Journal of Agricultural Chemistry and Biotechnology

Journal homepage: <u>www.jacb.mans.edu.eg</u> Available online at: <u>www.jacb.journals.ekb.eg</u>

Phytochemicals, Antioxidant Activity and Identification of Phenolic Compounds by HPLC of Pomegranate (*Punica granatum* L.) Peel Extracts

El-Hamamsy, S. M. A. and H. A. Z. El-khamissi*

Biochemistry Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.

ABSTRACT

Pomegranate peel is food waste unfit to eat parts obtained during the production of pomegranate juice. The aim of this work is to study the effect of four different solvents (ethanol, isopropanol, hot and cold water) on phytochemicals screening, total phenolics content, total flavonoid content and antioxidants activity in pomegranate peels, as well as identification of phenolic compounds in extracts by HPLC. Phenolics, flavonoids, alkaloids, saponins, tannins, steroids and terpenoids were detected in all extracts. The highest total phenolics and total flavonoids were observed in ethanol extract of pomegranate peels (161.5 mg GAE/g and 70.65 mg Rutin/g), respectively. Furthermore, the ethanol extract of pomegranate peels showed the highest DPPH scavenging activity with the lowest IC_{50} value 14.6 µg/ml compared to other extracts. The high antioxidant activities may be due to the high contents of phenolic compounds in pomegranate peel ethanol extract. HPLC analysis was used for the identification and quantitative determination of phenolic compounds in pomegranate peels extracts. The results revealed nine polyphenolic compounds including protocatechuic acid, p-coumaric acid, caffeic acid, ellagic acid, cinnamic acid, quinic acid, benzoic acid, syringic acid and iso-ferulic acid in pomegranate peels extracts. The obtained results confirmed that ethanol extract was the most abundant of phenolics compounds as compared to the other extracts. Finally, it can be concluded that pomegranate peel extracts can be used in various fields for being rich in natural antioxidants that have a medicinal and therapeutic impact.

Keywords: Pomegranate peel extracts, Phytochemicals, total phenolic, antioxidant activity, HPLC

INTRODUCTION

Pomegranate (Punica granatum L.) is an important source of vital compounds and at the past it has been used as a medicinal for prevention and cure many diseases in the last centuries (Li et al., 2006). The pomegranate is vastly grown in many tropical and subtropical regions and is an important source of antioxidants, anticancer and antimicrobial compounds that allows it to become a light point in the center of many studies. It's known to contain a significant amount of phenolics (Machado et al., 2002). So, there is increasing emphasis that phenolic components or their derivatives may cause other beneficial effects, independent of their antioxidant capacities, by directly influencing the activities of enzymes (McDougall et al. 2005). Pomegranate fruits revealed beneficial health effects due to the vital component in flowers, seeds, arils and peels. Pomegranate peel is an unfit to eat parts obtained during production of pomegranate juice. Pomegranate peel is a rich source of flavonoids, tannins and other phenolic compounds (Jaiswal et al., 2010 and Mehder, 2013). The peels represent approximately 40 % of the whole fruit and are rich in derivatives of ellagic acid such as the ellagitannins, punicalagin, and punicalin. In addition, some ellagic acid derivatives (ellagic acid hexoside, pentoside, etc.) are also present, although in lesser amounts (Seeram et al., 2005). Several previous studies mentioned that phytochemicals were identified in the different parts of the pomegranate fruit: juice, seeds, and peels (Singh et al., 2002 and Elfalleh et al., 2009). Farag et al. (2014) revealed that thirty polyphenolic compounds were separated from pomegranate

peels by HPLC such as gallic acid, protocatechuic acid, caffeic acid, ferulic acid and coumarin. Also, Pomegranate peels contain many affective compounds such as ellagic tannins, iso-ferulic acid and ellagic acid are among important antioxidant which more effective against many diseases (Ali et al., 2014). Solvent extraction is a technique used to isolate plant antioxidants (Sultana et al., 2009). Phenolic contents and antioxidant activity of different plant materials depend on the nature of the solvent used due to its various chemical and polar properties (Mohammedi and Atik, 2011). Several studies have found that the phenolic contents in plants differ with solvent polarity (Ali et al., 2014). Recently, Pomegranate peels extracts have attracted interest because of their potential uses as natural food preservatives (Negi et al., 2003). Therefore, this study was carried out to investigate the effect of four different solvents isopropanol, hot and cold water) (ethanol, on phytochemicals screening, total phenolics content, total flavonoids content and antioxidants activity in pomegranate peels, as well as identification of phenolic compounds in extracts by HPLC.

MATERIALS AND METHODS

Plant materials

Pomegranate fruits were collected from the local market of Cairo, Egypt. Then pomegranate peels were removed carefully by a knife. Peels of pomegranate were washed thoroughly with distilled water. The pomegranate peel samples were dried at room temperature, dried peels were ground to a fine powder then the powder kept in a refrigerator until use.

Chemical analysis

Chemical composition of Pomegranate peels powder was carried out by Near-Infrared analyzer (NIR) Spectroscopy apparatus, model DA1650, which manufactured by FOSS Corporation (Zhao *et al.*, 2005). Total carbohydrates were calculated according to (AOAC, 2010) by difference.

Preparation of extracts

Ten gram of Pomegranate peel powder was extracted by soaking in 100 ml of ethanol, isopropanol, hot water (80° C) for a half-hour, and cold water at room temperature for 12 hours with constant stirring, after that the extracts were filtered by Whatman no.1 filter paper. The filtered extracts were centrifuged 4000 rpm for 15 minutes and kept at 4°C until assay.

Qualitative phytochemical screening of pomegranate peel

Peels of Pomegranate were screened for the presence or absence of various secondary metabolites, Phenolics were assessed by ferric chloride test (Cai *et al.*, 2011). Flavonoids were investigated by Alkaline reagent (Tiwari *et al.*, 2011). Alkaloids were evaluated by Wagner's test (Sasidharan *et al.*, 2011). Saponins were analyzed by Froth's Test (Savithramma *et al.*, 2011). Tannins were detected by Braemer's test (Sasidharan *et al.*, 2011). Steroids and terpenoids were detections by Salkowski test according to the methods reported by Savithramma *et al.* (2011) and Sasidharan *et al.* (2011), respectively.

Total phenolics

Total phenolics were determined in the extracts by the Folin-Ciocalteu method as described by Singleton and Rossi (1965). Gallic acid was used as a standard, the data were expressed as; mg of gallic acid equivalents (GAE) per gram dry weight.

Total flavonoids

According to the aluminum chloride colorimetric method, the Flavonoids contents were determined as described by Matyuschenko and Stepanova (2003). The data were expressed as: mg rutin equivalents per g dry weight.

Antioxidant activity by DPPH free-radical scavenging assay:

Determination of the antioxidant activity of pomegranate peels extracts was performed by DPPH radical scavenging according to Yen and Duh (1994). Through the following equation the inhibition of DPPH free radical was calculated; The percentage Inhibition (PI %) = $(AC - AT)/(AC) \times 100$ Where AC= absorbance of the control reaction at=0 min, AT= the absorbance of the test extract + DPPH at t=16 min.

 IC_{50} = the concentration required to inhibit DPPH radical by 50%, was estimated from graphic plots of the dose response curve.

Identification of phenolic compounds using HPLC

HPLC system consisting E-Chrom Tech Model LC 1620 A Liquid chromatography equipped with a UV detector at wavelength 280 nm. The analysis was achieved on Column C 18: Shodex C18-120-5 4 E (250*4.6 mm), Pump: P 1620A Pump, Software: PA Station 2015 ChemStation Version 2.0, Flow Rate: 1 ml/minute, Eluent: Methanol : water : tetrahydrofuran : acetic acid (23 : 75 : 1 : 1), respectively.

Statistical analysis

Statistical analysis was carried out using Microsoft excel program. All experiments were performed in triplicate. Results are presented as mean \pm standard division.

RESULTS AND DISCUSSION

Chemical composition of pomegranate peels

The proximate chemical compositions of pomegranate peels are given in Table 1. Results showed that pomegranate peels contained fat 0.85%, ash 4.22, moisture 6.95%, protein 8.97% and fiber 19.41 whereas total carbohydrates in the sample were calculated to be 59.60%. The results observed that pomegranate peels are a good source of carbohydrates and fiber while the percentage of fat was very low. These results are consistent with those found by **Ranjitha** *et al.* (2018) who found that pomegranate peels contain fat 0.85%, ash 4.32%, moisture 7.27%, protein 3.74%, fiber 17.31% and carbohydrates 66.51%.

Table 1. Chemica	l composition o	f pomegranate j	peels
------------------	-----------------	-----------------	-------

Parameters	Quantity (%)		
Fat	0.85		
Ash	4.22		
Moisture	6.95		
Protein	8.97		
Fiber	19.41		
Total carbohydrates	59.60		

Phytochemical screening of pomegranate peel extracts

Phytochemical screening tests showed that constituents of pomegranate peels extracts were not differ with the different extracts used. Extracts of pomegranate peels of ethanol, isopropanol, hot water, and cold water showed similar results in all results of phytochemical screening carried out. Phenolics, flavonoids, alkaloids, saponins, tannins, steroids and terpenoids were found in all extracts (Table 2). These compounds, especially flavonoids, saponins, alkaloids and tannins have great activity against pathogens (Usman et al., 2009). Alkaloids possess antimicrobial properties while flavonoids possess antiinflammatory and antitumoral activities (Omulokoli et al., 1997; Ferrandiz and Alcaraz, 1991; Gil et al., 1994). Saponins cause lowering cholesterol in the blood by preventing its absorption. Also, it has anti-tumor activity and helps the immune system in human against viruses and bacteria (Roa et al., 1995; Prohp and Onoagbe, 2012). Similar results were obtained by Farag et al. (2014).

 Table 2. Qualitative phytochemical screening of pomegranate peel extracts

Phytochemical test	Ethanol	Isopropanol	Hot water	Cold water
Phenolics	+	+	+	+
Flavonoids	+	+	+	+
Alkaloids	+	+	+	+
Saponins	+	+	+	+
Tannins	+	+	+	+
Steroids	+	+	+	+
Terpenoids	+	+	+	+

(+) present; (-) absent

Total phenolics and total flavonoids

The results in table 3 showed that ethanolic extract of pomegranate peels contained a significantly higher amount of total phenolics and total flavonoids (161.5 mg GAE/g and 70.65 mg Rutin/g) when compared to hot water extract (143.4 mg GAE/g and 58.85 mg Rutin/g), cold water extract (126 mg GAE/g and 53 mg Rutin/g) and isopropanol extract (95.8 mg GAE/g and 49.22 mg Rutin/g), respectively. Phenolics are considered compounds derived from the secondary metabolism of plants and are widely exploited because of their biological effects including their effects as antioxidants. Flavonoids are also antioxidants that have biological and chemical activities, the most important of which is scavenging free radicals (García-Cruz *et al.*, 2012 and Sankhalkar, 2014). Previous results showed that a high amount of phenolics and flavonoids in pomegranate peels extracts, especially the ethanol extract; therefore, pomegranate peels can be considered as an important source for antioxidants. These results agree with Pande and Akoh (2009); Elfalleh *et al.* (2012).

Antioxidant activity

DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical assay was used to evaluate the antioxidant activity of pomegranate peels extracts. The free radical scavenging activity measured by DPPH was expressed as the IC_{50} (Table 3 and figure 1).

Table	3.	Total	phen	olics,	total	flavonoids	and
		antioxi	dant	activity	of of	pomegranate	peel
		extract	s				

pomegranate	Total	Total	Antioxidant Activity
peel	phenolics	Flavonoids	DPPH method
extracts	(mg GAE/g)	(mg Rutin/g)	(IC50) (µg/ml)
Ethanol	161.5 ± 0.5	70.65 ± 4.05	14.6 ± 1.2
Isopropanol	95.80 ± 1	49.22 ± 3.25	23.9±1.3
Hot water	143.4 ± 5.2	58.85 ± 0.4	23.5±2.7
Cold water	126.0 ± 1	53.00 ± 1.35	27.6±2.9
		(175 (A)	

Each value is presented as mean \pm SD (n = 3).

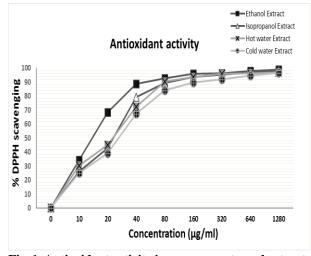


Fig. 1. Antioxidant activity in pomegranate peel extracts

The lower IC₅₀ values of pomegranate peel extracts mean stronger scavenging of DPPH free radical. The ethanol extract of pomegranate peels showed the highest DPPH scavenging activity with the lowest IC₅₀ value 14.6 μ g/ml. Also, results showed that both isopropanol and hot water extracts exhibited good antioxidant activities with IC₅₀ values 23.9 μ g/ml and 23.5 μ g/ml, respectively. Nevertheless, the cold water extract showed the lowest DPPH scavenging activity compared to other extracts with IC₅₀ value 27.6 μ g/ml. From these results, we can suggest a significant relationship between the activity of antioxidants in scavenging free radicals and the content of total phenolics and flavonoids present in extracts of pomegranate peel, for example the ethanol extract achieved the highest content of total phenolic and flavonoids with the highest antioxidant activity compared to other extracts (Noda *et al.*, 2002 and Ghasemzadeh *et al.*, 2010). The present results are in accord with Russo *et al.* (2018) and Ali *et al.* (2014) who attributed the high of antioxidant activities to the high contents of total phenolics and flavonoids of pomegranate peel extracts.

Identification of phenolic compounds by HPLC

HPLC (High- performance liquid chromatography) analysis was used for identification and quantitative analysis of some various phenolic compounds in pomegranate peels extracts. Table 4 and figure 2 revealed six polyphenolic compounds including protocatechuic acid, p-coumaric acid, caffeic acid, ellagic acid, cinnamic acid, and quinic acid in ethanol extract of pomegranate peels. Cinnamic acid was the most abundant (33.08 mg/ml) followed by quinic acid (20 mg/ml) and p-coumaric acid (18.43 mg/ml), while caffeic acid (9.55 mg/ml) and ellagic acid (8.14 mg/ml) were the lowest abundant in ethanol extract.

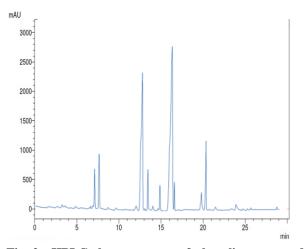


Fig .2. HPLC chromatogram of phenolic compounds identified in ethanol extract of pomegranate peels

Table	4.	Concentrations	of	phenolic	compounds
		identified in etha	nol	extract of j	oomegranate
		neels by HPLC.			

peels by III LC.					
Compound	$\mathbf{R}_{t(min)}$	Concentration (mg/ml)			
Protocatechuic acid	7.8	10.26			
p-coumaric acid	12.2	18.43			
Caffeic acid	13.5	9.55			
Ellagic acid	15.0	8.14			
Cinnamic acid	16.1	33.08			
Quinic acid	20.1	20.0			
	• •				

 $R_{t (min)}$; Retention time by minute

Moreover, syringic acid was the most abundant polyphenolics in isopropanol extract of pomegranate peels which constituted (15.12 mg/ml) while the rest was protocatechuic acid (9.55 mg/ml) and benzoic acid (7.43 mg/ml) as shown in table 5 and figure 3.

On the other hand, four phenolic compounds identified in hot water extract of pomegranate peels are shown in table 6 and figure 4. HPLC analysis revealed that ellagic acid was the main polyphenolics of hot water extract, it constituted (25.33 mg/ml) followed by Iso-ferulic acid (12.36 mg/ml) while syringic acid and protocatechuic acid

El-Hamamsy, S. M. A. and H. A. Z. El-khamissi

were found by lower quantities in hot water extract which contained (5.22 mg/ml) and (2.02 mg/ml), respectively.

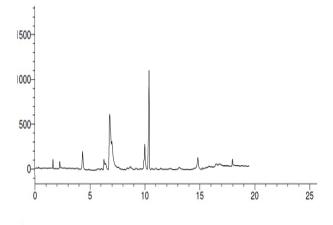


Fig.3. HPLC chromatogram of phenolic compounds identified in isopropanol extract of pomegranate peels

Table 5. Concentrations of phenolic compounds identified in isopropanol extract of pomegranate peels by HPLC.

poincgran	an peus	by III LA	<i>_</i> •	
Compound	Rt (min	ı) Con	centration (r	ng/ml)
Protocatechuic acid	7.8		9.55	
Benzoic acid	9.3		7.43	
Syringic acid	10.11	l	15.12	
$R_{t(min);}$ Retention time by n	ninute			
1				
2500-				
2000-				
2000-				
-				
1500-				
-				
1000-		1		
-				
500-				
-				
1 h and	المسسما			-
0h				
0 5 10	15	20	25	
account faithfund the				min

Fig.4. HPLC chromatogram of phenolic compounds identified in hot water extract of pomegranate peels .

Table 6. Concentrations of phenolic compounds identified in hot water extract of pomegranate peels by HPLC.

L	F F					
Compound	Rt (min)	Concentration (mg/ml)				
Protocatechuic acid	7.8	2.02				
Syringic acid	10.11	5.22				
Ellagic acid	15.0	25.33				
Iso-ferulic acid	18.61	12.36				

 $R_{t(min)}$; Retention time by minute

Data in table 7 and figure 5 revealed the presence of three phenolic compounds such as protocatechuic acid, syringic acid and ellagic acid in cold water extract of pomegranate peels. syringic acid was the most abundant (19.41 mg/ml) in comparison with ellagic acid (11.06 mg/ml) and protocatechuic acid (10.25 mg/ml).

In this concern, the previous studies upon extracts of different plants containing polyphenolic compounds (including ellagic acid, ferulic acid, quinic acid, protocatechuic acid, p-coumaric acid, caffeic acid, syringic acid, and cinnamic acid) act as antioxidants (Reddy et al., 2007) and act as antibacterial (Salih et al., 2017) and are used in cosmetics and pharmaceutical industry (Maldini et al., 2009). The obtained results from this work confirmed that ethanol extract of pomegranate peels was the most abundant of polyphenolics as compared to the other extracts. Protocatechuic acid appeared in all extracts followed by ellagic acid which appeared in three extracts and was absent in isopropanol extract. Also, syringic acid was found in three extracts and was absent in ethanol extract. Different phenolic compounds were extracted from pomegranate peels have been shown to possess an antioxidants property (Li et al., 2006). These results are in agreement with those obtained by Mansour et al. (2013) showed the presence of ellagic acid, quercetin, gallic acid, vanillic acid, caffeic acid and p-coumaric acid in pomegranate peel extract. Also, Ali et al. (2014) revealed the presence of cinnamic acid, benzoic acid, ferulic acid, coumaric acid, pyrogallol and chlorogenic acid in methanolic extract of pomegranate peel by HPLC.

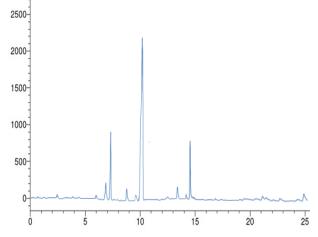


Fig.5. HPLC chromatogram of phenolic compounds identified in cold water extract of pomegranate peels.

 Table 7. Concentrations of phenolic compounds identified in cold water extract of nomegranate peels by HPLC

poincer	anac pecie	by m LC.		
Compound	$\mathbf{R}_{t(min)}$	Concentration (mg/ml)		
Protocatechuic acid	7.6	10.25		
Syringic acid	10.11	19.41		
Ellagic acid	14.87	11.06		
R _{t (min)} ; Retention time by minute				

CONCLUSION

In this work, pomegranate peel extracts contain many phytochemicals such as phenolics, flavonoids, alkaloids, saponins, tannins, steroids and terpenoids. The ethanol extract showed the highest total phenolics, total flavonoids and the highest antioxidant activity with the lowest value IC_{50} compared to the other extracts. Furthermore, these results revealed the presence of nine polyphenolic compounds: protocatechuic acid, p-coumaric acid, caffeic acid, ellagic acid, cinnamic acid, quinic acid, benzoic acid, syringic acid and iso-ferulic acid by HPLC in

pomegranate peels extracts. It can be concluded that pomegranate peel extracts can be used in various fields for being rich in natural antioxidants that have a medicinal and therapeutic impact.

REFERENCES

- Ali, S. I., F. K. El-Baz, G. A.E. El-Emary, E. A. Khan and A. A. Mohamed (2014). HPLC-Analysis of Polyphenolic Compounds and Free Radical Scavenging Activity of Pomegranate Fruit (*Punica* granatum L.), International Journal of Pharmaceutical and Clinical Research, 6 (4), 348-355.
- AOAC, (2010). Association of Official Analytical Chemists .17thed USA; DC.
- Cai, L. Y., F. X. Shi and X. Gao (2011). Preliminary phytochemical analysis of Acanthopanantrifoliatus (L.) Merr. J. of Medic. Plants Res., 5(17):4059 – 4064.
- Elfalleh, W., H. Hannachi, N. Tlili, Y. Yahia, N. Nasri and A. Ferchichi (2012). Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. *Journal of Medicinal Plants Research*, Vol. 6, 4724-4730.
- Elfalleh, W., N. Nasri, N. Marzougui, I. Thabti, A. M'rabet, Y. Yahya, B. Lachiheb, F. Guasmi and A. Ferchichi (2009). Physico-chemical properties and DPPH-ABTS scavenging activity of some local pomegranate (Punica granatum) ecotypes. Int. J. Food Sci. Nutr. 60(2):197-210.
- Farag, R. S., M. S. Abdel-Latif, S. S. Emam and L. S. Tawfeek (2014). Phytochemical screening and polyphenol constituents of pomegranate peels and leave juices. Agriculture and Soil Sciences (LRJASS) 1 (6): 086-093.
- Ferrandiz, M.L. and M. J. Alcaraz (1991). Antiinflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions. 32:283–288.
- García-Cruz, L., Y. Salinas-Moreno and S. Valle-Guadarrama (2012). Betalaínas, compuestos fenólicos y actividad. antioxidante en pitaya de mayo (*Stenocereus griseus H.*). *Rev. Fitotec. Mex.*, [online]. 35(5):1-5.
- Ghasemzadeh, A., H.Z.E. Jaafar and A. Rahmat, (2010). Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). 15(6):4324-4333.
- Gil, B., M.J. Sanz, M. C. Terencio, M. L. Ferrandiz, G. Bustos, M. Paya, R. Gunasegaran and M. J. Alcaraz (1994). Effects of flavonoids on Naja naja and human recombinant synovial phospholipases A2 and inflammatory responses in mice. Life Sci. 54(20):333–338.
- Jaiswal, V., A. DerMarderosian and J.R. Porter (2010). Anthocyanins and polyphenoloxidase from dried arils of pomegranate (Punica granatum L). Food Chem., 118: 11-16.
- Li, Y., C. Guo, J. Yang, J. Wei, J. Xu and S. Cheng (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 96 (2):254– 260.

- Machado, T.B., C. R. Leal, A. C. Amaral, K. R. Santos, M. G. Silva and R. M. Kuster (2002). Antimicrobial ellagitannin of Punica granatum fruits. J Braz Chem Soc, 13:606-610.
- Maldini, M., S. Sosa, P. Montoro, A. Giangaspero, M. J. Balick, C. Pizza and R. D. Loggia (2009). Screening of the topical anti-inflammatory activity of the bark of *Acacia cornigera* Willdenow, *Byrsonima crassifolia* Kunth, *Sweetia panamensis* Yakovlev and the leaves of *Sphagneticola trilobata* Hitchcock. J. *Ethnopharmacol.* 122, 430–433.
- Mansour, E., A. Ben Khaled, B. Lachiheb, M. Abid, K. Bachar and A. Ferchichi (2013). Phenolic compounds, antioxidant, and antibacterial activities of peel extract from Tunisian pomegranate. J Agr Sci Tech, 15:1393-1403.
- Matyuschenko, N.V. and T. A. Stepanova (2003). Quantitative determination of the total content of flavonoids in the new phyto preparation. Elima. Pharm. Chem. J., 37:261–263.
- McDougall, G.J., F. Shpiro, P. Dobson, P. Smith, A. Blake and D. Stewart (2005). Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase. J Agric Food Chem. Apr 6; 53(7):2760-6.
- Mehder, A. O. A. (2013). Pomegranate Peels Effectiveness in improving the nutritional, physical and sensory characteristics of pan bread. Current Science International, 2(2), 8-14
- Mohammedi, Z. and F. Atik (2011). Impact of solvent extraction type on total polyphenols content and biological activity from tamarix aphylla. Int J Pharm Bio Sci, 2:609-615.
- Negi, P.S., G.K. Jayaprakasha and B.S. Jena (2003). Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chemistry, 80: 393-397.
- Noda, Y., T. Kaneyuki, A. Mori and L. Packer, (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J Agric Food Chem, 50:166-171.
- Omulokoli, E., B. Khan and S. Chhabra (1997). Antiplasmodial activity of four Kenyan medicinal plants. J. Ethnopharmacol. 56(2):133–137.
- Pande, G. and C. C. Akoh (2009). Antioxidant capacity and lipid characterization of six Georgia-grown pomegranate cultivars. J. Agric. and Food Chem. 57(20): 9427–9436.
- Prohp, T.P. and I. O. Onoagbe (2012). Acute toxicity and dose response studies of aqueous and ethanol extracts of Triplochton scleroxylon K. Schum (Sterculiaceae). Intern. J. Appl. Biol. Pharm. Technol. Vol. 3 (1): 400 – 409.
- Ranjitha, J., G. Bhuvaneshwari, T. Deepa and K. Kavya (2018). Nutritional composition of fresh pomegranate peel powder International Journal of Chemical Studies, 6(4): 692-696.

- Reddy, M., S. Gupta, M. Jacob, S. Khan and D. Ferreira (2007). Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med, 73:461-467.
- Roa, R.R., R. M. Babu and M. R. V. Rao (1995). Saponins as anti-carcinogens. The J. Nutr. 125:717-724.
- Russo, M., C. Fanali, G. Tripodo, P. Dugo, R. Muleo, L. Dugo, L. De Gara and L. Mondello (2018). Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties. Analytical and Bioanalytical Chemistry, 410:3507– 3520.
- Salih, E., M. Kanninen, M. Sipi, O. Luukkanen, R. Hiltunen, H. Vuorela, R. Julkunen-Tiitto and P. Fyhrquist (2017). Tannins, flavonoids and stilbenes in extracts of african savanna woodland trees *Terminalia brownii*, *Terminalia laxiflora* and *Anogeissus leiocarpus* showing promising antibacterial potential. South Afr. J. Bot. 108, 370–386.
- Sankhalkar, S. (2014). Antioxidant enzyme activity, phenolics and flavonoid content in vegetative reproductive parts of *Moringa oleifera Lam. Am. J. Pharmatech. Res.*, 4(3): 255-270.
- Sasidharan, S., Y. Chen, D. Saravanan, K. M. Sundram and L. Yoga Latha (2011). Extraction, Isolation and Characterization of Bioactive Compounds From Plants' Extracts. Afri. J. of Traditional and Complementary Alternative Medicine. 8(1):1-10.
- Savithramma, N., M. Linga-Rao and D. Suhrulatha (2011). Screening of Medicinal Plants for Secondary Metabolites. Middle-East J. of Sci. Res., 8(3): 579– 584.

- Seeram, N., R. Lee, M. Hardy and D. Heber (2005). Rapid large scale purification of ellagitannins from pomegranate husk, a by-product of the commercial juice industry. Sep Purif Technol.,41:49–55.
- Singh, R.P., K. N. C. Murthy and G. K. Jayaprakasha (2002). Studies on the antioxidant activity of pomegranate peel and seed extracts using in vitro models. J. Agric. Food Chem. 50(1):81–86.
- Singleton, V. and J.A. Rossi (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Viticult 16(3): 144–158.
- Sultana, B., F. Anwar and M. Ashraf (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14:2167-2180.
- Tiwari, P., K. Bimlesh, M. Kaur, G. Kaur and H. Kaur (2011). Phytochemical screening and Extraction: A Review. Inter. Pharmac. Sci., 1(1): 98 – 106.
- Usman, H., F. I. Abdulrahman and A. Usman (2009). Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). Afr. J. Trad. CAM. 6 (3): 289 – 295.
- Yen, G.C. and P. D. Duh (1994). Scavenging effect of methanolic extracts of peanut hulls on free radical and active oxygen species, *J Agric Food Chem*, 42: 629-632.
 - Zhao, C., L. Liu, J. Wang, W. Huang, X. Song and C. Li (2005). Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. International J. of Appl. Earth Observation & Geoinformation., 7(1): 1-9.

المواد الفيتوكيميانية ونشاط مضادات الأكسدة وتحديد المركبات الفينولية بواسطة جهاز HPLC لمستخلصات قشر الرمان سام محمد امين الحمامصي وهيثم أحمد زكي الخميسي قسم الكيمياء الحيوية- كلية الزراعة- جامعة الأزهر- القاهرة- مصر.