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 ملخصال
" بياًاث كبيشة " هشحبطَ بالكوياث العخوت ّالوعمذة ّصيادة هجوْعاث البياًاث هخعذدة هي هصادس هسخملت. ّفٔ الْلج 

الحاظش حجشٓ بسشعت كبيشة البياًاث حخْسع فٔ جويع هجالاث العلْم ّالٌِذست بسبب الخطْس السشيع للبياًاث ّحخضيي البياًاث 

ّجوع الشبكاث. بسبب حملب الوٌاخ الحجن ّالسشعت ّ" الخٌميب عي البياًاث كبيشة " يخوخع بمذسة اسخخشاج الوعلْهاث البٌاءة هي 

ث. اسخخشاج البياًاث يخعوي ححليل كوياث كبيشة هي البياًاث هي اجل ححذيذ هخخلف المْالب الكبيشة حذفماث البياًاث اّ هجوْعا

" ُْ ّاحذ هي اُن الوِام لاسخكشاف اًواغ الوفيذة هي هجوْعاث كبيشة هي البياًاث. ةهجوْعَ عٌاصش هخكشس البياًاث. "حعذيي

اث راث الاُويت للعذيذ هي الصٌاعاث يوكي اى حمذم حْجيِاث فٔ اسخخشاج لْاعذ الشابطت اًواغ هخكشسة هي اسخخشاج البياً

عولياث صٌع المشاس هثل الخسْيك سلت الاسْاق ححليل هجوْعت هخٌْعت...الد. حمٌياث اكخشاف لْاعذ الشابطت هي البياًاث حشكض 

دة. ّحمذم ُزٍ الْسلت اسخعشاض حمليذيا علٔ ححذيذ العلالت بيي البٌذيي الخٌبؤ ببعط جْاًب السلْن البششٓ سلْن الششاء عا

 هخخلف لخمٌياث الخعذيي لوجوْعَ العٌاصش الوخكشسة.
 

Abstract 
Big Data" connects large-volume, complex, and increasing data sets with multiple independent sources. 

Nowadays, Big Data are speedily expanding in all science and engineering domains due to the rapid evolution of 

data, data storage, and the networking collection capabilities. Due to its variability, volume, and velocity, "Big Data 

mining" enjoys the ability of extracting constructive information from huge streams of data or datasets. Data mining 

includes exploring and analyzing big quantities of data in order to locate different molds for big data. "Frequent item 

sets Mining" is one of the most important tasks for discovering useful and meaningful patterns from large 

collections of data. Mining of association rules from frequent patterns from big data mining is of interest for many 

industries, for it can provide guidance in decision making processes; such as cross marketing, market basket 

analysis, promotion assortment, ...etc. The techniques of discovering association rules from data have traditionally 

focused on identifying the relationship between items predicting some aspect of human behavior;  usually buying 

behavior. This paper provides a review on different techniques for mining frequent item sets. 
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   Introduction 
"Data Mining" is gaining importance 

due to the available huge amount of data. 

Retrieving information from the warehouse 

is not only tedious, but is also difficult in 

some cases [1]. The most important usage of 

Data Mining is customer segmentation in 

marketing, shopping cart analyzes, 

management of customer relationship, 

campaign management, Web usage mining, 

text mining, player tracking ...etc. In Data 

Mining, "Association Rule Mining" is one of 

the important techniques for discovering 

meaningful patterns from large collections of 

data [2]. Discovering frequent item sets plays 

an important role in mining association rules, 
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web log mining, and many other interesting 

patterns among complex data. Besides being 

the discovery of hidden information found in 

databases, Data Mining can be viewed as a 

step in the knowledge discovery process [3]. 

Data mining functions include clustering, 

classification, prediction, and link analysis 

(associations). One of the most important 

data mining applications is that of mining 

association rules. Association rules are first 

introduced by Agarwal[4]. Association rules 

are helpful for analyzing customer behavior 

in retail trade, banking system...etc. 

Association rule can be defined as {X, Y} 

=> {Z}. In retail stores if customer buys X, 

Y, he is likely to buy Z. The concept of 

"Association Rule" is applied today in many 

fields, such as intrusion detection, 

biometrics, production planning ...etc. 

Association Rule Mining means to find out 

association rules that satisfy the predefined 

minimum support and confidence from a 

given database. If an item set is said to be 

frequent, that item set supports both 

minimum support and confidence. The 

problem of finding the association rules can 

be divided into two parts  

   Find all frequent item sets: Frequent item 

sets will occur at least as frequently as a 

pre- determined minimum support count, 

i.e. they must satisfy the minimum 

support. 

  Generate strong association rules from 

the frequent item sets: These rules must 

satisfy minimum support and minimum 

confidence values. Frequent Pattern 

Mining is the process of mining data in a 

set of items or some patterns from a large 

database. The resulted frequent set data 

supports the minimum support threshold. 

A frequent pattern is a pattern that occurs 

frequently in a dataset. A frequent item 

set should appear in all the transactions 

of that data base. Frequent pattern 

mining [5] plays a major field in 

research, since it is a part of data mining. 

Many research papers and articles are 

published in the field of Frequent Pattern 

Mining (FPM). This Paper provides 

details about frequent pattern mining 

algorithm, types and extensions of 

frequent pattern mining, association rule 

mining algorithm, rule generation, and 

suitable measures for rule generation. This 

paper describes about various existing 

FPM algorithms and data mining 

algorithm for big data by applying 

frequent pattern mining algorithm and 

suitable measures [6]. Frequent pattern 

mining is fundamental in data mining. The 

goal is to compute on huge data 

efficiently. Finding frequent patterns plays 

a fundamental role in association rule 

mining, classification, clustering, and 

other data mining tasks. 
 

   Frequent Data Item set 

Mining 
Frequent patterns, such as frequent item 

sets, substructures, sequences term-sets, 

phrase sets, and sub graphs, generally exist in 

real-world databases [7]. Identifying frequent 

item sets is one of the most important issues 

faced by the knowledge discovery and data 

mining community. Frequent item set mining 

plays an important role in several data mining 

fields as association rules, warehousing, 

correlations, clustering of high-dimensional 

biological data, and classification. The 

frequent item set mining is motivated by 

problems such as market basket analysis. A 

tuple in a market basket database is a set of 

items purchased by customer in a transaction. 

An association rule mined from market basket 

database states that if some items are 

purchased in transaction, then it is likely that 

some other items are purchased as well. As 

frequent data item sets mining are very 

important in mining the association rules. 

Therefore there are various techniques 

proposed for generating frequent item sets so 

that association rules are mined efficiently 
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(FIG 1: Techniques of Frequent Itemsets Mining.) 

Using Novel Data structure Algorithm for Frequent Itemsets are divided into basic four techniques as show in Fig    
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One of the challenges of frequent 

pattern mining is that a large number of 

redundant patterns are often mined [9]. For 

example, the subset of a frequent pattern is 

also guaranteed to be frequent and by mining 

a maximal item set, one is assured that the 

other frequent patterns can also be generated 

from this smaller set. Therefore, one 

possibility is to mine for only maximal item 

sets. However, the mining of maximal item 

sets loses information about the exact value 

of support of the subsets of maximal 

patterns. Therefore, a further refinement 

would be to find closed frequent item sets 

[10, 11]. Closed frequent item sets are 

defined as frequent patterns, no superset of 

which have the same frequency as that item 

set. By mining closed frequent item sets, it is 

possible to significantly reduce the number 

of patterns found, without losing any 

information about the support level. Closed 

patterns can be viewed as the maximal 

patterns from each group of equi-support 

patterns (i.e., patterns with the same 

support). All maximal patterns are, therefore, 

closed. The depth-first method has been 

shown to have a number. There are number 

of algorithms used to mine frequent item 

sets. The most important algorithms are 

briefly explained here. The algorithms vary 

in the generation of candidate item sets and 

support count. The approaches of generating 

frequent item sets are divided into basic four 

techniques as show in Fig   
 

    Algorithms for Mining with 

Candidate generation approach 
Algorithms for Mining with Candidate, 

each row of database represents a transaction 

which has a transaction identifier (TID), 

followed by a set of items       
 

      Apriori Algorithm: 
Apriori algorithm is, the most classical 

and important algorithm for mining frequent 

itemsets. Apriori is used to find all frequent 

itemsets in a given database DB. Apriori 

algorithm is given by Agrawal. The apriori 

algorithm uses the apriori principle, which 

says that the item set I containing item set X is 

never large if item set X is not large or all the 

non-empty subset of frequent item set must be 

frequent also[13]. 

Based on this principle, the apriori 

algorithm generates a set of candidate item 

sets whose lengths are (k+1) from the large k 

item sets and prune those candidates, which 

does not contain large subset. Then, for the 

rest candidates, only those candidates that 

satisfy the minimum support threshold 

(decided previously by the user) are taken to 

be large (k+1)-item sets. The apriori generate 

item sets by using only the large item sets 

found in the previous pass, without 

considering the transactions. Steps involved 

are: 

   Generate the candidate 1-itemsets (C ) and 

write their support counts during the first 

scan. 2. Find the large 1-itemsets (L ) from 

C  by eliminating all those candidates 

which does not satisfy the support criteria. 

   Join the L  to form C  and use apriori 

principle and repeat until no frequent 

itemset is found. 
 

      Partitioning Algorithm: 
Partitioning algorithm is to find the 

frequent elements on the basis of dividing 

database into n partitions. It overcomes the 

memory problem for large database which do 

not fit into main memory because small parts 

of database easily fit into main memory. The 

algorithm executes in two phases. In the first 

phase, the Partition algorithm logically 

divides the database into a number of non-

overlapping partitions. The partitions are 

considered one at a time and all large itemsets 

for that partition are generated [14]. At the 

end of phase I, these large itemsets are 

merged to generate a set of all potential large 

itemsets. In phase II, the actual support for 

these itemsets is generated and the large 

itemsets are identified. The partition sizes are 

chosen such that each partition can be 
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accommodated in the main memory so that 

the partitions are read only once in each 

phase. 
 

      The Apriori TID algorithm: 
This is an alternative to Apriori Itemset 

Generation. In this itemsets are dynamically 

added and deleted as transactions are read. 

This algorithm also used to reduce the 

number of database scan. It is based upon the 

downward disclosure property in which this 

adds the candidate itemsets at different point 

of time during the scan. It reduces the 

database scan for finding the frequent 

itemsets by just adding the new candidate at 

any point of time during the run time       
 

      The Apriori Hybrid algorithm: 
The Apriori still examines every 

transaction in the database. On the other 

hand, rather than scanning the database, 

AprioriTid scans Ck for obtaining support 

counts, and the size of Ck has become smaller 

than the size of the database. Based on these 

observations Apriori Hybrid algorithm has 

been designed to execution times for Apriori 

and Apriori Tid for different passes. In the 

earlier passes, Apriori does better than 

AprioriTid. However, AprioriTid beats 

Apriori in later passes, the reason for which is 

as follows. Apriori and AprioriTid use the 

same candidate generation procedure and 

therefore count the same itemsets. In the later 

passes, the number of candidate itemsets 

reduces However; uses Apriori in the initial 

passes and switches to AprioriTid in the later 

passes. Apriori performs better than 

AprioriTid in the initial passes but in the later 

passes AprioriTid has better performance than 

Apriori       
 

 

 

(Table 2: Comparison of Apriori, AprioriTid and AprioriHybrid.) 
 

SNO PROPERTIES Apriori Algorithm 
Apriori Tid 

Algorithm 
Apriori Hybrid Algorithm 

  
Candidate 

generation 

Candidate item- sets are 

generated using only the 

large item-sets of the 

previous pass without 

considering the 

transactions in the 

database. 

The database is not 

used at all for counting 

the support of 

candidate item- sets 

after the first pass. 

Hybrid Algorithm can be 

designed that uses Apriori 

in the initial passes and 

switches to AprioriTid in 

the later passes. 

  
The 

methodology 

used 

Uses Join &prune steps. 
Uses Join &prune as 

well as Tids. 
Uses Apriori + AprioriTid 

  Database scans 
Multiple scan over the 

database. 

Uses the database only 

one. 
Uses Apriori + AprioriTid 

  Memory usage 

It takes more space and 

memory for the 

candidate generation 

process. 

In the Kth pass 

AprioriTid needs 

memory for Lk-1 and 

Ck-1 during candidate. 

An additional cost is 

incurred if it cannot 

completely fit into the 

memory. 

An extra cost is incurred 

when shifting from 

Apriori to AprioriTid. 

  Execution Time 

It takes more execution 

time for the candidate 

generation process. 

For small problem it's 

better than Apriori but 

it takes more time for 

Large problem. 

It's better than Apriori 

and AprioriTid. 
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2.2 Algorithms for Mining without 

candidate generation approach 

This type of database uses divide and 

conquer strategy to mine itemsets therefore 

it counts the support more efficiently then 

Apriori based algorithms. Tree projected 

layout based approaches use tree structure 

to store and mines the itemsets. The 

projected based layout contains the record 

id separated by column then record. Tree 

Projection algorithms based upon two kinds 

of ordering breadth-first and depth-first 

      

 

      FP-Growth Algorithm: 

FP-Growth Algorithm using a 

compact data structure called FP-tree and 

extracts frequent itemsets directly from this 

structure. This algorithm is based upon the 

recursively divide and conquers strategy; 

first the set of frequent 1-itemset and their 

counts are discovered. Starting from each 

frequent pattern, Construct the conditional 

pattern base, and then its conditional FP-

tree is constructed (which is a prefix tree). 

Until the resulting FP-tree is empty, or 

contains only one single path [18] [19]. 

(Single path will generate all the 

combinations of its sub- paths, each of 

which is a frequent pattern). The items in 

each transaction are processed in L order. 

(i.e. items in the set were sorted based on 

their frequencies in the descending order to 

form a list). 

 

      H-mine Algorithm: 

A memory-based, efficient pattern- 

growth algorithm, H-mine (Mem), is for 

mining frequent patterns for the datasets 

that can fit in (main) memory. A simple, 

memory-based hyper structure, H-struct, is 

designed for fast mining. H-mine (Mem) has 

polynomial space complexity and is thus more 

space efficient than pattern growth methods like 

FP-growth and tree projection when mining 

sparse datasets, and also more efficient than 

apriori-based methods which generate a large 

number of candidates. H- mine has very limited 

and exactly       

Predict table space overhead and is faster 

than memory-based a priori and FP-growth. H-

mine uses H-struct new data structure for 

mining purpose known as hyperlinked structure. 

It is used upon the dynamic adjustment of 

pointers which helps to maintain the processed 

projected tree in main memory. Therefore, H-

mine proposed for frequent pattern data mining 

for datasets that can fit into main memory. 
 

      The Relim algorithm: 

This algorithm for finding frequent item 

sets, which is strongly inspired by the FP- 

growth algorithm and very similar to the H- 

mine algorithm. It does its work without prefix 

trees or any other complicated data structures, 

processing the transactions directly. Its main 

strength is not its speed (although it is not slow, 

even outperforms Apriori and Eclat on some 

data sets), but the simplicity of its structure. 

Basically, all the work is done in one simple 

recursive function [21]. 
 

2.3 Algorithms for Mining from, 

Vertical Layout Database 
The vertical pattern mining algorithms 

use a vertical representation of the transaction 

database to enable more efficient counting. In 

vertical layout data set, each column 

corresponds to an item, followed by a TID list, 

which is the list of rows that the item appears 

[22]. A vertical organization means that the 

layout of the data is column-wise as shown in 

Figure 2. Advantages of vertical achieved the 

best possible runtime performance. 
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Table 2: Comparison of FP-Growth, H-mine and The Relim. 
 

SNO Properties FP-Growth Algorithm H-mine Algorithm The Relim algorithm 

  Technique 

It constructs conditional 

frequent pattern tree and 

conditional pattern base from 

database which satisfy the 

minimum support. 

It uses the hyperlink 

pointers to store the 

partitioned projected 

database in main 

memory. 

Relim (Recursive 

elimination) processes 

the transactions 

directly, based on FP-

Growth algorithm 

without the prefix tree. 

  
Memory 

utilization 

Due to compact structure and 

no candidates generation 

require less memory. 

Memory is utilized 

according to needs and 

partitions of projected 

database. 

It save a lot of memory 

for storing the 

transaction. Relim 

algorithm deletes all 

items from the 

transaction database 

that has least frequent 

items. 

Relim is better when 

min support is low. 

  Databases 
Suitable for large and medium 

datasets. 

Suitable for sparse and 

dense datasets. 

Suitable for large 

datasets 

  
Execution 

Time 

Execution time is large due to 

complex compact data 

structure. 

Execution time is large 

then FP-tree and others 

because of partition the 

database. 

Execution time is 

large. 

 

 

Horizontal Layout 
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Vertical Layout 
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 (Fig 2: Vertical Layout Database) 
 

      Eclat algorithm: 

Equivalence Class Clustering and 

bottom up Lattice Traversal is known as 

ECLAT algorithm. This algorithm is also 

used to perform item set mining [23]. It uses 

TID set intersection that is transaction id 

intersection to compute the support of a 

candidate item set for avoiding the 

generation of subsets that does not exist in 

the prefix tree. For each item store a list of 

transaction id. In this type of algorithm, for 

each frequent itemset i new database is 

created Di. 

This can be done by finding 'j' which is 

frequent corresponding to 'I' together as a set 

Then j is also added to the created database 

i.e. each frequent item is added to the output 

set. It uses the join step like the Apriori only 

for generating the candidate sets but as the 

items are arranged in ascending order of their 

support thus less amount of intersection is 

needed between the sets. 
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      The d Eclat algorithm 
Algorithm developed to generate all 

frequent itemsets in a depth-first manner is the 

Eclat (Equivalence Class Transformation) 

algorithm. If the database is stored in the 

vertical layout, the counting of support can be 

much easier by simply intersecting the covers 

of two its subsets that together give the set 

itself. The Eclat algorithm essentially used this 

technique in the Apriori algorithm. Always 

this is not possible since the total size of all 

covers at a certain iteration of the local set 

generation procedure could exceed 28 main 

memory limits. It is usually more efficient to 

first find the frequent items and frequent 2-sets 

separately and use the Eclat algorithm only for 

all larger sets [24]       
 

 
 

Table 3: Comparison of Eclat and The dEclat. 
 

SNO PROPERTIES Eclat algorithm The dEclat algorithm 

  Technique 
Use intersection of transaction ids list for 

generating candidate itemsets 

Use set intersection. Of 

transaction ids list for 

Generating candidate itemsets 

  Memory utilization 
Require less amount of memory 

compare to apriori if itemsets are small 

in number 

Suitable for large databases 

  Databases 
Suitable for medium and dense datasets 

but not suitable for small datasets 

Suitable for medium and large 

datasets, 

  Execution Time 
Execution time is small then apriori 

algorithm 

Execution time is small then 

Apriori algorithm 

 

 

    Algorithms for Mining using 

Nodesets 
Node-list and N-list, two novel data 

structure proposed in recent years, have 

been proven to be very efficient for mining 

frequent itemsets. A node-set contains two 

tables: one called mapping and the other 

called itemlist. The main problem of these 

structures is that they both need to encode 

each node of a PPC-tree [26] with pre-order 

and post-order code. This causes that they 

are memory- consuming and  inconvenient 

to mine frequent itemsets. [28] propose 

Nodeset, a more efficient data structure, for 

mining frequent itemsets. Nodesets require 

only the pre-order (or post-order code) of 

each node, which makes it saves half of 

memory compared with N-lists and Node-

lists. Based on Nodesets, an efficient 

algorithm called FIN to mining frequent 

itemsets.These three algorithms were 

proposed by Deng et al               , and 

are based on three novel data structures 

called Node-list     , N-list     , and 

Nodeset      respectively for facilitating the 

mining process of frequent itemsets.  They 

are based on a FP-tree with each node 

encoding with pre-order traversal and post- 

order traversal. Compared with Node-lists, 

N-lists and Nodesets are more efficient. This 

causes the efficiency of PrePost and FIN is 

higher than that of PPV. 
 

      N-list 

A novel vertical data representation 

called N-list, which originates from an FP- 

tree-like coding prefix tree called PPC-tree 

that stores crucial information about 

frequent itemsets. Based on the N-list data 

structure it develop an efficient mining 

algorithm, PrePost, for mining all frequent 

itemsets. Efficiency of PrePost is achieved 

by the following three reasons. First, N-list 

is compact since transactions with common 

prefixes share the same nodes of the PPC- 

tree  Second, the counting of itemsets’ 

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2010-20
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2012-21
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2014-22
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2010-20
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2012-21
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2014-22
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supports is transformed into the intersection 

of N-lists and the complexity of intersecting 

two N-lists can be reduced to O (m + n) by 

an efficient strategy, where m and n are the 

cardinalities of the two N-lists respectively. 

Third, PrePost can directly find frequent 

itemsets without generating candidate 

itemsets in some cases by making use of the 

single path property of N-list. N-list have 

experimentally evaluated PrePost against 

four state-of-the-art algorithms for mining 

frequent itemsets on a variety of real and 

synthetic datasets. The experimental results 

show that the PrePost algorithm is the fastest 

in most cases. Even though the algorithm 

consumes more memory when the datasets 

are sparse, it is still the fastest one. 

 

      Node-list 

Node-list and N-list, two novel data 

structure proposed in recent years, have 

been proven to be very efficient for mining 

frequent itemsets. The main problem of  

these structures is that they both need to 

encode each node of a PPC-tree with pre- 

order and post-order code. This causes that 

they are memory- consuming and 

inconvenient to mine frequent itemsets. 

Node-list Based on PPC-tree and efficiently 

mining frequent patterns in large datasets. 

First, PPV obtains the Node-list of each 

frequent item. Then, PPV obtains Node-lists 

of the candidate patterns of length (k+1) by 

intersecting Node-lists of frequent  patterns 

of length k and thus discovers the frequent 

patterns of length (k+1). The advantages of 

PPV are that it transforms the mining of 

frequent patterns into the intersecting of 

Node-lists, which makes mining process 

easier, and adopts an efficient method for 

intersecting two Node-lists, which has an 

average time complexity of O(m+n)       

 

      Nodeset 

Nodeset, a more efficient data 

structure, for mining frequent itemsets. 

Nodesets require only the pre-order (or post- 

order code) of each node, which makes it 

saves half of memory compared with N-lists 

and Node-lists. Based on Nodesets, who 

present [28] an efficient algorithm called 

FIN to mining frequent itemsets. For 

evaluating  the performance of FIN. A novel 

structure called Nodeset to facilitate the 

process of mining frequent itemsets. Based 

on Nodesets, The advantage of Nodeset lies 

in that it encodes each node of a POC-tree 

with only pre-order (or post-order) 

constructed. The extensive experiments 

show that the Nodeset structure is efficient 

and FIN run faster than PrePost on the 

whole. Especially, FIN consumes  

Much less memory than PrePost on 

dense datasets. These three algorithms were 

Proposed by Deng et al [26] [27] [28], and 

are based on three novel data structures 

called Node-list     , N-list     , and 

Nodeset [28] respectively for facilitating the 

mining process of frequent itemsets. They 

are sets of nodes in a FP-tree with each node 

encoding with pre-order traversal and post- 

order traversal. Compared with Node-lists, 

N-lists and Nodesets are more efficient. This 

causes the efficiency of PrePost and FIN 

[28] is higher than that of PPV[27].
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Table 4: Comparison of N-list, Node-list and The Nodeset. 

 

SNO PROPERTIES N-list Node-list Nodeset 

  Technique PrePost employs a 

novel data 

structure, N-list, to 

represent itemsets. 

N-list stores all 

crucial information 

about itemsets. By 

combining the 

search approach of 

candidate set 

generation-and-test 

and the search 

approach of 

mining frequent 

itemsets directly 

without candidate 

generation, PrePost 

achieves very high 

efficiency in 

mining frequent 

itemsets. 

A novel vertical 

algorithm called 

PPV for fast 

frequent pattern 

discovery. PPV 

works based on a 

data structure 

called Node-lists, 

which is obtained 

from a coding 

prefix-tree called 

PPC-tree. 

Nodesets require only the 

pre- order (or post-order 

code) of each node, which 

makes it saves half of 

memory compared with N-

lists and Node-lists. Based 

on Nodesets, we present an 

efficient algorithm called 

FIN to mining frequent 

itemsets. 

  Memory 

utilization 

Algorithm 

consumes more 

memory when the 

datasets are sparse. 

Memory is 

utilized according 

to needs. 

It saves a lot of memory 

for storing the transaction. 

it saves half of memory 

compared with N- lists and 

Node-lists. 

  Databases Suitable for sparse. Suitable for large 

and medium 

datasets. 

Suitable for large datasets. 

  Execution Time PrePost runs faster 

under all minimum 

supports. 

Execution time is 

large then N-list 

FIN is faster than PrePost. 

 
 

   Conclusion 
Frequent itemsets play an important 

role in many real-world applications. In this 

paper, we provide a survey of research on 

Frequent Itemsets Mining. The focus on 

frequent itemset mining and have tried to 

cover both early and recent literature related 

to mining frequent itemsets (FIs) and 

Frequent  Itemsets Mining for Big Data 

(FIM). In particular, we have discussed in 

detail a number of algorithms [13, 14, 15, 

  ,   ,   , 19, 20, 21, 22, 23, 24, 25, 26, 27, 

and 28]  on  mining FIs or FIM. Moreover, 

in this paper gives a brief survey on different 

approaches for mining frequent itemsets 

using association rules. The performance of 

algorithms depends on support level, nature 

and size of the datasets. 
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