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Abstract—Strong Form Differential Quadrature Element 

Method (DQEM) is a non-ubiquitous technique for solving various 

physical and engineering problems having arbitrary domain 

configurations and complicated boundary conditions.  In the 

present paper, the DQEM is adopted to simulate 2D steady-state 

confined seepage using quadrilateral elements unprecedentedly. 

The method discretizes the studied domain to a number of 

homogenous isotropic or anisotropic zones/elements. Techniques 

for defining boundary conditions are presented. The numerical 

modeling process is implemented in a PYTHON computer code. 

Various problems are solved in the present paper and the obtained 

results are compared with the available results of theoretical and 

numerical methods pre-published in the literature. Numerical 

results demonstrate the rigor and eligibility of the unfamiliar 

approach (DQEM) with less computational efforts.  
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I. INTRODUCTION 

T is well known that, seepage is considered the main 

reason causing the failure of dams and other hydraulic 

structures due to its potential to cause an internal 

eruption of soil [1]. It has a great influence on their stabilities 

and performances. Consequently, it is necessary to be 

controlled to stop concealed internal and external erosion of soil 

grains [2].  Seepage flow may occur beneath and through 

heading-up structures. Besides, it may occur through earth 

dams founded on impervious and/or previous soils. 

Consequently, many researchers have developed different 

analytical [3] and numerical methods to investigate seepage 

such as the finite difference method (FDM), [4], to analyze 

seepage problems.  
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لما تسببه مشكلة التسرب السبب الرئيسي لإنهيار المنشآت الهيدروليكية نظرًا  تبرعت -:الملخص العربي 

من مشاكل في التربة. قد يحدث التسرب أسفل المنشآت الهيدروليكية المقامة علي تربة منفذة )التسرب 

المحصور( كما قد يحدث خلال المنشأ كالسدود الترابية المقامة علي تربة منفذة أو غير منفذة )التسرب الغير 

 .ات المنشأ وتحقيقة الغرض المنفذ من أجلهمحصور(. لذلك يجب السيطرة على مشكلة التسرب للتأكد من ثب

تهدف الدراسة إلي التعامل مع مشاكل التسرب المحصور أسفل المنشآت الهيدروليكية وذلك بأقل تكلفة  

حسابية وبدقة عالية. في هذه الدراسة يتم تطبيق طريقة العناصر التفاضلية التربيعية كطريقة حديثة في مجال  

طريقة قد تكون غيرمستخدمة من قبل في هذا المجال. وتم تصميم برنامج لتمثيل الطريقة التسرب. حيث أنها  

 بأستخدام لغة برمجة حديثة تسمى )بايثون(.
 

I 
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The Crank Nicolson form of the FDM is used to determine 

seepage velocity and total seepage flow under a dam [5]. 

The boundary element method (BEM) is used to study 

characteristics of seepage underneath heading-up structures [6]. 

Confined and unconfined unsteady seepage problems in 

anisotropic and nonhomogeneous materials using the 

combination of  the finite element method (FEM) and  BEM are 

investigated [7].  There are two approaches of DQEM, which 

based on weak formulation finite element method (WFEM) [8] 

and another based on strong formulation finite element method 

(SFEM) [9], the most significant difference between both 

approaches relies on the formulation of solving the parent 

element. The integral quadrature has to be used in the WFEM 

to solve the problem while the differential quadrature has to be 

used in SFEM. The weak form of the quadrature element 

method (QEM) has been applied to deal with two  and three 

dimensional confined and unconfined seepage analysis through 

dams, and to obtain  the location of free surface seepage line 

through dams [10], and [11], respectively. As well as solving 

hydraulics problems [12], and [13]. The strong form QEM has 

been applied in different applications to solve problems of 

structural mechanics with discontinuously distributed loads 

with multiple boundary conditions, and analyze slender 

members and axisymmetric plates and to deal with arbitrary 

geometries [14],  [15], and [16] ; likewise, it has the ability to 

deal with heat transfer and torsion problems governed by 

Laplace and Poisson equation [17], and [18]. Effect of cut off 

position and inclination is studied under heading-up structures 

using DQEM [19]. In this paper, the strong form DQEM [9] is 

applied to deal with 2D steady-state confined seepage problems 

governed by Laplace equation only recently. DQEM almost has 

the same feature of SFEM as well as it uses the differential 

quadrature (DQ) rule to compute the weighting coefficients. 

Consequently, it combines the merits of both DQ and SFEM 

[20]; attaining the feasibility and high accuracy which enable it 

to deal with two and three- dimensional problems [21], and 

[11]. Through DQEM approach, the concept of SFEM is 

applied as well as DQ is utilized for the discretization of 

equations by dividing the whole physical domain into various 

subdomains/zones (quadrature elements), and generic 

transformation is used to map physical domain onto the 

normalized domain [22]. Thereafter, the DQ formulation is 

applied to compute weighting coefficients for the typical grid 

points distributions used and the governing equations are 

utilized at all inner points [23]. Moreover, the element 

connectivity is performed by applying the continuity equations 

at neighborhood boundaries of the quadrature elements and the 

boundary conditions (Dirichlit and Neumann) are applied at 

other sides of the quadrature element [18].  

The numerical algorithm is executed into a computer code, 

and different examples are solved using the present method. 

Numerical results show the high efficiency and accuracy of the 

uncommon approach DQEM with less computational efforts.  

II. GOVERNING EQUATION 

The differential equation of 2D steady-state potential 

seepage problem is subjected to Laplace equation which 

describes the energy loss associated with flow through soil [23]:  

 
𝑘𝑥
 𝜕2h

𝜕𝑥2
+ 𝑘𝑦

 𝜕2h

𝜕𝑦2
= 0 

 

                (1) 

where: 

 

 𝑘𝑥,𝑦: Hydraulic conductivity of soil at x and y 

direction (m s-1). 

h: Hydraulic head of flow (m). 

x, y: Coordinates of the studied point (m). 

 

The general equation of boundary condition is, 

 

 
∁1 ℎ + ∁2  

𝜕ℎ

𝜕𝑛
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

              (2) 

 

From Eqn. (2) for  ∁2 = 0 the boundary condition will be 

Dirichlit type, while for ∁1= 0 the boundary condition will be 

Neumann type. 

III. TRANSFORMATION FORMULATION  

General transformation is obtained to map the physical domain 

(x, y) into the master normalized domain (ξ,𝜇) (Fig. 1), [21]. 

{ 
𝑥 = 𝑥(𝜉, 𝜇)
𝑦 = 𝑦(𝜉, 𝜇)

 

where:  

-1≤ (ξ,𝜇) ≤1 

From the Jacobin matrix of the transformation, the following 

relations can be obtained: 

. 
Fig. 1.  Mapping of a linear quadrilateral element 

 

 𝜕ℎ

𝜕𝑥
=
𝜕ℎ

𝜕𝜉
 
𝜕𝜉

𝜕𝑥
 + 

𝜕ℎ

𝜕𝜇
 
𝜕𝜇

𝜕𝑥
   

(3) 

 

 𝜕ℎ

𝜕𝑦
=
𝜕ℎ

𝜕𝜉
 
𝜕𝜉

𝜕𝑦
 + 

𝜕ℎ

𝜕𝜇
 
𝜕𝜇

𝜕𝑦
 

              

(4) 

Further, the second-order partial derivative of x is as follows: 

 

 𝜕2ℎ

𝜕𝑥2
=
𝜕2ℎ

𝜕𝜉2
(
𝜕𝜉

𝜕𝑥
)
2

+ 2
𝜕2ℎ

𝜕𝜉 𝜕𝜇
 
𝜕𝜇

𝜕𝑥

𝜕𝜉 

𝜕𝑥
+
𝜕2ℎ

𝜕𝜇2
 (
𝜕𝜇

𝜕𝑥
)
2

+
𝜕2𝜉

𝜕𝑥2
𝜕ℎ

𝜕𝜉
+
𝜕2𝜇

𝜕𝑥2
𝜕ℎ

𝜕𝜇
  

 

 

(5) 

Similarly, the second-order partial derivative concerning 

variable y is obtained as: 
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𝜕2ℎ

𝜕𝑦2
=
𝜕2ℎ

𝜕𝜉2
(
𝜕𝜉

𝜕𝑦
)
2

+ 2
𝜕2ℎ

𝜕𝜉 𝜕𝜇
 
𝜕𝜇

𝜕𝑦

𝜕𝜉

𝜕𝑦

+
𝜕2ℎ

𝜕𝜇2
 (
𝜕𝜇

𝜕𝑦
)
2

+
𝜕2𝜉

𝜕𝑦2
𝜕ℎ

𝜕𝜉

+
𝜕2𝜇

𝜕𝑦2
𝜕ℎ

𝜕𝜇
  

 

 

 

                

(6) 

The first and second-order derivative of ξ and 𝜇 concerning 

x and y can be demonstrated as: 

 
𝜕𝜉
𝜕𝑥
  =

𝜕𝑦
𝜕𝜇
 |𝐽| −1

𝜕𝜇
𝜕𝑥

=
−𝜕𝑦
𝜕𝜉

 |𝐽| −1
       

𝜕𝜉
𝜕𝑦

=
−𝜕𝑥
𝜕𝜇

 |𝐽| −1

𝜕𝜇
𝜕𝑦
  =

𝜕𝑥
𝜕𝜉
 |𝐽| −1

 

 

                

(7) 

 

Using (3) and (4), the following second-order derivatives of 

the master normalized domain (ξ,𝜇) concerning to the physical 

domain (x, y) can be obtained as,  

 

 𝜕2𝜉

𝜕𝑥2
=  

𝜕𝑦

𝜕𝜇
|𝐽|−2 [(1 − (

𝜕𝑥

𝜕𝜉
 
𝜕𝑦

𝜕𝜇
+

 
𝜕𝑦

𝜕𝜉
 
𝜕𝑥

𝜕𝜇
) |𝐽|−1)

𝜕2𝑦

𝜕𝜉𝜕𝜇
+ (2

𝜕𝑦

𝜕𝜉
 
𝜕𝑦

𝜕𝜇
)|𝐽|−1

𝜕2𝑥

𝜕𝜉𝜕𝜇
]  

 

(8) 

 

 𝜕2𝜉 

𝜕𝑦2
= 

 𝜕𝑥

𝜕𝜇
|𝐽|−2 [(1 + (

𝜕𝑥

𝜕𝜉
 
𝜕𝑦

𝜕𝜇
+

𝜕𝑦

𝜕𝜉
 
𝜕𝑥

𝜕𝜇
) |𝐽|−1)

𝜕2𝑥

𝜕𝜉𝜕𝜇
− (2

𝜕𝑥

𝜕𝜉
 
𝜕𝑥

𝜕𝜇
)|𝐽|−1

𝜕2𝑦

𝜕𝜉𝜕𝜇
]  

 

(9) 

 

Similarly, 

 

  
𝜕2𝜇

𝜕𝑥2
=

𝜕𝑦

𝜕𝜉
|𝐽|−2 [(1 + (

𝜕𝑥

𝜕𝜉
 
𝜕𝑦

𝜕𝜇
+

𝜕𝑦

𝜕𝜉
 
𝜕𝑥

𝜕𝜇
) |𝐽|−1)

𝜕2𝑦

𝜕𝜉𝜕𝜇
− (2

𝜕𝑦

𝜕𝜉
 
𝜕𝑦

𝜕𝜇
)|𝐽|−1

𝜕2𝑥

𝜕𝜉𝜕𝜇
]  

 

(10) 

 

   
𝜕2𝜇

𝜕𝑦2
=

𝜕𝑥

𝜕𝜉
|𝐽|−2 [(1 − (

𝜕𝑥

𝜕𝜉
 
𝜕𝑦

𝜕𝜇
+

𝜕𝑦

𝜕𝜉
 
𝜕𝑥

𝜕𝜇
) |𝐽|−1)

𝜕2𝑥

𝜕𝜉𝜕𝜇
+

(2
𝜕𝑥

𝜕𝜉
 
𝜕𝑥

𝜕𝜇
)|𝐽|−1

𝜕2𝑦

𝜕𝜉𝜕𝜇
]  

                

(11) 

IV. A QUADRILATERAL ELEMENT FORMULATION 

The mapping transformation relations of the quadrilateral 

physical domain with global coordinates (x, y) into the master 

normalized domain with natural coordinates (ξ, µ), (Fig. 1) are 

expressed as follow, by substitution of equations (5) and (6) into 

(1), results in [21]: 

 

 
𝐹1(𝜉, 𝜇)

𝜕2ℎ

𝜕𝜉2
+ 𝐹2(𝜉, 𝜇)

𝜕2ℎ

𝜕𝜉𝜕𝜇
+ 𝐹3(𝜉, 𝜇)

𝜕2ℎ

𝜕𝜇2

+ 𝐹4(𝜉, 𝜇)
𝜕ℎ

𝜕𝜉
+ 𝐹5(𝜉, 𝜇)

𝜕ℎ

𝜕𝜇
= 0 

 

 

(12) 

where: 

 𝐹1 (ξ, 𝜇) =𝑘𝑥 (
𝜕𝜉

𝜕𝑥
)
2

+𝑘𝑦 (
𝜕𝜉

𝜕𝑦
)
2

 

𝐹2 (ξ, 𝜇) =2(𝑘𝑥
𝜕𝜉

𝜕𝑥

𝜕𝜇

𝜕𝑥
+ 𝑘𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜇

𝜕𝑦
) 

𝐹3 (ξ, 𝜇) =𝑘𝑥 (
𝜕𝜇

𝜕𝑥
)
2

+ 𝑘𝑦 (
𝜕𝜇

𝜕𝑦
)
2

 

𝐹4(ξ, 𝜇) =𝑘𝑥
𝜕2𝜉

𝜕𝑥2
+ 𝑘𝑦

𝜕2𝜉

𝜕𝑦2
 

𝐹5 (ξ, 𝜇) =𝑘𝑥
𝜕2𝜇

𝜕𝑥2
+ 𝑘𝑦

𝜕2𝜇

𝜕𝑦2
 

V. DISCRETIZATION OF DQ 

The discretization of the differential quadrature 

approximation on (12) leads up to the following equation 
 

 

𝐹1∑𝑊𝑖𝑛
(2)

𝑁𝜉

𝑛=1

ℎ𝑛𝑗 + 𝐹2 ∑𝑊𝑗𝑚
(1)

𝑁𝜇

𝑚=1

∑𝑊𝑖𝑛
(1)

𝑁𝜉

𝑛=1

ℎ𝑛𝑚

+ 𝐹3 ∑𝑊𝑗𝑚
(2)

𝑁𝜇

𝑚=1

ℎ𝑖𝑚

+ 𝐹4 ∑𝑊𝑖𝑛
(1)

𝑁𝜉

𝑛=1

ℎ𝑛𝑗

+ 𝐹 5 ∑𝑊𝑗𝑚
(1)

𝑁𝜇

𝑚=1

ℎ𝑖𝑚 =  0 

 

 

 

 

 

 

 

 

 

(13) 

(i=2, 3, 4……, 𝑁𝜉 − 1;  j=2, 3, 4……, 𝑁𝜇 − 1) 

where: 

 

𝑊𝑖𝑗
(𝑘) = The weighting coefficients of DQ attached to the 

function values 

 (k)     =   Derivative degree of the function  

 𝑁𝜉      =  Number of nodes in ξ direction 

 𝑁𝜇      =  Number of nodes in 𝜇 direction 

 

The weighting coefficients are based on the Lagrange 

interpolation formula. The weighting coefficients in the (ξ) 

direction are as follows [22]: 

 

 

 

 𝑊𝑖𝑗
(1) =

{
 
 

 
  

𝑀(1)(𝜉𝑖)

(𝜉𝑖 − 𝜉𝑗)𝑀
(1)(𝜉𝑗)

, 𝑖 ≠ 𝑗

− ∑ 𝑊𝑖𝑛
(1)

𝑁

𝑛=1,𝑛≠𝑖

, 𝑖 = 𝑗

 

 

 

          (14) 

 

𝑊𝑖𝑗
(𝑘) = {

𝑘 [𝑊𝑖𝑖(𝑘−1)𝑊𝑖𝑗
(1) −

𝑊𝑖𝑗(𝑘−1)

(𝜉𝑖−𝜉𝑗)
]

−∑ 𝑊𝑖𝑛
(𝑚)𝑁

𝑛=1,𝑛≠𝑖 , 𝑖 = 𝑗
,i≠ 𝑗 

 

 

        (15) 

where: 

 

{
 
 

 
 𝑀(𝜉) =∏(𝜉 − 𝜉𝑗)

𝑁

𝑗=1

𝑀(1)(𝜉𝑛) = ∏ (𝜉𝑛 − 𝜉𝑗), 𝑛 = 1,2,3, … . , 𝑁

𝑁

𝑗=1,𝑗≠𝑛

 

 

 

       (16) 

The formulas of weighting coefficients in the (μ) direction are 

identical to the (ξ) direction.  
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The governing equations are utilized at all inner points. The 

continuity equations are applied at common boundaries of 

quadrature elements and the boundary conditions are applied at 

other sides of the quadrature element. 

VI. BOUNDARY CONDITIONS 

A) Interior boundary condition 

The common boundary of two adjacent elements DC is 

shown in Fig. 2 is subjected to the continuity equation (17), 

and (18). 
 

 
Fig. 2. Constraint boundary conditions for a considered domain. 

 

 𝜕ℎ(1)

𝜕𝑛1
|
𝐷𝐶

= −
𝜕ℎ(2)

𝜕𝑛2
|
𝐷𝐶

 
(17) 

 

 𝜕ℎ

𝜕𝑛𝑖
= (𝑘𝑥𝑙

𝜕𝜉

𝜕𝑥
+ 𝑘𝑦𝑚

𝜕𝜉

𝜕𝑦
)
𝜕ℎ

𝜕𝜉

+ (𝑘𝑥𝑙
𝜕𝜇

𝜕𝑥
+ 𝑘𝑦𝑚

𝜕𝜇

𝜕𝑦
)
𝜕ℎ

𝜕𝜇
 

 

 

(18) 

It is essential to determine direction cosines l and m of the 

outward unit normal vector for boundary conditions of the 

element [18]. 
 

B) Exterior boundary condition 

 When derivative appears in boundary conditions, the 

transformation should be obtained as discussed before (2). 
 

C) Boundary conditions at quadrature element corners 

Generally, there are three constraint boundary conditions for 

the quadrature element corner depending on the relations 

between the element corners and element sides.  In Fig. 2, on 

the corner node (A) one of the two external boundary conditions 

on (AB or AD) can be applied. If the Dirichlet type boundary 

condition exists, it has priority to be considered as it gives the 

exact value of the dependent variable at the studied node. One 

of the two external boundary conditions or the internal 

boundary condition can be prescribed on nodes (D) and (B). 

The corner node (C) is an internal node of the quadrature 

elements that connects more than two elements by internal 

boundaries, so only one continuity equation on the four sides 

can be specified. 

VII. NUMERICAL RESULTS 

Different problems are solved using DQEM. Comparisons 

between different numerical and theoretical methods have been 

done. 
 

1) Seepage flow under a single floor based on permeable soil 

The geometry of the problem shown in Fig. 3, for upstream 

and downstream beds is represented to a limited domain of 

(L/2b=T/2b=1.0), and H=1.0m. This problem previously solved 

theoretically by Pavlvosky [24], also re-solved in the present 

work using the FEM with 363  triangular elements and a total 

489 nodes. The Geo-studio software [24] was adopted to use 

the FEM. Concerning our new developed approach, the 

problem is computed using DQEM with 3-quadrilateral 

elements (9 × 9) uniform grid points with a total of 207 nodes. 

The applied boundary conditions shown in Fig. 4 are Neumann 

condition  
𝜕ℎ

𝜕𝑛
= 0   for boundaries 1 and 2, continuity equation 

for boundaries 3, Dirichlit conditions  ℎ = 1.0 for boundary 4, 

and  ℎ = 0 for boundary 5. The values of the coefficient of 

permeability are 𝑘𝑥 = 𝑘𝑦 = 1m / day. The computed uplift 

pressure heads are shown in Fig. 5. 

 

 
Fig. 3.  Seepage flow under weir with a single floor. 

 

 
Fig. 4. Applied boundary conditions 

 

 

TABLE I 

COMPARISON BETWEEN THEORETICAL METHOD, FEM, AND DQEM (RELATIVE ERROR) 

x/b -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

Theoretically 1.0000 0.7699 0.6666 0.5804 0.5000 0.4195 0.3333 0.2300 0.0000 

FEM (489nodes) 1.0000 0.7968 0.6831 0.5886 0.5001 0.4115 0.3169 0.2036 0.0000 

Relative error% 0% -3.49% -2.47% -1.41% 0% 1.90% 4.92% 11.48% 0% 

DQEM (207nodes) 1.0000 0.7603 0.6642 0.5798 0.5000 0.4202 0.3358 0.2390 0.0000 

Relative error% 0% 1.24%  0.36%  0.10% 0% -0.16% -0.75% -3.91% 0% 
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Fig. 5. Uplift pressure heads vs. x/b under the floor. 

 

Comparing the results of DQEM with theoretical results and 

FEM results under-floor in Table I, it is noticed that, using 

(DQEM) using only 3-quadrilateral elements with 207 nodes 

reduces the error by 66% of the corresponding error by FEM 

using 363 triangular elements with 489 nodes. So, it is 

concluded that, the (DQEM) results substantiate the high 

precision and competence of (DQEM) with a few number of 

unknown.  

2) Seepage flow under a depressed structure on an infinite 

permeable depth 

The geometrical characteristics of the problem shown in 

Fig. 6 are represented to a limited domain of 2L= 40m and (T = 

b=80m). The problem is computed   using DQEM with   5-

quadrilateral elements (Fig. 7) using different grid points within 

each element (Fig. 8). This problem has been solved previously 

in analytical way by [24]. The convergence by increasing 

discrete points in an element is shown in Fig. 8. 

  

 
Fig. 6.  A depressed structure on a permeable soil with an infinite depth. 

 

 

 
Fig. 7. Elements represent the studied domain 

 

 
Fig. 8. Convergence by increasing by discrete points in an element. 

 

The numerical results demonstrate high accuracy and the 

efficiency of DQEM. They also have an acceptable 

convergence by increasing discrete points in an element (Fig. 

8). 
 

3) Seepage under an irregular concrete dam based on 

Homogeneous and isotropic soil 

Seepage under an irregular concrete dam based on 

homogeneous and isotropic soil is considered as shown in Fig. 

9, was previously solved using the FEM and Scaled-Boundary 

Finite Element Method (SBFEM),  [7] using 4288 and 104 

nodes, respectively. The same problem was solved by the 

Scaled-Boundary Radial Point Interpolation Method 

(SBRPIM), [26] using 102 nodes in case of unsteady flow at 

various time steps. In the present paper, DQEM is used to solve 

this example using 95 nodes (Fig. 10).  The comparisons are 

obtained between the results of DQEM and the results of FEM, 

SBFEM, and SBRPIM, at time step 0 (Fig. 11) 

 

 
Fig. 9.  Seepage flow under an irregular concrete dam based on 

homogeneous and an isotropic soil 
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Fig. 10.  (DQEM) domain divided into (5-quadrilateral elements) 5×5 

uniform grid points. 
 

 
Fig. 11.  Equipotential lines under the irregular concrete dam 

 

It can be observed that there is good agreement between the 

results of DQEM and FEM, SBFEM, and SBRPIM which 

demonstrate the accuracy of DQEM as well as cost-saving by 

using a number of nodes much less than other numerical 

methods. 

VIII. CONCLUSION 

In this paper, the strong form DQEM 2D steady-state 

confined seepage has been proposed unprecedentedly. The 

mapping technique was used to develop the irregular elements 

which can be used to resolve problems having irregular domain 

configurations. Handling constraint conditions were elucidated 

with different techniques. The unfamiliar approach solves 

various examples of steady-state confined seepage under 

hydraulic structures. Numerical outcomes demonstrated that 

the strong form DQEM is a good numerical alternative as 

accurate results can be obtained with much less degree of 

freedom.  
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