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ABSTRACT 

Detecting fertility methods of hatching eggs is getting an importance with 

the increase in poultry breeding facilities size to remove the non-

hatchable eggs which consume time, space and cost without benefits. 

Early detection of the infertile eggs is a vital economic issue. Fertility 

detection methods are expensive to be applied widely, hence this 

investigation aimed to study the possibility of using a low-cost device as 

light dependent resistor sensors in detecting the fertility of hatching eggs 

with high efficient at candling process. Mathematical formulas were 

developed in this study to discriminate the fertile and infertile eggs by the 

light dependent resistor sensor and interfaced with a personal computer 

programmed by LabView software package to execute a certain control 

decision (is a hatchable egg or not?) via these formulas. Different 

statistical classifiers have been used to classify eggs into fertile and 

infertile eggs like linear, quadratic and partial least squares discriminant 

analyses and support vector machine. According to literature three 

different times were appointed at earlier times of egg incubation process 

for fertility identification investigation of 6
th

, 9
th

 and 12
th

 day. For more 

identification precision, sensor position for light intensity measuring was 

investigated at three different measuring orientation lines against the 

investigated eggs at vertical, inclined 45˚ and horizontal orientation line. 

Classification mathematical models were developed using the previous 

classifiers. Principal component and partial least squares regression 

were used to develop multiple linear regression models for each 

incubation period. determination 
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It was found by the Principal Component Analysis, that the sensor 

orientation line position for light intensity measuring gives different 

measured values of the same investigated egg, but all these measurement 

values have an entirely correlation relationship with the classification 

efficiency. The highest identification rate of 97% obtained by the 

classifier of linear discriminant analysis at the 6
th

 day of the incubation 

period by the light dependent resistor sensor, which confirms the efficient 

use of this simple low-cost sensor in discrimination at earlier times of 

incubation period closing to the other sophisticated devices. The 

developed mathematical model can easily be implemented with Fuzzy 

logic controller; further research will be needed to accomplish the fully 

automated system. 

Keywords: discrimination analysis, mathematical model, hatchability 

determination   

NOMENCLATURE 

LDR Light-Dependent Resistor PCA Principal Component Analysis 

LDA 
Linear Discriminant 

Analysis 
PCR 

Principal Component 

Regression 

QDA 
Quadratic Discriminant 

Analysis 
PLS-R 

Partial Least Squares 

Regression 

PLS-DA 
Partial Least Squares 

Discriminant Analysis 

DAQ Data Acquisition card 

R
2 

Coefficient of determination 

SVM Support Vector Machine LIFA LabView Interface for Arduino 

I1, I2 and I3 
Light intensity measured from MOL positions 1, 2 and 3 respectively, 

lux 

F1 and F2  
First and second Principal 

component, respectively 

MOL Measuring Orientation Line 

SD Standard Deviation 

INTRODUCTION 

he biggest problem encounters the egg incubation industry is early 

fertility detection. The fertility detection requires higher 

sophisticated devices for that discrimination process. Infertile 

eggs can cause a bio-contamination if they were not removed before the 

setting into the artificial incubator or hatchers, in addition, taking time, 

T 
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space and costs (Smith et al., 2008; Zhu and Ma, 2011; Liu and Ngadi, 

2013; Hai-ling et al., 2016 and Önler et al., 2017). As the egg fertility 

can be detected as possible at earlier times of the incubation duration 

gives a huge advantage to avoid the consequence problems. There is no 

devices till now can detect the egg fertility prior to the incubation process 

because, there is no physiological features of chick embryo can be clearly 

distinguished inside (Zhu and Ma, 2011). Most of egg incubation plants 

were tending to use destructive and candling analysis methods for egg 

fertility detection at 7 to 12 days of incubation investigated and developed 

by Cain et al. (1967); Howe et al. (1995); Akiyama et al. (1999); 

Tazawa et al. (1999); Moriya et al. (1999, 2000); Kato et al. (2002); 

Zhu and Ma (2011) and Liang et al. (2011) which is a difficult problem 

due to human faults and chick embryo handling effects. Hence, using 

those methods not are obtainable and reducing the hatching rates to be 

below the optimum rates of 86-95% according to USDA (2006). To 

overcome the problems associated to the destructive and candling analysis 

methods by human factor, there are many trials of automated non-

destructive discrimination analysis methods for egg fertility detection at 

earlier times of incubation with advanced costly instruments such as 

machine vision (Zhu and Ma, 2011), Magnetic Resonance Imaging 

(MRI) (Klein et al., 2002; and Bain et al., 2007), acoustic resonant 

frequency (Coucke et al., 1997), acoustic impulse and supervised 

recognition (Lin et al., 2009), hyper spectral imaging (Jones et al., 2005; 

and Liu and Ngadi, 2013). Such those methods are complicated and 

expensive in general. Therefore, investigating the feasibility of using low-

cost methods would be helpful for developing low-cost detecting fertility 

instruments. The need to a comprehensive detection method for picking 

out the infertile eggs one by one is an important issue that the present 

study dealt with. Egyptian traditional hatcheries, candling process is the 

most widely followed procedure for identifying fertility of hatching eggs 

in the early periods of egg incubation. Hatchery workers are using the 

Candler to observe egg content. Also they are placing egg in their eye 

socket to judge if it reached the proper temperature or not (FAO, 2009). 

Definitely, such those methods are not objective for judging hatchability 

of eggs because they depend on human experience. Hence, the research 
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work is aiming to investigate the ability of using low-cost sensors such as 

Light-Dependent Resistor (LDR) to discriminate the eggs according to 

their fertility using different advanced statistical classifiers at earlier 

different ages of chick embryo to determine the highest percent of 

identification rate could be achieved by the classifier. The advanced 

classifiers are be used to develop a suitable mathematical model to 

allocate the eggs into a fertile or infertile group. There are many different 

statistical classifiers can be used for fertility detection of hatching eggs 

such as Linear Discriminant Analysis (LDA), Quadratic Discriminant 

Analysis (QDA), Partial Least Squares Discriminant Analysis (PLS-DA) 

and Support Vector Machine (SVM). SVM classifier was used before to 

classify the hatching eggs into fertile and infertile group and establishing 

a mathematical model by (Bhuvaneshwari and Scholar, 2015; Zhihui et 

al., 2015 and Nurdiyah and Muwakhid, 2016). (Deng et al., 2010; 

Zhao et al., 2010 and Sun et al., 2017) also use SVM for eggshell cracks 

detection and identifying egg freshness and variety.  Mathematical 

models generated by LDA, QDA and PLS-DA – are very useful to be 

included in low-cost detection devices of hatching eggs. LDA and PLS-

DA have been used by Yongwei et al. (2009) and Zhao et al. (2010) in 

identifying eggs quality attributes. Therefore the present investigation 

aims to investigate the following assignments: 

1. Studying the feasibility of using low-cost sensors, such as LDR, to 

discriminate fertile and infertile eggs before hatching; 

2. Determining the suitable statistical classifier method which gives 

the highest identification rate at earlier ages of chick embryo 

during incubation period; and 

3. Developing a mathematical model could be used for automated 

system to determine if a new hatching egg is fertile or not. 

MATERIALS AND METHODS 

Egg Samples and Physical Properties 

Egg samples of Hubbard broiler aging between 42-46 weeks old. Egg 

physical analysis was accomplished at the Faculty of Agriculture, Poultry 

Production Department, Ain Shams University by measuring external and 
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internal dimensions of egg and yolk, mean shell thickness (of the three 

positions: at blunt, sharp ends and equator), weights of whole egg, 

albumen, yolk and wet and dry shell and the strength of eggshell. The 

instruments used for weighing are an electronic balance with a precision 

of 0.01g and for eggshell thickness and breaking strength is a Vernier 

Caliper. All measurements and sampling were done at Tarek Diab 

Hatchery Plant, Nashil village, Qotour district, Gharbia Governorate, 

Egypt during the summer season of 2017. The freshly laid eggs were 

incubated in a Smart™ incubator (Pas Reform Hatchery Technologies, 

Zeddam, the Netherlands) at 37.6ºC and 54% relative humidity, and were 

turned every one hour. On days of 6
th

, 9
th

 and 12
th

 of incubation, eggs 

were taken out from the incubator to be candled. Candling process does 

not take more than two minutes to return eggs tray into the incubator 

immediately for chick embryos bio-security. Sampling was run at the 

periods of candling process at 6
th

, 9
th

 and 12
th

 days of the incubation age. 

Total samples of 110 eggs are including 55 fertile and other of 55 infertile 

eggs. 

Experimental Setup 

To investigate the effectiveness of LDR in detecting fertility of hatching 

eggs and thus discriminate the fertile and infertile eggs, it needs an 

appropriate Candler which allows an easy and fast measuring of light 

intensity that is traveling from the light source to the sensor transmitting 

through the investigated eggs. A local-made Candler is consists of 70 × 

40 × 30cm container was manufactured from 3mm mild steel sheets and 

furnished to be like a trolley for ease movement. The Candler was 

manufactured in a workshop located at Gharbia Governorate, Figure 1. 

At the predetermined investigated ages (6
th

, 9
th

 and 12
th

 days), the eggs 

tray was carried from the incubator and positioned on the Candler for 

light intensity measurements of light spectrum emitted from eggs during 

candling. Light source used for candling was a Light Emitting Diode 

(LED) lamp of 40W and 250lm. Twelve lamps were uniformly distributed 

at the bottom of the container and were matched to be in three rows 

transversely and four columns longitudinally as depicted in Figure 1. 

Distance between lamps' top edges and eggs trays was of 8cm.  For 
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measuring light intensity, LDR sensor positioning was investigated at 

three different measuring orientation lines in space for giving the highest 

classification percent. The first, second and third sensor measuring 

orientation line was expressed as an angle, the angle between the sensor 

axis and egg axis of Zero, 45 and 90 degrees, respectively. LDR sensor 

was located in a transparent polyethylene container formed a shape of 

incomplete cone. The distance between the sensor and the container top is 

1cm, Figure 2. For data acquiring from the LDR sensor, the 

microcontroller Arduino-Uno board was programmed as an interface Data 

Acquisition card (DAQ) module between the Personal Computer (PC) 

and LDR sensor. Arduino is a single-board microcontroller, can be used 

for reading data from sensors and also can use these data to control the 

overall system. So the Arduino-Uno board provides analog and digital 

Inputs and Outputs (I/O ports) to read data obtained from the sensor or 

giving orders for controlling. LabView software was used to program the 

Arduino microcontroller to be a DAQ card. LabView is graphical 

programming software. The interfacing between Arduino microcontroller 

and LabView is an innovative research tool due to the integration work 

between the open source microcontroller and PCs which gives higher 

potential tool for all biosystems monitoring and control operations. Data 

acquired by DAQ is processed, analyzed and presented graphically by 

LabView installed on the PC and this makes the programming 

modifications is available for any required duty. So LabView Interface for 

Arduino (LIFA) toolkit was used. 

LDR connection to Arduino DAQ 

Light intensity measurement was performed by a GL12528 12mm LDR 

sensor. LDR is an inexpensive cadmium sulfide photoconductive cell 

(Maranhão et al., 2015). Using resistance as a function of illumination, 

with the increase of illumination on the cell, resistance is going to 

decrease. Hence sensor output voltage is linearly proportional to 

illumination. The measurement range of illumination was provided by the 

manufacturer is from 0 to 10000lux with resistance range varying linearly 

from 1000kΩ to 100Ω, respectively. The LDR sensor has two terminals; 

the first terminal is connected to power supply terminal (5Volt Vcc) and 
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the second one is output terminal (Vout) that gives the output voltage 

corresponding to the sensed illumination as shown in Figure 3.  

 
Figure 2. Schematic drawing of the three different positions that light 

intensity was measured from; (1) Zero degree, (2) 45 degrees 

and (3) 90 degrees 

Modeling and Simulation of Light Intensity Measuring System  

LabView 2013 software was used in the present investigation with NI-

VISA 5.0.3 software. LIFA toolkit was downloaded and installed from 

 

100 

1 2 3 
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JKI VI Package Manager. So the microcontroller Arduino can be 

programmed and operated directly by LabView for any system 

controlling and data acquiring processes. For programming the DAQ 

(microcontroller Arduino) to acquire the data from LDR sensor, the front 

panel and block diagram of LabView software were used. In front panel, 

the indicators and controls for the programmer are appearing. Block 

diagram is containing the graphical source code. Hence any object on the 

front panel appears as a terminal on the block diagram (Johnson and 

Jennings, 2006). The programmed graphical code designed for this 

experiment was depicted in Figure 4. VISA resource was defined to use 

the COM4 of the PC for data communication and transfer via USB/Serial 

to the Arduino board; the baud rate was adjusted at 115200baud/second 

for initialization. Analog input port ofA0 was chosen for data readings 

from the LDR sensor as shown in Figure 3. The while loop for the system 

continuous operation was timed at 1000ms to take one reading every 

second, Figure 4. After coding the system, front panel would be as shown 

in Figure 5. Analog input was chosen from the front panel to be A0 and 

by running the system it would be able to measure light intensity emitted 

from eggshell in lux as depicted in Figure 5. LIFA toolkit has already 

been used in agricultural engineering applications by Faris and 

Mahmood (2014); and Pradeep et al. (2014). 

The effect of the measuring orientation line and PCA 

To study the effect of the measuring orientation line on discrimination 

precision; an adequate method was determined after a series of 

experiments to study the correlations between light intensity data and 

eggs fertility. Hence PCA technique was applied for this purpose. In 

PCA, light intensity measurements from both fertile and infertile eggs 

samples are presented by “loadings plots”. Measured values of samples 

that are positively correlated to each other are close to each other. So it is 

expected that the infertile samples are going to be close to each other and 

the same for fertile samples, while loadings that are negatively correlated 

are going to be positioned opposite of each other. Hence it is expected 

that the infertile samples are going to be positioned opposite of the fertile 

ones. The three different measuring orientation lines and the measured 

values are going to be represented in “score plots”. 
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If there is a similarity in light intensity between any two measuring 

orientation lines, i.e., they are positively correlated, their scores are going 

to be close to each other. While if there are some kind of dissimilarity, 

i.e., they are negatively correlated, their scores are going to be positioned 

opposite to each other (Hopfer et al., 2014). PCA is obtaining to study if 

there are any differences between these orientation line positions of the 

sensor. XLSTAT 2017 software was used for PCA running.     

Classifiers and Classification Models 

To ensure if the data obtained from LDR sensor has the discrimination 

potential between fertile and infertile egg, different classifiers have been 

used for determining which one gave the highest percent of correctly 

classified samples. In addition, to make these data practical and 

applicable to be inserted in automated system for detecting fertility of 

hatching eggs. Classification models could be developed from these data 

in which two models are developed. One for fertile egg and the other for 

infertile and by substituting with light intensity value measured from the 

egg, fertility are going to be determined according to the model that gave 

the highest value between these two models. The statistical classifiers like 

LDA, QDA and PLS-DA were used for developing linear, multiple 

regression, second-order polynomial and interactive second-order 

polynomial models for predicting fertility. Also classifiers like SVM was 

used in the present study for finding support vectors and bias that could 

be used to find a boundary takes different shapes which could be used to 

differentiate between fertile and infertile eggs. LDA, QDA, PLS-DA and 

SVM have been used before in food science and engineering (Cen and 

He, 2007; Cocchi et al., 2006 and Elmessery and Abdallah, 2014). 

Also PCR and PLS-R were used for developing a classification model 

could be used via substituting in that model and then the sign of resulted 

value determine its fertility. For running this test, hundred samples was 

used as a training set; fifty fertile and the other fifty infertile and for 

validation set ten eggs was selected; five fertile and the other fives was 

infertile. Light intensity measured from infertile eggs was given a value 

of -1 and for fertile ones was given a value of +1 as a quantified value of 

its fertility. 
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RESULTS AND DISCUSSION 

From physical analysis results obtained and indicated at Table 1, there is 

no abnormal characteristics can influence hatchability and adequate 

production (Narushin and Romanov, 2002). 

Table 1. Physical Properties of the investigated eggs 

Item Mean±SD Item Mean±SD 

Egg weight, g 65.75±3.42 Albumen height, mm 9.87±2.27 

Length, mm 56.82 ± 2.1 Yolk diameter, mm 41.21 ±1.03 

Width, mm 46.4 ± 2.11 Yolk weight, g 19.9±0.96 

Shell breaking 

strength, N/cm
2
 

24±5.90 
Shell wet-weight, g 7.74±0.51 

Shell dry-weight, g 5.68±0.19 

Yolk height, mm 17.31±1.25 Shell thickness, mm 0.36 ±0.05 

Discrimination analysis by PCA method 

The main purpose of running Principal Component Analysis (PCA) is to 

find if there are any differences between the three different positions of 

Measuring Orientation Line (MOL) for light intensity measurements, 

Figure 2, and to find the correlation between fertility state and MOL 

positions. From PCA correlation matrix between light intensity value and 

the MOL positions of 1, 2 and 3 as reported in Table 2 for each 

investigated age of eggs, it is evident from these results that the fertility 

has a high negative correlation between light intensity measured from 

MOL position 1 in each case of incubation period and the coefficient of 

correlation was of -0.791, -0.840 and -0.898 for the 6
th

, 9
th

 and 12
th

 day of 

the incubation period, respectively. Also from PCA, the score plots are 

showing differences between light intensity values obtained from the 

three MOL positions. It is evident that MOL position 1 has a positive 

correlation with MOL position 2 according to the first component 

analysis because they were closely positioned at the quarter. This positive 

correlation between the two MOL positions 1 and 2 raises as incubation 

period increases as shown in Figure 6-C due to the increase of chick 

embryo size, this result has an important approach issue for chick embryo 

aging determination. Series of experiments will be required to deliver a 

scientific tool for embryo age measuring. Overall differences among light 

intensities measured at the three MOL positions which represent 56.20, 
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74.87 and 50.02% for chick embryo at the 6
th

, 9
th

 and 12
th

 day of 

incubation period, respectively as shown in Figure 6. The highest percent 

of 74.87% obtained at the 9
th

 day of the incubation period illustrates that 

there are high differences among light intensities measured from the three 

different MOL positions, Figure 6-B. Light intensity values measured 

from MOL positions 1 and 2 are very close to each other. For loading 

plots, it is evident there are differences between fertile and infertile eggs. 

The observations from 1 to 50 (Obs1 to Obs50) and from 51 to 100 

(Obs51 to Obs100) were infertile and fertile eggs, respectively. 

Table 2. Correlation matrixes between light intensity measured from the 

three different MOL positions and fertility for each investigated 

incubation period 

6 days of 

incubation 

period 

Variables Position 1 Position 2 Position 3 Fertility 

Position 1 1.000 0.460 0.200 -0.791 

Position 2 0.460 1.000 0.353 -0.432 

Position 3 0.200 0.353 1.000 -0.093 

Fertility -0.791 -0.432 -0.093 1.000 

9 days of 

incubation 

period 

Variables Position 1 Position 2 Position 3 Fertility 

Position 1 1.000 0.857 0.391 -0.840 

Position 2 0.857 1.000 0.590 -0.640 

Position 3 0.391 0.590 1.000 -0.068 

Fertility -0.840 -0.640 -0.068 1.000 

12 days of 

incubation 

period 

Variables Position 1 Position 2 Position 3 Fertility 

Position 1 1.000 0.452 0.129 -0.898 

Position 2 0.452 1.000 0.092 -0.507 

Position 3 0.129 0.092 1.000 -0.114 

Fertility -0.898 -0.507 -0.114 1.000 

Regression analysis by PCR and PLS-R methods 

PCR and PLS-R were used to develop a linear equation fitting the data 

obtained from the three MOL positions of the fertility eggs, Equation 1. 

By substituting light intensity values in this equation; if the result value is 

negative the egg be infertile, otherwise be fertile. The model constants for 

Equation 1 have been listed in Table 3 for both PCR and PLS-R 

methods. 

  Fertility = a + b I1 + c I2 + d I3                                  Eqn 1 

Where I1, I2 and I3 are light intensity measured from positions 1, 2 and 3, 

respectively. It was noticed that with the increase in chick embryo age the 
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model fitness is increased. The mathematical model developed by PCR 

has higher coefficient of determination than PLS-R at all incubation ages 

and the highest value obtained of the coefficient of determination 

obtained is 0.819 at age of 12 days. 

 

Figure 6. Loading plots and score plots of PCA results for each age of 

chick embryo at (A) 6, (B) 9 and (C) 12 days old 



PROCESS ENGINEERING 

Misr J. Ag. Eng., January 2018                                                            - 212 - 

Table 3. Fertility predicting mathematical model constants for PCR and 

PLS-R methods 

Classification 

method 

Incubation 

period, 

days 

Model constants 
R

2 

a b c d 

PCR 

6 5.784 -0.102 -0.028 0.027 0.640 

9 1.280 -0.147 0.001 0.082 0.786 

12 4.648 -0.084 -0.017 0.001 0.819 

PLS-R 

6 11.087 -0.074 -0.070 -0.018 0.565 

9 8.942 -0.067 -0.058 -0.010 0.587 

12 7.061 -0.063 -0.048 -0.015 0.760 

Identification Rates of PLS-DA, QDA, LDA and SVM Classifiers  

The feasibility of using LDR sensor to achieve high percentage of 

identification rate in which eggs samples were classified correctly into 

fertile and infertile eggs. The percentages of correctly classified 

observations were listed, for all classifiers used in the present study, in 

Table 4. According to LDA classifier the data measured from each 

individual MOL position have higher identification rate than by QDA, 

where the MOL position 1 achieves the highest identification rate by 

LDA at chick embryo age of 6 days old of 95% for training set. But, for 

MOL positions 2 and 3, the identification rates were lower. In case of 

using the three MOL positions in the training set, classification at age of 6 

days old was correctly classified of 97% by LDA and 95% by QDA. The 

validation set was 100% correctly classified by both classifiers LDA and 

QDA. For an early fertility detection of hatching egg, light intensity 

should be measured from MOL positions of 1, 2 and 3 and data obtained 

should be classified according to LDA. For simple or quick detection, 

light intensity can be measured at MOL position 1, and age of 12 days old 

of chick embryo. Using QDA classifier it is of course an advanced level 

of chick embryo development, so it is not recommended. PLS-DA 

classifier gave the lowest percentage of correct classification of eggs at 

each chick embryo age among other statistical classifiers at the three 

MOL positions, Table 5. To compare Radial Basis Function, RBF-SVM 

classifier results obtained by this study and the other done by Zhu and 

Ma (2011); RBF kernel classifier achieves the percent of 92% at training 

set among the other three types of kernel classifier of SVM at the age of 6 

days old of chick embryo, but the validation set present of the three types 
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of kernels was 100%. However the investigation done by Zhu and Ma 

(2011) obtains higher identification rate of 95.8% for training set by 

linear kernel with the machine vision for eggs were investigated in the 

period from7
th

 to 12
th

 day of the incubation and 99.1% by RBF kernel. 

But on the other hand in this study, the classifiers of LDA, QDA and 

PLS-DA with LDR sensor achieve the percent of 97, 95, and 85% of 

training set at 6
th

 day for the three MOL positions, respectively, Table 5. 

This confirms that the simple low-cost LDR sensor can classify eggs 

according to their fertility as well as machine vision system does. 

Classification Mathematical Models 

The main purpose of using classifiers is to find a suitable mathematical 

model could be used for fertility predicting of an egg by substituting the 

value of light intensity in two models, i.e., a model for fertile eggs and the 

other for infertile ones. In comparison between the result values of the 

two models, the highest result value obtained determines its fertility. 

Hence the mathematical models have been developed by those classifiers 

studied above that can be included in any automated control system such 

as Fuzzy logic control system for sorting eggs according to their fertility. 

Table 6 shows the overall model constant values for all measured values 

of light intensity obtained from the three MOL positions together. On the 

other hand, Table 7 illustrates the constant values of the simple model 

which depends only on one position of MOL to measure light intensity of 

the egg. After that Equations 2 and 4 would be used for discrimination 

process. These equations were generated using LDA and QDA. In case of 

using three MOL positions, Equations 3 and 5 would be used including 

multiple linear regression model and interactive second-order polynomial 

model. The previously mentioned models were developed also for each 

age of incubation period and by them any automated system could detect 

the hatching egg fertility. Because of the shortage of time and space, list 

of SVM for RBF kernel was reported only because its highest 

performance in discriminating the eggs at 6 days old of chick embryo, 

Table 8. The list of SVM and their bias for each age of chick embryo to 

make a boundary separates between measured values of light intensity 

from fertile and infertile eggs could be used in classifying eggs according 

to its fertility and for further research on it in the future. 
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Table 4. Identification rate of LDA and QDA classifiers according to chick embryo age and one identical MOL 

position on the egg 

Measuring 

Position 

Incubation 

period, 

days 

Correctly classified observations by different classifiers, % 

Linear Discriminant Analysis Quadratic Discriminant Analysis 

Training set Validation set Training set Validation set 

Fertile Infertile Total Fertile Infertile Total Fertile Infertile Total Fertile Infertile Total 

Position 1 

6 94.00 96.00 95.00 100.00 100.00 100.00 98.00 90.00 94.00 100.00 100.00 100.00 

9 88.00 98.00 93.00 100.00 100.00 100.00 94.00 96.00 95.00 100.00 100.00 100.00 

12 100.00 96.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Position 2 

6 60.00 64.00 62.00 60.00 60.00 60.00 58.00 68.00 63.00 60.00 80.00 70.00 

9 68.00 86.00 77.00 80.00 100.00 90.00 66.00 86.00 76.00 80.00 100.00 90.00 

12 62.00 80.00 71.00 80.00 100.00 90.00 62.00 86.00 74.00 80.00 100.00 90.00 

Position 3 

6 54.00 52.00 53.00 40.00 40.00 40.00 38.00 68.00 53.00 20.00 40.00 30.00 

9 54.00 48.00 51.00 100.00 40.00 70.00 54.00 50.00 52.00 100.00 40.00 70.00 

12 52.00 54.00 53.00 80.00 20.00 50.00 70.00 42.00 56.00 80.00 20.00 50.00 
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Table 5. Identification rate of each classifier according to chick embryo age and the whole three MOL positions on the egg 

Measuring 

Position 

Incubation 

period, 

day 

Correctly classified observations by different classifiers, % 

Linear Discriminant Analysis Quadratic Discriminant Analysis 

Training set Validation set Training set Validation set 

Fertile Infertile Total Fertile Infertile Total Fertile Infertile Total Fertile Infertile Total 

Whole 

MOL 

Positions 

of 1, 2 and 

3 

6 96.00 98.00 97.00 100.00 100.00 100.00 92.00 98.00 95.00 100.00 100.00 100.00 

9 90.00 98.00 94.00 100.00 100.00 100.00 98.00 96.00 97.00 100.00 100.00 100.00 

12 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

Partial Least Squares Discriminant Analysis Support Vector Machine (Linear kernel) 

Training set Validation set Training set Validation set 

Fertile Infertile Total Fertile Infertile Total Fertile Infertile Total Fertile Infertile Total 

6 94.00 76.00 85.00 100.00 80.00 90.00 98.00 80.00 89.00 100.00 100.00 100.00 

9 76.00 98.00 87.00 100.00 100.00 100.00 94.00 98.00 96.00 100.00 100.00 100.00 

12 96.00 96.00 96.00 100.00 100.00 100.00 100.00 98.00 99.00 100.00 100.00 100.00 

 

Support Vector Machine (Power kernel) Support Vector Machine (RBF kernel) 

Training set Validation set Training set Validation set 

Fertile Infertile Total Fertile Infertile Total Fertile Infertile Total Fertile Infertile Total 

6 98.00 80.00 89.00 100.00 100.00 100.00 100.00 84.00 92.00 100.00 100.00 100.00 

9 94.00 98.00 96.00 100.00 100.00 100.00 94.00 96.00 95.00 100.00 100.00 100.00 

12 100.00 98.00 99.00 100.00 100.00 100.00 100.00 98.00 99.00 100.00 100.00 100.00 
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CONCLUSIONS 

In the present study the discrimination efficiency of a low-cost device for 

fertility early detection of hatching eggs has been investigated. 

Mathematical models to discriminate the fertile eggs were developed 

using different advanced statistical classifiers. Based on the research work 

described here, it is possible to release the following conclusions: 

1. By using PCA the differences between light intensity values 

obtained from the first two measuring orientation line positions on 

the egg fertility discrimination which are going to decrease with 

the increase of chick embryo age.  

2. The mathematical models developed by the classifier of LDA, 

QDA and PLS-DA can successfully early discriminate the fertile 

eggs at 6
th

 day of the incubation process based on the whole data 

obtained from the three MOL positions together was 97, 95 and 

85% for the training set, respectively. 

3. SVM classifier which was widely used for egg fertility 

discrimination with machine visions can discriminate egg fertility 

in the present study with LDR sensor according to its fertility with 

an identification rate of training set 89, 89 and 92% for 6 days of 

incubation for three types of the sub classifiers of linear, power and 

RBF kernel, respectively the validation set identification rate 

reached 100% for each method of SVM. 

4. Simple sensors like LDR are efficient to detect fertility of hatching 

eggs using Candlers and could be used for Fuzzy logic automated 

system using the mathematical formulas developed in the present 

study. 

5. Mathematical models (Equations 3 and 5) developed by LDA and 

QDA classifiers can precisely discriminate the fertile eggs using 

the constants which are indicated at Table 6. By substituting the 

light intensities obtained by low-cost Light-Dependent Resistor 

(LDR) in the developed equation of fertile part of equation 3 or 5, 

if the result is +1 means that the egg is fertile and as the same by 

substituting the light intensities in the infertile part of equation 3 or 

5, if the result is -1 indicates that the egg is infertile.  
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Table 6. Developed general form of classification models used for eggs discrimination according to their fertility 

Model type in case of measuring from: 

MOL position 1 MOL positions of 1, 2 and 3 

Linear regression Multiple linear regression 

f = a + b I1 

n = a + b I1 
} Eqn 2 

f = a + b I1 + c I2 + d I3 (fertile part) 

n = a + b I1 + c I2 + d I3 (infertile part) 
} Eqn 3 

Second-order polynomial Interactive second-order polynomial 

f = a + b I1 + c I1
2
 

n = a + b I1 + c I1
2
 

} Eqn 4 
f = a + b I1 + c I2 + d I3 + e I1

2
 + f I1 I2 + g I1 I3 + h I2

2
 + i I2 I3 + j I3

2
 

n = a + b I1 + c I2 + d I3 + e I1
2
 + f I1 I2 + g I1 I3 + h I2

2
 + i I2 I3 + j I3

2
 

} Eqn 5 
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Table 8. List of support vectors and bias for each incubation period using RBF kernel 

S.N. 

Support vectors (RBF kernel) 

Incubation period, day 
6 (Bias = -0.743) 9 (Bias = 0.094) 12 (Bias = -0.464) 

Fertility alpha 

Light intensity, lux 

Fertility alpha 

Light intensity, lux 

Fertility alpha 

Light intensity, lux 

Position 

1 

Position 

2 

Position 

3 

Position 

1 

Position 

2 

Position 

3 

Position 

1 

Position 

2 

Position 

3 

1 -1 1.000 0.693 0.506 0.237 -1 1.000 0.626 0.850 0.614 -1 1.000 0.708 0.551 0.573 

2 -1 1.000 0.699 0.272 0.211 -1 1.000 0.732 0.776 0.629 -1 1.000 0.570 0.593 0.611 

3 -1 1.000 0.654 0.840 0.329 -1 1.000 0.740 0.682 0.586 -1 1.000 0.664 0.754 0.809 

4 -1 1.000 0.667 0.383 0.053 -1 0.854 0.886 0.916 0.814 -1 1.000 0.542 0.605 0.237 

5 -1 1.000 0.595 0.519 0.184 -1 1.000 0.821 0.822 0.643 -1 1.000 0.691 0.647 0.656 

6 -1 1.000 0.719 0.679 0.447 -1 1.000 0.528 0.393 0.129 -1 1.000 0.586 0.778 0.427 

7 -1 1.000 0.810 0.938 0.842 -1 1.000 0.715 0.561 0.271 -1 1.000 0.586 0.599 0.237 

8 -1 1.000 0.588 0.469 0.211 -1 1.000 0.715 0.561 0.014 -1 0.791 0.708 0.611 0.603 

9 -1 1.000 0.575 0.556 0.474 -1 1.000 0.846 0.579 0.514 -1 1.000 0.641 0.623 0.542 

10 -1 1.000 0.614 0.309 0.289 -1 1.000 0.789 0.822 0.557 -1 0.270 0.713 0.904 0.878 

11 -1 1.000 0.706 0.531 0.618 -1 1.000 0.740 0.598 0.314 -1 1.000 0.686 0.641 0.374 

12 -1 0.339 0.771 0.852 0.697 -1 1.000 0.911 0.925 1.000 -1 1.000 0.564 0.677 0.504 

13 -1 1.000 0.647 0.630 0.553 -1 0.807 0.732 0.654 0.186 -1 1.000 0.537 0.802 0.573 

14 -1 1.000 0.660 0.568 0.184 -1 1.000 0.797 0.907 0.600 -1 1.000 0.636 0.491 0.908 

15 -1 1.000 0.752 0.481 0.382 -1 1.000 0.707 0.598 0.200 -1 1.000 0.702 0.593 0.504 

16 -1 1.000 0.673 0.691 0.605 -1 1.000 0.951 0.925 0.986 1 1.000 0.426 0.485 0.504 

17 -1 1.000 0.686 0.383 0.500 -1 1.000 0.683 0.570 0.143 1 1.000 0.443 0.766 0.588 

18 -1 1.000 0.588 0.481 0.329 1 1.000 0.537 0.738 0.086 1 0.935 0.432 0.204 0.366 

19 -1 1.000 0.601 0.605 0.592 1 1.000 0.569 0.290 0.243 1 1.000 0.388 0.467 0.489 

20 -1 1.000 0.595 0.432 0.342 1 1.000 0.463 0.280 0.057 1 1.000 0.421 0.737 0.427 

21 -1 1.000 0.732 0.691 0.197 1 1.000 0.634 0.579 0.614 1 1.000 0.448 0.665 0.298 

22 -1 1.000 0.627 0.469 0.158 1 1.000 0.626 0.682 0.757 1 1.000 0.454 0.551 0.573 

23 -1 1.000 0.562 0.568 0.211 1 1.000 0.707 0.766 0.686 1 1.000 0.355 0.743 0.214 

24 -1 1.000 0.588 0.506 0.316 1 1.000 0.618 0.813 0.829 1 1.000 0.421 0.341 0.427 

25 -1 1.000 0.765 1.000 0.842 1 1.000 0.528 0.785 0.543 1 1.000 0.393 0.952 0.557 
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To be continued Table 8 

S.N. 

Support vectors (RBF kernel) 

Incubation period, day 

6 (Bias = -0.743) 9 (Bias = 0.094) 12 (Bias = -0.464) 

Fertility alpha 

Light intensity, lux 

Fertility alpha 

Light intensity, lux 

Fertility alpha 

Light intensity, lux 

Position 

1 

Position 

2 

Position 

3 

Position 

1 

Position 

2 

Position 

3 

Position 

1 

Position 

2 

Position 

3 

26 1 1.000 0.536 0.370 0.461 1 0.388 0.301 0.178 0.014 1 0.262 0.322 0.880 0.237 

27 1 1.000 0.503 0.790 0.842 1 0.273 0.496 0.785 0.729 1 0.830 0.327 0.743 0.748 

28 1 1.000 0.510 0.543 0.316 1 1.000 0.561 0.860 0.886 1 0.035 0.393 0.186 0.885 

29 1 1.000 0.477 0.432 0.026 1 1.000 0.488 0.551 0.471 1 1.000 0.404 0.557 0.855 

30 1 1.000 0.542 0.358 0.053 1 1.000 0.528 0.757 0.771 1 1.000 0.377 0.605 0.527 

31 1 1.000 0.575 0.531 0.447 1 1.000 0.642 0.888 0.757 1 1.000 0.388 0.683 1.000 

32 1 1.000 0.418 0.630 0.316 1 1.000 0.667 0.776 0.629 

 

33 1 1.000 0.536 0.728 0.329 1 1.000 0.488 0.617 0.257 

34 1 1.000 0.516 0.593 0.237 1 1.000 0.537 0.383 0.214 

35 1 1.000 0.490 0.494 0.118 1 1.000 0.577 0.654 0.771 

36 1 1.000 0.458 0.630 0.632 

 

37 1 1.000 0.556 0.827 0.395 

38 1 1.000 0.477 0.753 0.566 

39 1 1.000 0.569 0.148 0.237 

40 1 1.000 0.497 0.741 0.184 

41 1 1.000 0.588 0.309 0.961 

42 1 1.000 0.582 0.444 0.408 

43 1 1.000 0.536 0.642 0.368 

44 1 0.722 0.386 0.802 0.434 

45 1 1.000 0.575 0.235 0.605 

46 1 1.000 0.529 0.864 0.553 

47 1 1.000 0.536 0.025 0.158 

48 1 0.617 0.588 0.235 1.000 

49 1 1.000 0.595 0.494 0.211 

50 1 1.000 0.451 0.383 0.105 
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 الولخص العربي

 ة للتوييس الوبكر لخصىبة البيضجهاز كشف جديد هنخفض التكلف

 ستخدام هصنفات إحصائية هتقدهةبا

سعيد الشحات عبدالله
1

, 

وائل هحود الوسيري
1

أحود عبداللاه الصيفي  و  
2

 

ذؼرثش ػ١ٍّح إعرثؼاد اٌث١ط غ١ش اٌماتً ٌٍفمظ لثً ػ١ٍّح اٌرحع١ٓ ِٓ أػمذ اٌؼ١ٍّاخ ٔر١عح ٌؼذَ 

ٚظٛد ِلاِح فغ١ٌٛٛظ١ح داخً اٌث١عح ذ١ّض اٌث١ط اٌّخصة ػٓ غ١شٖ ِٓ غ١ش اٌّخصة. ٌزا 

ٌعؤ اٌؼذ٠ذ ِٓ اٌثاحص١ٓ إٌٟ دساعح إِىا١ٔح اٌىشف اٌّثىش ٌٍث١ط وٍّا أِىٓ رٌه فٟ ِشاحً 

ٓ الأٌٚٝ ٌرؼظ١ُ الإعرفادج ِٓ اٌفشاغاخ اٌّراحح داخً اٌحعاْ ٚالإعرفادج ِٕٗ وث١ط اٌرحع١

إْ ِائذج ٚوزٌه ذم١ًٍ اٌرٍٛز اٌحادز ِٓ اٌث١ط غ١ش اٌّخصة ٚاٌزٞ ٠فغذ داخً اٌحعاْ. 

اٌطشق اٌّغرخذِح فٝ وشف خصٛتح ت١ط اٌرفش٠خ ذضداد أ١ّ٘ح ِغ ص٠ادج حعُ ِٕشآخ إٔراض 

رىٍفح. ٘زٖ اٌٚاٌزٞ ٠غرٍٙه اٌٛلد ٚاٌّغاحح ٚأ٠عاً  ماتً ٌٍرفش٠خاٌغ١ش اٌذٚاظٓ لإصاٌح اٌث١ط 

ِٚٓ شُ فمذ ذُ إظشاء تحس ػٓ إِىا١ٔح  ،اٌطشق راخ ذىٍفح ػا١ٌح ٌىٝ ٠رُ ذطث١مٙا تشىً ٚاعغ

ُِ( فٝ وشف GL12528)  23إعرخذاَ غشق راخ ذىٍفح ِٕخفعح ِصً حغاط اٌعٛء ِٓ ٔٛع 

ذط٠ٛش ِؼادلاخ س٠اظ١ح ذغرخذَ ٌٍر١١ّض ت١ٓ اٌث١ط ٚ إٔشاءخصٛتح ت١ط اٌرفش٠خ. ٚأ٠عاً 

ذحىُ ِصً ٚتٛاعطح ٘زٖ اٌّؼادلاخ ٠ّىٓ ذٛص١ً حغاط اٌعٛء تٕظُ  ،اٌّخصة ٚغ١ش اٌّخصة

ٌفشص اٌث١ط ِٓ خلاٌٙا. ذُ  Fuzzy Logic Control Systemsٔظُ اٌرحىُ إٌّطم١ح اٌعثات١ح 

إظشاء اٌفحٛصاخ ػ١ٍٙا ٌٍرؤوذ ِٓ  تؼذ ((Hubbard Breedٔٛع  أِٙاخ أخز ػ١ٕاخ اٌث١ط ِٓ

ٚلذ ذُ إظشاء ٘زٖ اٌفحٛصاخ تمغُ إٔراض  ،ػذَ ٚظٛد ِظا٘ش غ١ش غث١ؼ١ح تذاخً أٚ خاسض اٌث١عح

ٚذُ إظشاء ظ١ّغ اٌم١اعاخ تّؼًّ غاسق د٠اب ٌٍرفش٠خ اٌذٚاظٓ تى١ٍح اٌضساػح تعاِؼح ػ١ٓ شّظ. 

ذُ أخز اٌث١ط إٌّرط حذ٠صاً َ. 3122ِحافظح اٌغشت١ح خلاي ػاَ ، لطٛس ،ِشوضٔش١ًتمش٠ح 

 :حعأاخ ِٓ ٔٛعفٟ ٚٚظؼٗ 

Smart™ (Pas Reform Hatchery Technologies, Zeddam, the Netherlands) 

ٚلذ ذُ ذم١ٍة   ،٪ سغٛتح ٔغث١ح65ٚ  َ(˚4297) فٙش١ٙٔد 92º,,ٚذُ ظثطٙا ػٕذ دسظح حشاسج 

ا١ٌَٛ ذُ إخر١اس شلاز ذٛل١راخ ِخرٍفح ٌفحص اٌث١ط ِثىشاً وٍّا أِىٓ رٌه ُٚ٘ اٌث١ط وً عاػح. 

  .اٌرحع١ٓتذا٠ح ػ١ٍّح اٌغادط ٚاٌراعغ ٚاٌصأٟ ػشش ِٓ 

 جاهعة كفرالشيخ –كلية السراعة  –قسن الهندسة السراعية  –أستاذ هندسة التصنيع السراعي الوساعد  -1

 جاهعة كفرالشيخ –ة السراعة كلي –قسن الهندسة السراعية  -طالب هاجستير  -2
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ِٓ خلاي  Candlingػ١ٍّح اٌفحص اٌعٛئٟ ٌٍث١ط ذُ إعرخشاض اٌث١ط ِٓ اٌحعأاخ لإظشاء 

ٔمً صٛأٟ اٌث١ط تاٌىاًِ إٌٝ ٚحذج ِصّّح ٌٙزا اٌغشض ٚذُ ل١اط شذج الإظاءج إٌّثؼصح ِٓ 

ٝ شلاشح ٚف وً ت١عح تٛاعطح حغاط اٌعٛء ٌىً ِشحٍح ِٓ ِشاحً اٌرحع١ٓ عاتمح اٌزوش،

ٚ٘ٝ اٌرٝ ذصٕغ ِغ ِحٛس اٌث١عح صا٠ٚح  4ٚ 3ٚ  2ِٛظغ ٌٍم١اط ِٛاظغ ِخرٍفح 

)أفم١ح(ػٍٝ عطح اٌث١عح تاٌرشذ١ة. ٚفٟ وً ِشحٍح ذُ دساعح  ˚1,ٚ)ِائٍح( ˚56ٚ )سأع١ح(˚صفش

أخشٜ غ١ش ِخصثح. وأد ػ١ٍّح اٌم١اط ٌىً اٌث١ط لا  66ت١عح ِخعثح ٚ 66ت١عح ُِٕٙ  221

 ذرعاٚص اٌذل١مر١ٓ ٌٍحفاظ ػٍٝ ح١اج الأظٕح داخً اٌث١ط.

حغاط ٌٍرؼشف ػٍٝ وفاءج  XLSTAT 2017ذُ إدخاي اٌث١أاخ اٌّرحصً ػ١ٍٙا ٌثشٔاِط  

اٌعٛء تاعرخذاَ ػذج ِصٕفاخ إحصائ١ح ِرمذِح ِٕٚٙا اٌرح١ًٍ اٌر١١ّضٞ اٌخطٟ ٚاٌرشت١ؼٟ ٚلألً 

فشق ِشتؼاخ اٌعضئٟ ٚأ٠عاً إٔحذاس اٌؼٕصش اٌشئ١غٟ ٚإٔحذاس فشق اٌّشتؼاخ اٌعضئٟ، ح١س 

٠ّىٓ إعرخذاَ إٌّارض اٌش٠اظ١ح اٌّرحصً ػ١ٍٙا ف١ّا تؼذ ٌٍىشف ػٓ اٌخصٛتح ِٓ خلاي 

 Fuzzy Logicتم١ُ شذج اٌعٛء اٌّماعح ٌٍث١عح فٟ تشاِط ذحىُ ِرطٛسج ِصً  اٌرؼ٠ٛط

Control System ِٗع١رُ إظشاء ِض٠ذ ِٓ اٌذساعح ػٍٝ ٘زا اٌرطث١ك فٟ اٌّغرمثً لاعرخذا .

وؤداج تحص١ح ِرطٛسج.  ذُ إعرخذاَ ذح١ًٍ اٌؼٕصش اٌشئ١غٟ ٌرحذ٠ذ ِا إرا وأد ٕ٘ان فشٚق فٟ 

ِٕٙا، ٚأ٠عاً إرا  LDRغ اٌرٝ ذُ أخز اٌم١اعاخ تٛاعطح حغاط اٌعٛء اٌمشاءاخ ِا ت١ٓ اٌّٛاظ

واْ ٕ٘ان ػلالح إسذثاغ ت١ٕٙا ٚت١ٓ وفاءج اٌفشص ٌرحذ٠ذ أفعً اٌّٛاظغ اٌرٝ ٠ّىٓ أخز اٌم١اعاخ 

 Support Vectorػٕذ٘ا ٌٍث١عح. ذُ أ٠عاً إعرخذاَ اٌّصٕف الإحصائٟ آٌح ِرعٗ اٌذػُ

Machine اط اٌعٛئٟ سخ١ص اٌصّٓ فٟ ٘زٖ اٌذساعح ِغ اٌحغLDR  وٛاحذ ِٓ اٌّصٕفاخ

ٌٍر١١ّض ت١ٓ اٌث١ط Machine Visions شائؼح الإعرخذاَ ِغ الأظٙضج اٌّرمذِح ِصً آلاخ اٌشإ٠ح 

 اٌّخصة ٚغ١ش اٌّخصة تاعرخذاَ اٌصلاشح أٔٛاع ِٓ اٌّصٕفاخ ٌذ٠ٗ.

 -ية:تلنتائج الآلأهن اوقد تن التىصل 

فٝ  ذّاِاً  ِٕاعثحً سخ١صح اٌصّٓ ُِ( GL12528) 23حغاعاخ اٌعٛء ِٓ إٌٛع   (2)

 وشف خصٛتح ت١ط اٌرفش٠خ.

 ت١ٓفٟ ل١اعاخ اٌىصافاخ اٌعٛئ١ح عرخذاَ ذح١ًٍ اٌؼٕصش اٌشئ١غٟ فإْ الإخرلافاخ ات  (3)

ِٕخفعح ٚاٌرٟ ذرماسب ف١ٙا  ػٍٝ اٌث١عح )اٌّائً(  3)اٌشأعٟ( ٚسلُ  2ٛظغ سلُ اٌ

٠َٛ. ت١ّٕا وأد أػٍٝ  ٠23اَ إٌٝ أ 7اٌم١اعاخ أوصش ِغ اٌرطٛس فٟ صِٓ اٌرحع١ٓ ِٓ 

 ,ٔغثح إخرلافاخ ت١ٓ اٌم١اعاخ اٌّؤخٛرج ِٓ اٌصلاشح ِٛاظغ وأد فٟ اٌؼّش اٌرحع١ٕٟ 

ٚشذج الإظاءج  دلح اٌر١١ّضسذثاغ ت١ٓ الإؼلالح أِا تإٌغثح ٌ ٪72,25أ٠اَ تٕغثح إخرلاف

 خِؼاِلا دتحغة ِا أٚظحد ِصفٛفح الإسذثاغ وأاٌشأعٟ فمػ اٌّماعح ِٓ اٌّٛظغ 

 197,7 –ٚ  19751 –ٚ  192,2 –٠َٛ ٘ٛ  23ٚ ,ٚ 7اٌرحع١ٓ  اخالإسذثاغ ٌفرش

 ػٍٝ اٌرشذ١ة. 

لً ٚلأ PCR ؼٕصش اٌشئ١غٟٞ ٌٍٔحذاساٌرح١ًٍ الإعرخذاَ اإٌّارض اٌش٠اظ١ح اٌّطٛسج ت  (4)

٠َٛ ٚلذ  23وأد ٌٙا أػٍٝ ِؼاِلاخ ذمذ٠ش ػٕذ ػّش أظٕح PLS ظضئٟ  فشق ِشتؼاخ

 ػٍٝ اٌرشذ١ة. 19271ٚ ,1972وأد 
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اٌّصٕفاخ الإحصائ١ح اٌّرمذِح، ذُ اٌرٛصً إٌٝ أػٍٝ دلح فٟ اٌر١١ّض ػٓ تإعرخذاَ أِا   (5)

 ذ١١ّضٔعحد فٝ ، ح١س QDAٚاٌرشت١ؼٝ   LDAاٌرح١ًٍ اٌر١١ّضٜ اٌخطٟ غش٠ك

 2,أ٠اَ تٕغثح  7 ٟذحع١ٕ ػّشػٕذ اٌّخصة ػٓ غ١شٖ ِٓ غ١ش اٌّخصة اٌث١ط 

 اٌرص١ٕفح اٌث١أاخ اٌّغرخذِح فٝ إظشاء ٚرٌه ٌّعّٛػ ،ػٍٝ اٌرشذ١ة 6٪,ٚ

(Training Set ) ِعرّؼح 4ٚ 3ٚ  2ِٛظغ تإعرخذاَ اٌصلاشح ِٛاظغ ٌٍم١اط ٚرٌه .

اٌّصٕفاخ الإحصائ١ح اٌغاٌفح اٌزوش رٍه ٌّٔارض س٠اظ١ح  اٌحصٛي ػٍٝذُ ِٚٓ شُ 

ِٓ خلاي  (Hubbard Breed)عرخذاِٙا فٝ ذحذ٠ذ خصٛتح اٌث١ط ِٓ ٔٛع لا

 ا تشذج الإظاءج اٌّماعح.اٌرؼ٠ٛط ف١ٙ

ذُ إعرخذاِٙا ٌٍر١١ّض ت١ٓ Support Vector Machine (SVM) آٌح ِرعٗ اٌذػُ   (6)

 Linear, Power and RBFٛتح ٌلأٔٛاع اٌصلاشح اٌّغرخذِح )صاٌث١ط تحغة اٌخ

kernel) ٚرٌه  ،٪ ػٍٝ اٌرشذ١ة3,ٚ ,7ٚ ,7ص١ٕف اٌّرحصً ػ١ٍٙا وأد اٌر، دلح

ٌزٌه ٠ؼرثش حغاط اٌعٛء اٌّغرخذَ سخ١ص اٌصّٓ ٌٗ دلح أ٠اَ،  7ػٕذ ػّش ذحع١ٕٟ 

 . SVMذص١ٕف ِماستح ٢لاخ اٌشإ٠ح ٚاٌرٟ ذغرخذَ ِصٕف

 

( أٚ 4)اٌّؼادٌح سلُ LDA اٌرح١ًٍ اٌر١١ّضٞ اٌخطٟ  ِٓإٌّارض اٌش٠اظ١ح اٌّرحصً ػ١ٍٙا 

ظٛدج تاٌعذٚي اٌّٛشٛاتد اٌّؼادٌح ٚتاعرخذاَ  (6)اٌّؼادٌح سلُ  QDAاٌرح١ًٍ اٌر١١ّضٞ اٌرشت١ؼٟ 

 :ّخصة واٌراٌٟاٌغ١ش ا اٌر١١ّض ِا ت١ٓ اٌث١ط اٌّخصة ٠ّٚىٕٕ 7سلُ 

 

 :)اٌّؼادٌح اٌخاصح تاخرثاس اٌث١ط اٌّخصة( 4اٌّؼادٌح سلُ 

f = a + b I1 + c I2 + d I3 

 :ِٓ ػّش ذحع١ٓ اٌث١عحػٕذ ا١ٌَٛ اٌغادط ٚشٛاتد ٘زٖ اٌّؼادٌح 

a -355.392 b 1.210 c 2.835 d 5.092 

 فإْ اٌث١عح ِخصثح  2+ ٠غاٚٞ واْ ٔاذط اٌّؼادٌحرا إ

 

 :ّخصة(اٌغ١ش اٌّؼادٌح اٌخاصح تاخرثاس اٌث١ط ) 4اٌّؼادٌح سلُ 

n = a + b I1 + c I2 + d I3 

 :ٚشٛاتد ٘زٖ اٌّؼادٌح ػٕذ ا١ٌَٛ اٌغادط ِٓ ػّش ذحع١ٓ اٌث١عح

a -386.903 b 1.767 c 2.988 d 4.943 

 

 فإْ اٌث١عح غ١ش ِخصثح  2- ٠غاٚٞ را واْ ٔاذط اٌّؼادٌحإ

تشم١ٙا )ِؼادٌرٟ اٌث١ط اٌّخصة  4 سلُ فٟ اٌّؼادٌح الإظاءج شذج٠مَٛ اٌثشٔاِط ترؼ٠ٛط ل١ُ 

عرخذاَ إٌّٛرض اٌش٠اظٟ إٌاذط ِٓ اٌرح١ًٍ اٌر١١ّضٞ . ٚتٕفظ اٌطش٠مح ٠ّىٕٕا إٚغ١ش اٌّخصة(

 اٌرشت١ؼٟ ٚوزٌه ٌٍؼّش اٌّحذد ٌٍع١ٕٓ.


