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SUMMARY

Two simulation programs were used in this study, one to simulate a continuous
trait and another to modify this trait into a binary trait. Twelve populations were
created (three levels of heritability (h?), 0.10, 0.25 and 0.50; four levels of number of
progeny per sire, 5, 10, 15 and 20), each with three parities as the only fixed effect.
Twenty replicates were generated for each population. Each replicate was analyzed
twice, once with sire model and another with animal model, using two algorithms for
each model (MTDFREML or Gibbs Sampling (GS)). Bias and mean squared errors
(MSE) of heritability estimates were used to assess the quality of heritability
estimates obtained by different models and different algorithms. The effect of h?
level, number of progeny per sire, type of algorithm, type of model, type of trait and
the interactions on the bias and MSE were examined. All main effects were highly
significant (p<0.0001). For estimating variance components, for a continuous trait,
the animal model was the best in the case of using MTDFREML and GS at all levels
of h%. Also, at all levels of h% the GS was the best algorithm in the analysis of a
binary trait. For a binary trait within GS, the sire model was the best at h® equals to
0.1 with number of progeny more than 5 whereas, at h? equals to 0.25 or 0.5 with 20
progeny per sire, the use of animal model was equivalent to the use of sire model. At
all levels of h?, the 20 progeny per sire had the lower MSE for heritability.

Keywords: Continuous traits, binary traits, heritability estimates quality-Gibbs
sampling, bias

INTRODUCTION

Estimation of variance components is always an important tool in developing
animal breeding programs. Estimates of variance components must be accurate since
error variance for predicted breeding values increases as differences between
estimated and true value of variance components increase (Schaeffer, 1984).

Type of trait (binary or continuous), number of progeny per sire, type of model
(animal or sire model), type of algorithm (MTDFREML or Gibbs Sampling) and
heritability magnitude (low, moderate or high) are all important factors that could
affect the estimation of variance components.
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For categorical traits, genetic parameters are usually computed from sire or
animal variances and (co)variances. Heritability estimates resulting from threshold
model for such traits were higher than those resulting from linear model (Luo et al,
2001); the primary reason for the difference being that the heritability from the linear
model is expressed on the observed scale while heritability from the threshold model
is on an underlying liability scale (Luo et al, 2001).

In animal model, all relationships are considered, whereas in sire model only
relationships among half-sib progeny of sires are taken into account; which could
lead to some bias in the estimates from sire model (Mrode, 1996). The threshold
animal model using Gibbs Sampling (GS) may yield biased estimates, so the
threshold sire model (or sire maternal grandsire model for maternal traits) is an
alternative model for genetic analysis of categorical trait (Luo et al, 2001).

The objective of this study was to investigate the effect of heritability level,
number of progeny per sire, type of algorithm, type of model and type of trait on the
quality of the heritability estimates as judged by bias and mean squared errors
(MSE).

MATERIALS AND METHODS

Simulation procedure:

Two methods of simulation were used to generate samples for the present study.
One is concerned with the underlying continuous response variable generation and
another with changing this continuous variable into a binary variable with two
categories 0 and 1. The first method is a Mont Carlo simulation technique using SAS
(1996) with assumed mean (0) and variance (1). Analla et al (1995) reported that this
technique also assumes that the expected genetic value of the progeny Gy is equal to
the average genetic values of the parents [sire (S;) and dam (D;)] plus a deviation due
to the Mendelian sampling as follows:

G, =05(S; +D))+ X |J05h°c; | (Model 1)

where:

Gy is equal to the genetic value of an individual k, a progeny of sire (S;)
and dam (D;),

X is random number taken from normal distribution with mean 0 and
variance 1,

h?  is the heritability and
02p is the phenotypic variance.

Table (1) shows values of parametric phenotypic, genetic, permanent
environmental and residual variances used to generate the studied samples.

With three levels of heritability (0.1, 0.25 and 0.5) and four classes for the
number of half-sib progeny per sire (5, 10, 15 and 20), twelve populations were
simulated with three levels of parity, as the only fixed effect, and twenty samples
(replicates) for each population were generated. Numbers of records generated in
each level of parity are shown in Table (2).
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Table 1. Assumed parametric values of phenotypic, genetic, permanent
environmental and residual variances at three levels of heritability

Heritability
Parameter 010 025 050
Phenotypic variance (c7,) 0250  0.2500  0.250
Additive genetic variance (7,) 0.025  0.0625 0.125
Permanent environmental variance(c’e,) 0.006 0.0150 0.030
Residual variance (c7,) 0.219 0.1725 0.095

Note: The mean of the simulated variable was constant at 0.5 (the best mean value of the
simulated trait to maintain the average of the binary trait as it is in the continuous trait) and the
permanent environmental variance (Gzep) was given as around one quarter of the additive
genetic variance (c%,) (as indicated by Al-shorepy and Notter, 1996).

Table 2. Number of records in the simulated population in each of the three
levels of parity

No. of sires Number of half-s1l? No. of records
daughters for each sire
50 05 0250
50 10 0500
50 15 0750
50 20 1000

Each sample was categorized using a random variety from a binomial distribution
(RANBIN Function) with SAS (1996) to obtain the binary response variable studied.
So, two copies of each generated sample were obtained, the first contained the
underlying continuous variable and the second contained the binary response.

Statistical analysis:

Heritability estimates of the studied variable were estimated for each copy of each
sample in the 12 simulated populations (i.e. three levels of heritability and four
family size), obtained from the animal and sire models each using two algorithms
(multiple trait animal model program (MTDFREML) proposed by Boldman et al
(1995) and Gibbs Sampling program proposed by Van Tassell and Van Vleck (1995).

The linear animal model used for continuous and binary traits was:
Y=XB+Zat+tZc+te, (Model 2)
where,
y  is the vector of observation;
X is the incidence matrix for fixed effects;
B is the vector of an overall mean and parity (3 classes);
Z  1is the incidence matrix for random effects;
a is the vector of direct genetic effects of cow;
¢ is the vector of permanent environment effects; and
e is a vector of random errors normally and independently distributed
with zero mean and variance 7.
The linear sire model used for continuous and binary traits was:
y =XB+Zs+Zc+e, (Model 3)
where,
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s is the vector of direct genetic effects of sire; and other terms in the model are
defined as in model 2.

The threshold model (Gianola and Foulley, 1983) was used for the analysis of
binary response using Gibbs Sampling Program (Heringstad et al., 2001).

To measure the correspondence between assumed parametric and estimated
values, the estimates of bias in heritability estimates were calculated as the difference
between the heritability values obtained from each analysis and the parametric value
(Elsayed, 1997). The bias was calculated as follows:

Bias = [E(b¥)-B] (Neter et al., 1985)
where,
bt the expected value of the deviation of the biased estimator from the true
parameter B.

The MSE (equals the variance of the estimator plus the squared bias) was
calculated as follows :

MSE=E(®R —B)? =0 (b*) +[E (b}) =B’ (Neter et al, 1985),
Analysis of variance was performed to study the effect of heritability level,

number of progeny per sire, type of algorithm, type of model and type of trait on the
estimates of bias and MSE.
The following model was applied using SAS (1996) to analyze the bias:

Yijklmn = ”’+ hi + n; +actm+t,+ Cijkimn, (MOdel 4)
All possible significant interactions were included in the analysis.
where,
Yijumn 1S the dependent variable of the n" record in the i" heritability, jth number of
progeny, k™ type of algorithm, 1™ type of model and m™ type of trait;

n the overall mean of bias;
h; the effect of the i heritability, i=1 to 3;
n; the effect of the jth number of progeny, j=1 to 4;

a the effect of the k™ type of algorithm, k=1 and 2;
m the effect of the 1™ type of model, I=1 and 2;
[ the effect of the m™ type of trait, m=1 and 2 and
ejumn  the effect of random error, associated with each observation assumed to be
normally and independently distributed with 0 mean and variance I .
The same model was used using SAS (1996) to analyze the mean squared errors.
Preliminary analysis with full model (including all main effects and all possible
interactions) was performed to identify significant terms, then the analysis was
repeated with only significant terms retained.

RESULTS AND DISCUSSION

Table (3) shows analysis of variance for the bias and MSE of h? estimates. The
means of the main effects for these criteria are shown in Table (4).

The effects of the heritability level, number of progeny per sire, type of algorithm,
type of trait and type of model on bias and MSE were all significant (p<0.0001).
Table (4) shows that except for continuous trait, the general mean estimate of
magnitude of bias as well as the means of all main effects were negative and different
significantly from zero (p<0.0001).
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Table 3. Analysis of variance of bias and mean squared errors (MSE) for
heritability estimates

o Bais MSE
Source of variation D.F. MLS. Pr D.F. MLS. Pr
Heritability (H) 2 0.75494 0.0001 2 0.03982  0.0001
Number of Progeny (NO) 3 0.02320 0.0001 3 0.00309  0.0001
Type of Algorithm (ALG) 1 1.93231 0.0001 1 0.02144  0.0001
Type of model (MOD) 1 0.37325 0.0001 1 0.00818 0.0001
Type of trait (TR) 1 6.68706 0.0001 1 0.14526 0.0001
H*NO 6 0.00403 0.0209 6 0.00029  0.0004
H*ALG 2 0.18814 0.0001 2 0.00517 0.0001
H*MOD 2 0.00630 0.0205
H*TR 2 1.02878 0.0001 2 0.03414 0.0001
NO*ALG 3 0.00040 0.0005
NO*MOD 3 0.02966 0.0001 3 0.00085 0.0001
NO*TR
ALG*MOD 1 0.19461 0.0001 1 0.00446 0.0001
ALG*TR 1 0.52835 0.0001 1 0.05576 0.0001
MOD*TR 1 0.03790 0.0001 1 0.00574  0.0001
H*NO*MOD 6 0.00688 0.0003 6 0.00029  0.0004
H*NO*TR
H*ALG*MOD 2 0.00058 0.0002
H*ALG*TR 2 0.08733 0.0001 2 0.01091 0.0001
H*MOD*TR 2 0.01126 0.001
NO*ALG*TR 6 0.00022 0.0034
ALG*MOD*TR 1 0.05907 0.0001 1 0.00207 0.0001
H*ALG*MOD*TR 4 0.00614 0.0045
Remainder 1878 0.00162 49 0.00001
CV.% 102.3 9.7
R? 0.8239 0.9938

C.V.= Coefficient of variation, R*> = Coefficient of determination and Pr = Probability of
type I error.
Model included only those significant effects indicated in a preliminary full model analysis.

Table (4) also shows that the estimates of the magnitude of bias and MSE
generally increased as h® increased whereas MSE decreased as number of progeny
per sire increased but the magnitude of bias increased as number of progeny
increased from 5 to 15 progeny (0.030, 0.043 and 0.044), then slightly decreased for
20 progeny (0.041). This result is in agreement with those reported by Thomas et al.
(2000) who reported that bias in estimates of heritability decreased with
decreasing simulated heritability and increasing sample size and also with those
reported by Thomas and Hill (2000) who showed that the MSE decreased as sample
size increased and simulated heritability increased. This result is also in agreement
with the contents of a personal communication with Dr. Curt Van Tassell and Dr.
Dale Van Vleck who suggested that the reason of decreased bias and MSE is
the constrain on estimating variance components in REML so that negative
estimates are not allowed and the range of bias in case of low h? is smaller than in
case of medium or high h®. Generally, smaller magnitude of bias and MSE was
found for GS compared to MTDFREML (0.008 vs 0.071 and 0.005 vs 0.016), for sire
model compared to animal model (0.025 vs 0.053 and 0.010 vs 0.012) and for
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continuous trait compared to binary trait (0.020 vs 0.098 and 0.002 vs 0.019). Table 4
shows that smaller variance was found for MTDFREML compared to GS (0.001 vs
0.002), for animal model compared to sire model (0.001 vs 0.002) and for continuous
trait compared to binary trait (0.001 vs 0.002).

Table 4. Meantstandard errors (SE) of main effects for bias and mean squared
errors (MSE) for heritability estimates

Factor Bias MSE
Mean +SE Mean +SE

m -0.039+0.00096 0.011£0.00074
Heritability level

0.10 -0.009+0.0016 0.003+0.0013

0.25 -0.033+0.0016 0.008+0.0013

0.50 -0.076+0.0016 0.022+0.0013
Number of progeny

5 -0.030+0.0018 0.013+0.0015

10 -0.043+0.0018 0.010+0.0015

15 -0.044+0.0018 0.010+0.0015

20 -0.041+0.0018 0.009+0.0015
Type of algorithm

GS -0.008+0.0013 0.005+0.0011

MTDFREML -0.071%+0.0013 0.016+0.0011
Type of model

Animal model -0.053+0.0013 0.010+0.0011

Sire model -0.02540.0013 0.01240.0011
Type of trait

Binary trait -0.098+0.0013 0.019+0.0011

Continuous trait 0.02040.0013 0.002+0.0011

Figures (1) to (16) illustrate all significant 2-way interactions. Figures (1) and (9)
indicate that the magnitude of bias and MSE were smaller at h? of 0.1 than at h? of
0.25 or 0.5 with all considered numbers of progeny per sire. This result is in
agreement with those reported by Thomas et al. (2000) and Thomas and Hill (2000)
as discussed earlier.
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Levels of h® affected magnitude of bias and MSE using different algorithms
(Figures 2 and 9).

Figure (3) shows that animal model had higher magnitude of bias than sire model,
at any level of h” but difference in bias between h” of 0.25 and 0.5 is larger with sire
model than with animal model. This result supports those reported by Luo et al.
(2001) indicating that in general, sire model yielded more accurate estimates of h?
than did animal model.

Figures (4) and (11) show that continuous trait had smaller magnitude of bias
and MSE than binary trait at any level of h? and the difference between binary and
continuous traits increased as level of h” increased.
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Figure (12) shows that the GS had smaller MSE than MTDFREML whatever the
number of progeny per sire is; the 20 progeny per sire having the smallest MSE. This
result confirms those obtained by Mousa and Elsayed (2001) who indicated that GS
had consistently smaller MSE than MTDFREML, due to the influence of the prior
distribution of the variance components on the posterior distribution.

Figures (5) and (13) indicate that at any number of progeny per sire, the sire
model had smaller magnitude of bias than animal model, and the 5 progeny case
showed the smallest magnitude of bias whereas the sire model had greater MSE than
animal model and that the 20 progeny per sire had the smallest MSE.

Figures (6) and (14) show that sire model had smaller magnitude of bias than
animal model, using each MTDFREML or GS. MSE resulting from GS or
MTDFREML using animal model were smaller than those resulting from the same
algorithms using sire model and a large difference between animal and sire models
was observed with GS.

Figures (7) and (15) show that the difference in bias and MSE between GS and
MTDFREML in magnitude was larger and opposite in direction for binary trait as
compared to continuous trait. The difference in magnitude of bias between animal
and sire models was larger and opposite in trend in the continuous trait as compared
to binary trait (Figure 8). This result find support in the work of Hoeschele and Tier
(1995) who reported that for categorical traits, because of the extreme category
problem in which all observations for some subclasses are in the same category,
threshold animal model using the GS may yield biased estimates.

Figure (16) indicates that for binary or continuous trait animal model had smaller
MSE than sire model.

Average heritability estimates (h?):

The average values for the estimates of h* of the 20 samples resulting from
MTDFREML and GS algorithms for continuous and binary traits at different types of
models (animal or sire), different number of progeny per sire (5, 10, 15 or 20) and
different levels of h? (0.1, 0.25 or 0.5) are shown in Table (5). The estimates for the
continuous trait at all levels of h* with the four different number of progeny per sire
resulting from MTDFREML and GS using animal model were generally similar to
the values used for simulation. This result is in agreement with those reported by
Mousa and Elsayed (2001) who reported that GS and MTDFREML estimates
appeared similar for continuous variable. Table (5) shows that for continuous trait at
h® equals to 0.1 with 5 progeny per sire, the estimate of h® resulting from
MTDFREML using sire model was an overestimate (0.14). Whereas at n? equals to
0.25 or 0.5, the estimates of h” resulting from MTDFREML using animal model were
very close to those resulting from sire model. These results indicate that the
estimation of variance components using sire model with 5 progeny per sire would be
inaccurate.

Table (5) also shows that for continuous trait in GS using sire model,
overestimates were recorded at any level of h” with any number of progeny per sire.
This would indicate the need for increasing the number of rounds of iteration of the
GS chain. For the binary trait, estimates resulting from GS using either animal or sire
model were higher while being closer to the values used for simulation than
corresponding estimates resulting from MTDFREML at all levels of h? with any
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number of progeny per sire except at h” equals to 0.1 with 5 progeny per sire, where
the estimate of h® resulting from GS using sire model was higher than the
corresponding estimate resulting from MTDFREML (0.16 vs 0.09). These results are
in line with previous works (Matos et al, 1997; Boettcher et al, 1999 and Luo et al.,
2001) explaining the reason for this difference between MTDFREML and GS as the
heritabilities from MTDFREML (linear model) are expressed on observed scale
while heritabilities from GS (threshold model) are on an underlying liability scale.
Therefore, threshold model was statistically more appropriate than linear model for
binary trait, yields greater estimates of heritability and closer to the real value in most
cases.

Table (5) also shows that for the binary trait in GS at different number of progeny
per sire and at h? equals to 0.1 or 0.25 the estimates of h? resulting from sire model
were higher and closer to the real value than corresponding estimates of h* resulting
from the animal model. At h* equals to 0.5, the estimates of heritability resulting
from sire model were closer to corresponding estimates resulting from animal model,
but all were underestimates of the real value used for simulation. In agreement with
this result Matos et al. (1997) reported that the advantage of using threshold over
linear methodology in breeding programs increases as the heritability of the trait
decreases.

Average bias and mean squared errors (MSE) of heritability estimates

The average bias (Table 6) and the MSE (Table 7) at different levels of h?,
different traits (continuous or binary trait), different models (animal or sire), different
algorithms (MTDFREML or GS) and different number of progeny per sire (5, 10, 15
or 20) were calculated.

Expectedly Table (6) shows the same trend presented in Table (5) and indicates
that for the continuous trait at any level of h® with any number of progeny per sire,
the magnitude of average bias of h® resulting from MTDFREML using each of
animal and sire model was smaller than corresponding ones resulting from GS,
except in the case of continuous trait using animal model at h? equals to 0.1 with
number of progeny per sire equals to 15 (0.004 vs 0.001) and at h* equals to 0.5 with
number of progeny per sire equals to 5 (0.010 vs 0.001). This would indicate the
need of increased number of rounds of iteration of GS chain. For binary trait at any
number of progeny per sire and any level of h?, the magnitude of average bias
resulting from GS was smaller than corresponding values resulting from
MTDFREML. This result confirms the findings of Van Tassell and Van Vleck (1996)
and Luo et al. (2001) indicating linear models as inappropriate for analysis of binary
response traits.

Within GS, for binary trait, the sire model had smaller magnitude of bias than
animal model except at h? equals to 0.1 with number of progeny per sire equals to 5
(0.038 vs 0.060); and at h* equals to 0.5 with number of progeny per sire equals to 10
and 15 (0.093 vs 0.096 and 0.099 vs 0.104, respectively). This indicates that
threshold single trait sire model could be a good alternative model compared to
animal model for genetic analysis of binary traits.

For bias at any level of h” and at any number of progeny per sire for continuous
trait, the average bias resulting from MTDFREML using animal and sire models did
not differ significantly from zero (p<0.05), except for sire model at h? equals to 0.1
with number of progeny per sire equals to 5 (Table 6). This result indicates that
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estimation of variance components using sire model with 5 progeny per sire is quite
inaccurate. For continuous trait, most bias estimates resulting from GS using animal
model at h? equals to 0.1 or 0.25 were not significantly different from zero (p>0.05)
whereas, at h” equals to 0.5 most of estimates differed from zero significantly. Using
sire model, the estimates of bias of continuous trait resulting from GS were
significantly different from zero. This result indicates that for continuous trait,
MTDFREML yields estimates relatively free of bias.

Table (6) shows that, in general, at any level of h” and at any number of progeny
per sire, the magnitude of bias was significantly different from zero (p<0.05) for
binary trait resulting from MTDFREML using animal and sire models and from GS
using only animal model are significantly different from zero. For binary trait, the
average bias resulting from GS using sire model was not significantly different from
zero especially at h” equals to 0.1 (with 10, 15 and 20 progeny per sire) or 0.25 (with
5, 10 and 20 progeny per sire). At h” equals to 0.5 the average bias was significantly
different from zero (p<0.05). This shows that at low and moderate h?, the use of
threshold sire model for binary trait yields accurate estimates free of bias and, thus,
closer to the real value. This agrees with Hoeschele and Tier (1995) who reported
that threshold animal model using GS may yield bias estimates.

Figures (17) and (18) show a decision chart for estimating variance components
related to continuous and binary traits, based on bias criterion. MSE for continuous
trait resulting from GS applying animal model was generally smaller than
corresponding MSE resulting from MTDFREML adopting the same model (Table 7).
This result is in agreement with those reported by Mousa and Elsayed (2001) as
mentioned earlier (Figure 12).

Table (7) indicates that within GS, for binary trait especially at h? equals to 0.25
or 0.5 with any number of progeny per sire, the sire model had greater MSE than
animal model. At h? equals to 0.1 at any number of progeny per sire except for 5
progeny, sire model had smaller MSE than animal model (0.00251 vs 0.01185). This
result is in agreement with those reported by Luo et al. (2001). With sire model, for
continuous trait, MSE resulting from MTDFREML was smaller than corresponding
values resulting from GS (Table 7) perhaps because of the smaller bias with
MTDFREML than with GS. With animal model, the GS had smaller MSE than
MTDFREML. The MSE calculated with the subclass of 5 progeny per sire was
greater than when number of progeny per sire was 10, 15 or 20; the 20 progeny per
sire having the smallest values in most cases (Tables 7). This is in agreement with
Thomas and Hill (2000). The optimum number of progeny per sire to be used was
20 to yield the best estimates of heritability under the circumstances of this study.
Figures (19) and (20) show the decision chart for estimating variance components for
a continuous and binary traits, based on MSE criterion.

From Tables (6 and 7), for binary trait, the conclusion as what methods to use
based on bias agreed with those based on MSE, i.e. for the cases of use of sire model
by GS at h? of 0.1 with 10, 15 and 20 progeny, the use of sire model by MTDFREML
at the same level of h? with 5 progeny per sire and use of sire model by GS at h?
equals to 0.25 or 0.5 with 20 progeny per sire (Figure 21) judging based on MSE and
bias leads to the same conclusion.
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h? level =
0.10, 0.25
and 0.50

With number
of progeny

=5,10,15
and 20

Use animal model by MTDFREML

Fig. 17. Decision chart for recommending the best model type-algorithm
combination to estimate variance components in case of a continuous trait,
based on bias

h? level no

no

yes h’ level =

progeny

0.25
=5
2 .
_ with no. of progeny h”=0.5 with no.
no | =10.15and 201 7565 and 20 of progeny = 5,
v 10. 15 and 20
Use sire model by . Use animal or sire
MTDFREML Use sire model by GS model by GS

Fig. 18. Decision chart for recommending the best model type- algorithm
combination to estimate variance components in case of a binary trait, based on
bias
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h? level =
0.10, 0.25 and
0.50

With number
of progeny
=5,10,15

and 20

Use animal model by GS

Fig. 19. Decision chart for recommending the best model type-algorithm
combination to estimate variance components in case of a continuous
trait, based on MSE.

h? level
=0.10

yes no

h’=0.25and 0.5

no

yes No. of
progeny
=5
no | =10,15and20 —5.10and 15
Use sire model Use sire model Use animal or sire Use animal model by
by MTDFREL || by GS model by GS Gs

Fig. 20. Decision chart for recommending the best model type-algorithm

combination to estimate variance components in case of a binary trait, based on

MSE
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h* level

=0.10 10

h? =0.25 and 0.5

No. of no With 20
progeny progeny
=5
=10, 15 and 20
Use sire model by )
MTDFREML Use sire model by GS

Figure 21. Decision chart for recommending the best model type-algorithm
combination to estimate variance components in case of a binary trait, based on
bias jointly with MSE

Computation time:

The analysis of one sample of continuous or binary trait by MTDFREML using
animal or sire model consumed 5 minutes with any number of progeny per sire.
Whereas the time consumed for the analysis of continuous or binary trait by GS using
animal and sire models is shown in Table (8). The analysis was made using a
computer with Pentium IV of 1.7 GH' processor, 40 GB? hard disk and 256 MB* a
random access memory.

" GH = Gega hertz

? GB = Gega byte

* MB= Mega byte

Table 8. Time consumed for the analysis by GS algorithm using different

number of progeny per sire and different models for continuous and binary
traits

Type of trait
No. of Model Continuous trait Binary trait
progeny type Time  No. of Total Time No. of Total time
per sire (hr) samples  Time (hr) (hr) samples  (hr)
5 Animal  0:23 60 23:00 2:25 60 135:00
Sire 0:02 60 02:00 0:07 60 007:00
10 Animal  0:30 60 30:00 4:20 60 252:00
Sire 0:03 60 03:00 0:10 60 010:00
15 Animal 1:00 60 60:00 7:00 60 420:00
Sire 0:04 60 04:00 0:15 60 015:00
20 Animal  1:20 60 22:00 9:00 60 540:00
Sire 0:05 60 05:00 0:25 60 025:00

Total 199:00 1404:00
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In general, using the animal model consumed more time than sire model (with
magnitude of > 14 times) and binary trait consumed more time than continuous trait
(with magnitude of > 7 times). The full analysis with MTDFREML and GS (1920
samples) consumed 1683 computer hours.

CONCLUSION

If the aim was to estimate variance components, the conclusion is that:
1-  For continuous trait, the animal model is the best with MTDFREML or GS at all
levels of h® with any number of progeny per sire.
2-  For binary trait, GS is the best algorithm at all levels of h>. Within GS, the sire
model is the best at low h* with any number of progeny more than 5 whereas, at
h? equals to 0.25 or 0.5 with 20 progeny per sire, the animal model is equivalent
to sire model.
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Table 5. Average values + standard errors (SE) of heirtability (h?) resulting from MTDFREML and GS programs for continuous and binary traits at different

levels of h* (0.1, 0.25 and 0.5), different types of model (animal and sire) and different number of progeny per sire (5, 10, 15 and 20)

Heritability No. of MTDFREML

level progeny Continuous trait Binary trait Continuous trait Binary trait
per sire Animal model Sire model Animal model Sire model Animal model Sire model Animal model Sire model
5 0.10+ 0.005 0.14+0.013 0.04+ 0.008 0.09+0.018 0.09+ 0.004 0.19£0.012 0.06+ 0.007 0.16£ 0.020
0.1 10 0.10+ 0.004 0.10+ 0.007 0.05+ 0.005 0.04+ 0.006 0.10+ 0.004 0.14+ 0.006 0.07+ 0.007 0.10£ 0.007
15 0.10£ 0.004 0.10£ 0.005 0.04+ 0.004 0.04+ 0.006 0.10+ 0.004 0.13+0.001 0.07+ 0.005 0.10+ 0.002
20 0.10+ 0.004 0.10+ 0.005 0.04+ 0.003 0.04+ 0.004 0.10+ 0.003 0.13£0.001 0.07+ 0.004 0.09£ 0.002
5 0.25+0.008 0.27+£0.018 0.12+£0.012 0.15+£0.019 0.23+ 0.006 0.34+£0.015 0.18+£0.014 0.26+0.025
0.25 10 0.25+ 0.006 0.25+0.007 0.11£0.009 0.13+£0.012 0.24+ 0.004 0.32+0.008 0.19+£0.011 0.22+0.019
15 0.25+ 0.005 0.25+0.008 0.11£ 0.004 0.11+0.007 0.25+0.004 0.31£0.007 0.19+ 0.004 0.20£0.010
20 0.25+ 0.005 0.25+ 0.006 0.12+ 0.005 0.12+ 0.007 0.26% 0.003 0.31£0.006 0.20+ 0.005 0.23£0.012
5 0.51+ 0.006 0.51+0.007 0.24+0.011 0.25+0.019 0.50+ 0.005 0.59+ 0.008 0.39+0.012 0.41£0.024
0.5 10 0.50+ 0.006 0.50+ 0.005 0.24+ 0.009 0.25+0.009 0.51+0.004 0.59+ 0.005 0.41+0.009 0.40£ 0.015
15 0.50+ 0.004 0.51+0.004 0.24+ 0.007 0.24+0.007 0.51+0.003 0.58+0.004 0.40+ 0.005 0.40+0.012
20 0.51+0.004 0.50+ 0.005 0.24+ 0.004 0.24+ 0.006 0.51+0.003 0.58+ 0.004 0.40+ 0.005 0.40£ 0.010
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Table 6. Average of bias £standard errors (SE) of heritability (h”) estimates resulting from MTDFREML and GS programs for continuous and binary traits at
different levels of h” (0.1, 0.25and 0.5), different types of models (animal and sire) and different number of progeny per sire (5, 10, 15 and 20)

Heritability No. of MTDFREML GS
Level progeny Continuous trait Binary trait Continuous trait Binary trait
per sire Animal model Sire model Animal model Sire model Animal model Sire model Animal model Sire model
5 0.001£ 0.005 0.044+ 0.013* -0.059+ 0.008* -0.014£0.018 -0.009+ 0.004* 0.092+ 0.012* -0.038+ 0.007* 0.060+ 0.020*
0.1 10 -0.004+ 0.004 0.002+ 0.007 -0.062+ 0.005* -0.056 0.006* -0.005+ 0.004 0.044£ 0.006* -0.032+ 0.007* -0.002+ 0.007
15 -0.004+ 0.004 -0.004+ 0.005 -0.061+ 0.004* -0.060+ 0.007* 0.001+ 0.004 0.034+ 0.005* -0.028+ 0.005* -0.002+ 0.008
20 -0.001+£ 0.004 0.000+ 0.005 -0.061+ 0.003* -0.056+ 0.004* 0.004+ 0.003 0.034+ 0.004* -0.026+ 0.004* -0.006+ 0.007
5 0.003+ 0.008 0.022+0.018 -0.135+£ 0.012* -0.102+ 0.019* -0.016x 0.006* 0.088+ 0.015* -0.069+ 0.014* 0.008+ 0.025
0.25 10 0.003£ 0.006 -0.004+ 0.007 -0.139+ 0.009* -0.124£ 0.012% -0.006+ 0.004 0.068+ 0.008* -0.064£ 0.011* -0.028+0.019
15 0.003+ 0.005 0.008+ 0.006 -0.137+ 0.004* -0.136+ 0.007* 0.004+ 0.004 0.062+ 0.008* -0.060+ 0.004* -0.050+ 0.010*
20 0.003+ 0.005 0.004+ 0.006 -0.132+ 0.005* -0.126+ 0.007* 0.006+ 0.003* 0.062+ 0.006* -0.051+ 0.005* -0.020+0.012
5 0.010+ 0.007 0.010+ 0.007 -0.258+ 0.011* -0.248+ 0.018* -0.001+ 0.005 0.088+ 0.008* -0.107+£0.012* -0.092+ 0.024*
10 0.001+ 0.006 0.000+ 0.005 -0.258+ 0.009* -0.258+ 0.009* 0.008+ 0.004* 0.086% 0.005* -0.093+ 0.009* -0.096+ 0.015*
0.5 15 0.003+ 0.004 0.006+ 0.004 -0.260+ 0.007* -0.260+ 0.007* 0.012+ 0.003* 0.084+ 0.005* -0.099+ 0.005* -0.104+0.012*
20 0.006+ 0.004 0.004+ 0.005 -0.261+ 0.005* -0.260+ 0.006* 0.013+ 0.003* 0.084+ 0.005* -0.103+ 0.005* -0.100+£ 0.011*

* Estimate different from zero significantly (p<0.05).
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Table 7. Mean squared errors of heritability (h%) estimates resulting from MTDFREML and GS programs for continuous and
binary traits at different levels of h” (0.1, 0.25 and 0.5), different types of models (animal and sire) and different number of
progeny per sire (5, 10, 15 and 20)

o No. of MTDFREML GS
Heritability progeny Continuous trait Binary trait Continuous trait Binary trait
level per sire Animal model  Sire model Animal model Sire model Animal model Sire model Animal model Sire model
5 0.00047 0.00554 0.00481 0.00681 0.00044 0.01143 0.00251 0.01185
0.1 10 0.00034 0.00093 0.00431 0.00396 0.00035 0.00268 0.00194 0.00093
15 0.00034 0.00059 0.00401 0.00444 0.00025 0.00119 0.00126 0.00009
20 0.00034 0.00059 0.00391 0.00346 0.00015 0.00118 0.00104 0.00009
5 0.00145 0.00682 0.02125 0.01733 0.00099 0.01204 0.00840 0.01227
0.25 10 0.00080 0.00090 0.02087 0.01812 0.00030 0.00588 0.00637 0.00828
15 0.00059 0.00074 0.01915 0.01938 0.00031 0.00496 0.00388 0.00452
20 0.00042 0.00074 0.01776 0.01687 0.00023 0.00462 0.00306 0.00307
5 0.00094 0.00109 0.06904 0.06843 0.00051 0.00911 0.01433 0.02002
0.5 10 0.00063 0.00042 0.06827 0.06849 0.00038 0.00795 0.01031 0.01358
15 0.00038 0.00042 0.06822 0.06861 0.00037 0.00746 0.01034 0.01366

20 0.00038 0.00042 0.06818 0.06827 0.00029 0.00746 0.01120 0.01219






