013 
0.008±0.0013 
0.022±0.0013 

Number of progeny     
5 
10 
15 
20 

 -0.030±0.0018 
-0.043±0.0018 
-0.044±0.0018 
-0.041±0.0018 

 0.013±0.0015 
0.010±0.0015 
0.010±0.0015 
0.009±0.0015 

Type of algorithm     
GS 
MTDFREML 

 -0.008±0.0013 
-0.071±0.0013 

 0.005±0.0011 
0.016±0.0011 

Type of model     
Animal model 

        Sire model 
 -0.053±0.0013 

-0.025±0.0013 
 0.010±0.0011 

0.012±0.0011 
Type of trait     

Binary trait 
Continuous trait 

 -0.098±0.0013 
0.020±0.0013 

 0.019±0.0011 
0.002±0.0011 

 
Figures (1) to (16) illustrate all significant 2-way interactions.  Figures (1) and (9) 

indicate that the magnitude of bias and MSE were smaller at h2 of 0.1 than at h2 of 
0.25 or 0.5 with all considered numbers of progeny per sire. This result is in 
agreement with those reported by Thomas et al. (2000) and Thomas and Hill (2000) 
as discussed earlier. 
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 Levels of h2 affected magnitude of bias and MSE using different algorithms 
(Figures 2 and 9).   
 Figure (3) shows that animal model had higher magnitude of bias than sire model, 
at any level of h2 but difference in bias between h2 of 0.25 and 0.5 is larger with sire 
model than with animal model.  This result supports those reported by Luo et al.  
(2001) indicating that in general, sire model yielded more accurate estimates of h2 
than did animal model. 

Figures (4) and (11) show that continuous trait had smaller magnitude of bias 
and MSE than binary trait at any level of h2 and the difference between binary and 
continuous traits increased as level of h2 increased.   
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 Figure (12) shows that the GS had smaller MSE than MTDFREML whatever the 
number of progeny per sire is; the 20 progeny per sire having the smallest MSE.  This 
result confirms those obtained by Mousa and Elsayed (2001) who indicated that GS 
had consistently smaller MSE than MTDFREML, due to the influence of the prior 
distribution of the variance components on the posterior distribution.   
 Figures (5) and (13) indicate that at any number of progeny per sire, the sire 
model had smaller magnitude of bias than animal model, and the 5 progeny case 
showed the smallest magnitude of bias whereas the sire model had greater MSE than 
animal model and that the 20 progeny per sire had the smallest MSE.   
 Figures (6) and (14) show that sire model had smaller magnitude of bias than 
animal model, using each MTDFREML or GS.  MSE resulting from GS or 
MTDFREML using animal model were smaller than those resulting from the same 
algorithms using sire model and a large difference between animal and sire models 
was observed with GS.   
 Figures (7) and (15) show that the difference in bias and MSE between GS and 
MTDFREML in magnitude was larger and opposite in direction for binary trait as 
compared to continuous trait. The difference in magnitude of bias between animal 
and sire models was larger and opposite in trend in the continuous trait as compared 
to binary trait (Figure 8).  This result find support in the work of Hoeschele and Tier 
(1995) who reported that for categorical traits, because of the extreme category 
problem in which all observations for some subclasses are in the same category, 
threshold animal model using the GS may yield biased estimates. 
 Figure (16) indicates that for binary or continuous trait animal model had smaller 
MSE than sire model.   
 
Average heritability estimates (h2): 
 The average values for the estimates of h2 of the 20 samples resulting from 
MTDFREML and GS algorithms for continuous and binary traits at different types of 
models (animal or sire), different number of progeny per sire (5, 10, 15 or 20) and 
different levels of h2 (0.1, 0.25 or 0.5) are shown in Table (5).  The estimates for the 
continuous trait at all levels of h2 with the four different number of progeny per sire 
resulting from MTDFREML and GS using animal model were generally similar to 
the values used for simulation.  This result is in agreement with those reported by 
Mousa and Elsayed (2001) who reported that GS and MTDFREML estimates 
appeared similar for continuous variable.  Table (5) shows that for continuous trait at 
h2 equals to 0.1 with 5 progeny per sire, the estimate of h2 resulting from 
MTDFREML using sire model was an overestimate (0.14).  Whereas at h2 equals to 
0.25 or 0.5, the estimates of h2 resulting from MTDFREML using animal model were 
very close to those resulting from sire model. These results indicate that the 
estimation of variance components using sire model with 5 progeny per sire would be 
inaccurate.  
 Table (5) also shows that for continuous trait in GS using sire model, 
overestimates were recorded at any level of h2 with any number of progeny per sire.  
This would indicate the need for increasing the number of rounds of iteration of the 
GS chain.  For the binary trait, estimates resulting from GS using either animal or sire 
model were higher while being closer to the values used for simulation than 
corresponding  estimates  resulting  from  MTDFREML at  all  levels  of  h2 with any  
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number of progeny per sire except at h2 equals to 0.1 with 5 progeny per sire, where 
the estimate of h2 resulting from GS using sire model was higher than the 
corresponding estimate resulting from MTDFREML (0.16 vs 0.09).  These results are 
in line with previous works (Matos et al, 1997; Boettcher et al, 1999 and Luo et al., 
2001) explaining the reason for this difference between MTDFREML and GS as the 
heritabilities from MTDFREML (linear model) are expressed on observed scale 
while heritabilities from GS (threshold model) are on an underlying liability scale.  
Therefore, threshold model was statistically more appropriate than linear model for 
binary trait, yields greater estimates of heritability and closer to the real value in most 
cases.   
 Table (5) also shows that for the binary trait in GS at different number of progeny 
per sire and at h2 equals to 0.1 or 0.25 the estimates of h2 resulting from sire model 
were higher and closer to the real value than corresponding estimates of h2 resulting 
from the animal model.  At h2 equals to 0.5, the estimates of heritability resulting 
from sire model were closer to corresponding estimates resulting from animal model, 
but all were underestimates of the real value used for simulation.  In agreement with 
this result Matos et al. (1997) reported that the advantage of using threshold over 
linear methodology in breeding programs increases as the heritability of the trait 
decreases. 

 
Average bias and mean squared errors (MSE) of heritability estimates 
 The average bias (Table 6) and the MSE (Table 7) at different levels of h2, 
different traits (continuous or binary trait), different models (animal or sire), different 
algorithms (MTDFREML or GS) and different number of progeny per sire (5, 10, 15 
or 20) were calculated.   
 Expectedly Table (6) shows the same trend presented in Table (5) and indicates 
that for the continuous trait at any level of h2 with any number of progeny per sire, 
the magnitude of average bias of h2 resulting from MTDFREML using each of 
animal and sire model was smaller than corresponding ones resulting from GS, 
except in the case of continuous trait using animal model at h2 equals to 0.1 with 
number of progeny per sire equals to 15 (0.004 vs 0.001) and at h2 equals to 0.5 with 
number of progeny per sire equals to 5 (0.010 vs 0.001).  This would indicate the 
need of increased number of rounds of iteration of GS chain.  For binary trait at any 
number of progeny per sire and any level of h2, the magnitude of average bias 
resulting from GS was smaller than corresponding values resulting from 
MTDFREML. This result confirms the findings of Van Tassell and Van Vleck (1996) 
and Luo et al. (2001) indicating linear models as inappropriate for analysis of binary 
response traits.   
 Within GS, for binary trait, the sire model had smaller magnitude of  bias than 
animal model except at h2 equals to 0.1 with number of progeny  per  sire equals to 5 
(0.038 vs 0.060); and at h2 equals to 0.5 with number of progeny per sire equals to 10 
and  15   (0.093  vs  0.096  and  0.099  vs   0.104,  respectively).     This indicates that 
threshold single trait sire model could be a good alternative model compared to 
animal model for genetic analysis of binary traits.   
 For bias at any level of h2 and at any number of progeny per sire for continuous 
trait, the average bias resulting from MTDFREML using animal and sire models did 
not differ significantly from zero (p<0.05), except for sire model at h2 equals to 0.1 
with number of progeny per sire equals to 5 (Table 6). This result indicates that  
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estimation of variance components using sire model with 5 progeny per sire is quite 
inaccurate.  For continuous trait, most bias estimates resulting from GS using animal 
model at h2 equals to 0.1 or 0.25 were not significantly different from zero (p>0.05) 
whereas, at h2 equals to 0.5 most of estimates differed from zero significantly. Using 
sire model, the estimates of bias of continuous trait resulting from GS were 
significantly different from zero.  This result indicates that for continuous trait, 
MTDFREML yields estimates relatively free of bias.   
 Table (6) shows that, in general, at any level of h2 and at any number of progeny 
per sire, the magnitude of bias was significantly different from zero (p<0.05) for 
binary trait resulting from MTDFREML using animal and sire models and from GS 
using only animal model are significantly different from zero.  For binary trait, the 
average bias resulting from GS using sire model was not significantly different from 
zero especially at h2 equals to 0.1 (with 10, 15 and 20 progeny per sire) or 0.25 (with 
5, 10 and 20 progeny per sire).  At h2 equals to 0.5 the average bias was significantly 
different from zero (p<0.05).  This shows that at low and moderate h2, the use of 
threshold sire model for binary trait yields accurate estimates free of bias and, thus, 
closer to the real value.  This agrees with Hoeschele and Tier (1995) who reported 
that threshold animal model using GS may yield bias estimates.   
 Figures (17) and (18) show a decision chart for estimating variance components 
related to continuous and binary traits, based on bias criterion. MSE for continuous 
trait resulting from GS applying animal model was generally smaller than 
corresponding MSE resulting from MTDFREML adopting the same model (Table 7).  
This result is in agreement with those reported by Mousa and Elsayed (2001) as 
mentioned earlier (Figure 12).    
 Table (7) indicates that within GS, for binary trait especially at h2 equals to 0.25 
or 0.5 with any number of progeny per sire, the sire model had greater MSE than 
animal model.  At h2 equals to 0.1 at any number of progeny per sire except for 5 
progeny, sire model had smaller MSE than animal model (0.00251 vs 0.01185).  This 
result is in agreement with those reported by Luo et al. (2001).  With sire model, for 
continuous trait, MSE resulting from MTDFREML was  smaller than corresponding 
values resulting from GS (Table 7) perhaps because of  the smaller bias with 
MTDFREML than with GS.  With animal model, the GS had smaller MSE than 
MTDFREML.  The MSE calculated with the subclass of 5 progeny per sire was 
greater than when number of progeny per sire was 10, 15 or 20; the 20 progeny per 
sire having the smallest values in most cases (Tables 7).  This is in agreement with 
Thomas and Hill (2000).  The optimum  number of  progeny  per sire  to be used was 
20 to yield the best estimates of heritability under the circumstances of this study.  
Figures (19) and (20) show the decision chart for estimating variance components for 
a continuous and binary traits, based on MSE criterion. 
 From Tables (6 and 7), for binary trait, the conclusion as what methods to use 
based on bias agreed with those based on MSE, i.e. for the cases of use of sire model 
by GS at h2 of 0.1 with 10, 15 and 20 progeny, the use of sire model by MTDFREML 
at the same level of h2 with 5 progeny per sire and use of sire model by GS at h2 
equals to 0.25 or 0.5 with 20 progeny per sire (Figure 21) judging based on MSE and 
bias leads to the same conclusion. 
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h2 level = 
0.10, 0.25 
and 0.50 

With number 
 of progeny  

=5,10,15  
and 20

yes 

Use animal model by MTDFREML 

yes 

Fig. 17. Decision chart for recommending the best model type-algorithm 
combination to estimate variance components in case of a continuous trait, 
based on bias 

h2 level  
= 0.10 

h2 level = 
0.25  

No. of 
progeny  

= 5 

yes no

Use animal or sire 
model by GS 

noyes 

Use sire model by 
MTDFREML 

Use sire model by GS 

yes 

no =10, 15 and 20 with no. of progeny
= 5, 10, 15 and 20 

h2 = 0.5 with no. 
of progeny = 5, 
10, 15 and 20

Fig. 18.  Decision chart for recommending the best model type- algorithm 
combination to estimate variance components in case of a binary trait, based on 
bias 
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h2 level = 
0.10, 0.25 and 

0.50 

With number 
 of progeny  
= 5,10,15  

and 20

yes 

Use animal model by GS 

yes 

Fig. 19. Decision chart for recommending the best model type-algorithm 
combination to estimate variance components in case of a continuous 
trait, based on MSE. 

No. of 
progeny  

= 20

No. of 
progeny  

= 5

yes no

Use animal model by 
GS 

no

no 

Use sire model 
by GS 

Use animal or sire 
model by GS 

yes  

h2 = 0.25 and 0.5

= 5, 10 and 15 

Fig. 20. Decision chart for recommending the best model type-algorithm 
combination to estimate variance components in case of a binary trait, based on 
MSE 

Use sire model 
by MTDFREL

yes 

=10, 15 and 20

h2 level 
= 0.10 
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Computation time: 
 The analysis of one sample of continuous or binary trait by MTDFREML using 
animal or sire model consumed 5 minutes with any number of progeny per sire. 
Whereas the time consumed for the analysis of continuous or binary trait by GS using 
animal and sire models is shown in Table (8). The analysis was made using a 
computer with Pentium IV of 1.7 GH1 processor, 40 GB2 hard disk and 256 MB3 a 
random access memory. 
_____________________ 
1 GH = Gega hertz  
2 GB = Gega byte 
3 MB= Mega byte 

 

Table 8. Time consumed for the analysis by GS algorithm using different 
number of progeny per sire and different models for continuous and binary 
traits 

Type of trait 
Continuous trait Binary trait No. of 

progeny  
per sire 

Model  
type Time 

(hr) 
No. of 
samples 

Total 
Time (hr) 

 
Time 
(hr) 

No. of 
samples 

Total  time 
(hr) 

5 
 
10 
 
15 
 
20 

Animal 
Sire 
Animal 
Sire 
Animal 
Sire 
Animal 
Sire 

0:23 
0:02 
0:30 
0:03 
1:00 
0:04 
1:20 
0:05 

60 
60 
60 
60 
60 
60 
60 
60 

23:00 
02:00 
30:00 
03:00 
60:00 
04:00 
22:00 
05:00 

 2:25 
0:07 
4:20 
0:10 
7:00 
0:15 
9:00 
0:25 

60 
60 
60 
60 
60 
60 
60 
60 

135:00 
007:00 
252:00 
010:00 
420:00 
015:00 
540:00 
025:00 

Total   199:00    1404:00 

 
h2  level  
= 0.10   

With 20 
progeny  

No. of 
progeny  

= 5 

yes 

Use sire model by 
MTDFREML 

no 

yes

Figure 21. Decision chart for recommending the best model type-algorithm 
combination to estimate variance components in case of a binary trait, based on 
bias jointly with MSE  

yes 

h2  = 0.25 and 0.5

no 

Use sire model by GS 

=10, 15 and 20 
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 In general, using the animal model consumed more time than sire model (with 
magnitude of > 14 times) and binary trait consumed more time than continuous trait 
(with magnitude of > 7 times). The full analysis with MTDFREML and GS (1920 
samples) consumed 1683 computer hours. 
 
CONCLUSION 
 
If the aim was to estimate variance components, the conclusion is that: 

1- For continuous trait, the animal model is the best with MTDFREML or GS at all 
levels of h2 with any number of progeny per sire. 

2- For binary trait, GS is the best algorithm at all levels of h2.  Within GS, the sire 
model is the best at low h2 with any number of progeny more than 5 whereas, at 
h2 equals to 0.25 or 0.5 with 20 progeny per sire, the animal model is equivalent 
to sire model. 
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تأثير مستوى المكافىء الوراثى ، عدد البنات لكل طلوقة ، نوع البرنامج المستخدم ، نوع 
 النموذج المستخدم ونوع الصفة على مدى جودة تقديرالمكافىء الوراثى

 
، حسين مصطفى آمال 2، السيد صلاح الدين جلال2، منال محمد أحمد سيد1رضا السعيد محمد أحمد

 2منصور

 

 قسم الإنتاج -2 قسم الإنتاج الحيوانى، معهد بحوث البيئة الصحراوية، جامعة المنوفية، مدينة السادات، -1
 الحيوانى، آلية الزراعة،  جامعة عين شمس

 
استهدفت هذه الدراسة تحديد تأثير مستوى المكافئ الوراثي ، عدد البنات للطلوقة، نوع البرنامج 

أجريت هذه .  ذج الإحصائي وآذلك نوع الصفة على مدى جودة تقدير المكافئ الوراثيالمستخدم ، نوع النمو
ناتجة من ) 1صفر ، (الدراسة على برامج تقوم بعمل محاآاة لصفة مستمرة وأخرى متقطعة ذات مستويين 

كونات حورت باقي م . 0.25 أما التباين المظهرى فكان 0.5تحويل الصفة المستمرة ، وقد آان متوسط الصفة 
التباين من تباين وراثي وتباين بيئي دائم وتباين الخطأ لتلائم الغرض من عمل ثلاثة مستويات من المكافئ 

).  20، 15، 10، 5(لكل طلوقة )  أنصاف أشقه(بأربعة مستويات من أعداد البنات ) 0.5، 0.25، 0.1(الوراثي 
 مكررة 20أثير ثابت وحيد ، خلقت لكل عشيرة  عشيرة  بكل منها ثلاثة مواسم إدرار آت12وبذا يكون هناك 

 .عشوائية
  و MTDFREMLأجرى تحليل  لكل  من  الصفة  المستمرة  والصفة  المتقطعة  ببرنامجين هما 

Gibbs Sampling واستخدم  داخل  آل تحليل نوعان من النماذج، الأول  نموذج  الحيوان (Animal  
model)     والثاني  نموذج  الطلوقة (Sire model)  .  وقد أستخدم  في  هذه  الدراسة   التحيز(Bias)   

  للمقارنة بين تقديرات المكافئ الوراثي المتحصل عليها (Mean squared errors)ومتوسط   الخطأ   مربعا 
 .  (P<0.0001)آان تأثير آل من هذه العوامل الرئيسية معنويا جدا .  في الحالات المختلفة

 باستخدام نموذج  MTDFREMLاسة بناء على التحيز أنه إذا آانت الصفة مستمرة فإن اتضح من الدر
أما بالنسبة .  عند أي مستوى من المكافئ الوراثي وأي عدد من البنات داخل الطلوقةGSالحيوان آان أفضل من 

لطلوقة  سواء باستخدام نموذج الحيوان أو نموذج اMTDFREML آان أفضل من  GSللصفة المتقطعة فإن 
عند أي مستوى من المكافئ الوراثي وأي عدد من البنات للطلوقة ماعدا باستخدام نموذج الطلوقة في حالة 

 آان استخدام  GSداخل .   آان الأفضلMTDFREML بنات فإن 5عند ) 0.1(المكافئ الوراثي المنخفض 
والمتوسط من المكافئ الوراثي ، فى نموذج الطلوقة أفضل من استخدام نموذج الحيوان عند المستويين المنخفض 

حين أنه عند مستوى عال من المكافئ الوراثي فإن استخدام نموذج الطلوقة لا يختلف عن استخدام نموذج 
 .الحيوان

 باستخدام نموذج الحيوان آان GSعند التقييم بناء على متوسط الخطأ مربعا وآانت الصفة مستمرة فإن  
أما .   أي مستوى من المكافئ الوراثي وأي عدد من البنات للطلوقة عندMTDFREMLأفضل من استخدام 

 سواء في حالة نموذج MTDFREML عموما آان أفضل من استخدام GSبالنسبة للصفة المتقطعة فإن 
الحيوان أو نموذج الطلوقة عند أي مستوى من المكافئ الوراثي وأي عدد من البنات للطلوقة ماعدا في حالة 

.  هو الأفضل MTDFREML حيث آان 5 وعدد من البنات يساوى 0.1عند مكافئ وراثي نموذج الطلوقة 
 وبالنسبة للصفة المتقطعة فإن استخدام نموذج الطلوقة آان أفضل من استخدام نموذج الحيوان عند GSداخل  

 0.25( عال  ، بينما عند مكافئ وراثي متوسط أو5 بعدد من البنات للطلوقة أآبر من 0.1مكافئ وراثي يساوى 
فإن استخدام نموذج الحيوان آان أفضل من استخدام نموذج الطلوقة عند أي عدد من البنات للطلوقة، أما ) 0.5أو 

 .    بنت للطلوقة فإن استخدام نموذج الحيوان قارب استخدام نموذج الطلوقة20عند 
ا بناء على متوسط الخطأ مربعا النتائج المتحصل عليها بناء على التحيز اتفقت مع النتائج المتحصل عليه

 وعدد من البنات للطلوقة 0.1 ونموذج الطلوقة عند مكافئ وراثي GSفقط في حالة الصفة المتقطعة باستخدام 
 ونموذج الطلوقة عند نفس المستوى من MTDFREML وأيضا في حالة استخدام 20، 15، 10يساوى 

 ونموذج GSآما اتفقت النتائج أيضا فى حالة استخدام .  ة بنات للطلوق5ولكن فقط عند ) 0.1(المكافئ الوراثي 
 . بنت للطلوقة20 وعدد 0.5 أو 0.25الطلوقة عند مكافئ وراثي 

 : حينما يكون الغرض هو تقدير مكونات التباين فإنه   نستخلص من هذه الدراسة أنه
 أو MTDFREMLستخدام برنامج  في حالة الصفة المستمرة يكون استخدام نموذج الحيوان هو الأفضل سواء با-1

GSعند آل مستويات المكافئ الوراثي وأي عدد من البنات للطلوقة . 
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 عند أي مستوى من المكافئ الوراثي MTDFREML أفضل من GS في حالة الصفة المتقطعة يكون برنامج -2
ند مستوى منخفض  يكون نموذج الطلوقة أفضل من نموذج الحيوان عGSداخل برنامج   .  وأي عدد من البنات

 بنت للطلوقة فإن نموذج الحيوان يكافئ 20من المكافئ الوراثي في حين عند المستويين المتوسط والعالي وعدد 
 . نموذج الطلوقة

 
 



Egyptian J. Anim. Prod. (2005) 145





Egyptian J. Anim. Prod., (2005) 42(1):123-144 

____________________________________________________________________ 
Issued by The Egyptian Society of Animal Production 

 
 
 
 
Table 5. Average values ±  standard errors (SE) of  heirtability (h2) resulting from MTDFREML and GS programs for continuous and binary traits at different 
levels of   h2 ( 0.1, 0.25 and 0.5), different types of model (animal and sire) and different number of progeny per sire  (5, 10, 15 and 20) 

MTDFREML GS 
Continuous trait Binary trait Continuous trait Binary trait 

Heritability 
level 

 

No. of 
progeny 
per sire Animal model Sire model Animal model Sire model Animal model Sire model Animal model Sire model 

 5 0.10± 0.005 0.14± 0.013 0.04± 0.008 0.09± 0.018 0.09± 0.004 0.19± 0.012 0.06± 0.007 0.16± 0.020 

0.1 10 0.10± 0.004 0.10± 0.007 0.05± 0.005 0.04± 0.006 0.10± 0.004 0.14± 0.006 0.07± 0.007 0.10± 0.007 

 15 0.10± 0.004 0.10± 0.005 0.04± 0.004 0.04± 0.006 0.10± 0.004 0.13± 0.001 0.07± 0.005 0.10± 0.002 

 20 0.10± 0.004 0.10± 0.005 0.04± 0.003 0.04± 0.004 0.10± 0.003 0.13± 0.001 0.07± 0.004 0.09± 0.002 

 5 0.25± 0.008 0.27± 0.018 0.12± 0.012 0.15± 0.019 0.23± 0.006 0.34± 0.015 0.18± 0.014 0.26± 0.025 

0.25 10 0.25± 0.006 0.25± 0.007 0.11± 0.009 0.13± 0.012 0.24± 0.004 0.32± 0.008 0.19± 0.011 0.22± 0.019 

 15 0.25± 0.005 0.25± 0.008 0.11± 0.004 0.11± 0.007 0.25± 0.004 0.31± 0.007 0.19± 0.004 0.20± 0.010 

 20 0.25± 0.005 0.25± 0.006 0.12± 0.005 0.12± 0.007 0.26± 0.003 0.31± 0.006 0.20± 0.005 0.23± 0.012 

 5 0.51± 0.006 0.51± 0.007 0.24± 0.011 0.25± 0.019 0.50± 0.005 0.59± 0.008 0.39± 0.012 0.41± 0.024 

0.5 10 0.50± 0.006 0.50± 0.005 0.24± 0.009 0.25± 0.009 0.51± 0.004 0.59± 0.005 0.41± 0.009 0.40± 0.015 

 15 0.50± 0.004 0.51± 0.004 0.24± 0.007 0.24± 0.007 0.51± 0.003 0.58± 0.004 0.40± 0.005 0.40± 0.012 

 20 0.51± 0.004 0.50± 0.005 0.24± 0.004 0.24± 0.006 0.51± 0.003 0.58± 0.004 0.40± 0.005 0.40± 0.010 
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Table 6. Average of bias ±standard errors (SE) of heritability (h2) estimates resulting from MTDFREML and GS programs for continuous and binary traits at 
different levels of  h2 ( 0.1, 0.25and 0.5), different types of models (animal and sire) and different number of progeny per sire (5, 10, 15 and 20) 

MTDFREML GS 
Continuous trait Binary trait Continuous trait Binary trait 

Heritability 
Level 

 

No. of 
progeny 
per sire Animal model Sire model Animal model Sire model Animal model Sire model Animal model Sire model 

 5 0.001± 0.005 0.044± 0.013* -0.059± 0.008* -0.014± 0.018 -0.009± 0.004* 0.092± 0.012* -0.038± 0.007* 0.060± 0.020* 

0.1 10 -0.004± 0.004 0.002± 0.007 -0.062± 0.005* -0.056± 0.006* -0.005± 0.004 0.044± 0.006* -0.032± 0.007* -0.002± 0.007 

 15 -0.004± 0.004 -0.004± 0.005 -0.061± 0.004* -0.060± 0.007* 0.001± 0.004 0.034± 0.005* -0.028± 0.005* -0.002± 0.008 

 20 -0.001± 0.004 0.000± 0.005 -0.061± 0.003* -0.056± 0.004* 0.004± 0.003 0.034± 0.004* -0.026± 0.004* -0.006± 0.007 

 5 0.003± 0.008 0.022± 0.018 -0.135± 0.012* -0.102± 0.019* -0.016± 0.006* 0.088± 0.015* -0.069± 0.014* 0.008± 0.025 

0.25 10 0.003± 0.006 -0.004± 0.007 -0.139± 0.009* -0.124± 0.012* -0.006± 0.004 0.068± 0.008* -0.064± 0.011* -0.028± 0.019 

 15 0.003± 0.005 0.008± 0.006 -0.137± 0.004* -0.136± 0.007* 0.004± 0.004 0.062± 0.008* -0.060± 0.004* -0.050± 0.010* 

 20 0.003± 0.005 0.004± 0.006 -0.132± 0.005* -0.126± 0.007* 0.006± 0.003* 0.062± 0.006* -0.051± 0.005* -0.020± 0.012 

 5 0.010± 0.007 0.010± 0.007 -0.258± 0.011* -0.248± 0.018* -0.001± 0.005 0.088± 0.008* -0.107± 0.012* -0.092± 0.024* 

 10 0.001± 0.006 0.000± 0.005 -0.258± 0.009* -0.258± 0.009* 0.008± 0.004* 0.086± 0.005* -0.093± 0.009* -0.096± 0.015* 

0.5 15 0.003± 0.004 0.006± 0.004 -0.260± 0.007* -0.260± 0.007* 0.012± 0.003* 0.084± 0.005* -0.099± 0.005* -0.104± 0.012* 

 20 0.006± 0.004 0.004± 0.005 -0.261± 0.005* -0.260± 0.006* 0.013± 0.003* 0.084± 0.005* -0.103± 0.005* -0.100± 0.011* 

* Estimate different from zero significantly (p≤0.05). 
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Table 7. Mean squared errors of heritability (h2) estimates resulting from MTDFREML and GS programs for continuous and 
binary traits at different levels of  h2 ( 0.1, 0.25 and 0.5), different types of models (animal and sire) and different number of 
progeny per sire (5, 10, 15 and 20) 

MTDFREML GS 
Continuous trait Binary trait Continuous trait Binary trait Heritability 

level 

No. of 
progeny 
per sire Animal model Sire model Animal model Sire model Animal model Sire model Animal model Sire model 

 5 0.00047 0.00554 0.00481 0.00681 0.00044 0.01143 0.00251 0.01185 

0.1 10 0.00034 0.00093 0.00431 0.00396 0.00035 0.00268 0.00194 0.00093 

 15 0.00034 0.00059 0.00401 0.00444 0.00025 0.00119 0.00126 0.00009 

 20 0.00034 0.00059 0.00391 0.00346 0.00015 0.00118 0.00104 0.00009 

 5 0.00145 0.00682 0.02125 0.01733 0.00099 0.01204 0.00840 0.01227 

0.25 10 0.00080 0.00090 0.02087 0.01812 0.00030 0.00588 0.00637 0.00828 

 15 0.00059 0.00074 0.01915 0.01938 0.00031 0.00496 0.00388 0.00452 

 20 0.00042 0.00074 0.01776 0.01687 0.00023 0.00462 0.00306 0.00307 

 5 0.00094 0.00109 0.06904 0.06843 0.00051 0.00911 0.01433 0.02002 

0.5 10 0.00063 0.00042 0.06827 0.06849 0.00038 0.00795 0.01031 0.01358 

 15 0.00038 0.00042 0.06822 0.06861 0.00037 0.00746 0.01034 0.01366 

 20 0.00038 0.00042 0.06818 0.06827 0.00029 0.00746 0.01120 0.01219 
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