

E: Mansoura Engineering Journal, (MEJ), Vol. 40, Issue 4: [the 8th International Engineering Conference, December 2015, Part I]

Accepted: 2 June

A Survey on Frequent Item sets Mining for Big Data

 دراست استقصائيت عن تعذين مجموعه عناصر متكررة فى البياناث الكبيرة

Engy A. El-Shafaiy

, Ali I. El-Desouky

 and Yousry M. AbdulAzeem

Computers and Systems Department, Faculty of Engineering, Mansoura

University, Egypt, Email: engy_eng@yahoo.com

Computers and Systems Department, Faculty of Engineering, Mansoura

University, Egypt

 Computers and Systems Department, Faculty of Engineering, Mansoura

University, Egypt, Email: yousry@mans.edu.eg

 ملخصال
" بياًاث كبيشة " هشحبطَ بالكوياث العخوت ّالوعمذة ّصيادة هجوْعاث البياًاث هخعذدة هي هصادس هسخملت. ّفٔ الْلج

الحاظش حجشٓ بسشعت كبيشة البياًاث حخْسع فٔ جويع هجالاث العلْم ّالٌِذست بسبب الخطْس السشيع للبياًاث ّحخضيي البياًاث

ّجوع الشبكاث. بسبب حملب الوٌاخ الحجن ّالسشعت ّ" الخٌميب عي البياًاث كبيشة " يخوخع بمذسة اسخخشاج الوعلْهاث البٌاءة هي

ث. اسخخشاج البياًاث يخعوي ححليل كوياث كبيشة هي البياًاث هي اجل ححذيذ هخخلف المْالب الكبيشة حذفماث البياًاث اّ هجوْعا

" ُْ ّاحذ هي اُن الوِام لاسخكشاف اًواغ الوفيذة هي هجوْعاث كبيشة هي البياًاث. ةهجوْعَ عٌاصش هخكشس البياًاث. "حعذيي

اث راث الاُويت للعذيذ هي الصٌاعاث يوكي اى حمذم حْجيِاث فٔ اسخخشاج لْاعذ الشابطت اًواغ هخكشسة هي اسخخشاج البياً

عولياث صٌع المشاس هثل الخسْيك سلت الاسْاق ححليل هجوْعت هخٌْعت...الد. حمٌياث اكخشاف لْاعذ الشابطت هي البياًاث حشكض

دة. ّحمذم ُزٍ الْسلت اسخعشاض حمليذيا علٔ ححذيذ العلالت بيي البٌذيي الخٌبؤ ببعط جْاًب السلْن البششٓ سلْن الششاء عا

 هخخلف لخمٌياث الخعذيي لوجوْعَ العٌاصش الوخكشسة.

Abstract
Big Data" connects large-volume, complex, and increasing data sets with multiple independent sources.

Nowadays, Big Data are speedily expanding in all science and engineering domains due to the rapid evolution of

data, data storage, and the networking collection capabilities. Due to its variability, volume, and velocity, "Big Data

mining" enjoys the ability of extracting constructive information from huge streams of data or datasets. Data mining

includes exploring and analyzing big quantities of data in order to locate different molds for big data. "Frequent item

sets Mining" is one of the most important tasks for discovering useful and meaningful patterns from large

collections of data. Mining of association rules from frequent patterns from big data mining is of interest for many

industries, for it can provide guidance in decision making processes; such as cross marketing, market basket

analysis, promotion assortment, ...etc. The techniques of discovering association rules from data have traditionally

focused on identifying the relationship between items predicting some aspect of human behavior; usually buying

behavior. This paper provides a review on different techniques for mining frequent item sets.

Keyword

Association Rule Mining, Data Mining, Frequent Item sets, Big Data, Frequent Pattern Mining, Apriori, FP-Growth.

 Introduction
"Data Mining" is gaining importance

due to the available huge amount of data.

Retrieving information from the warehouse

is not only tedious, but is also difficult in

some cases [1]. The most important usage of

Data Mining is customer segmentation in

marketing, shopping cart analyzes,

management of customer relationship,

campaign management, Web usage mining,

text mining, player tracking ...etc. In Data

Mining, "Association Rule Mining" is one of

the important techniques for discovering

meaningful patterns from large collections of

data [2]. Discovering frequent item sets plays

an important role in mining association rules,

mailto:engy_eng@yahoo.com
mailto:yousry@mans.edu.eg

Engy A. El-Shafaiy, Ali I. El-Desouky and Yousry M. AbdulAzeem E:

web log mining, and many other interesting

patterns among complex data. Besides being

the discovery of hidden information found in

databases, Data Mining can be viewed as a

step in the knowledge discovery process [3].

Data mining functions include clustering,

classification, prediction, and link analysis

(associations). One of the most important

data mining applications is that of mining

association rules. Association rules are first

introduced by Agarwal[4]. Association rules

are helpful for analyzing customer behavior

in retail trade, banking system...etc.

Association rule can be defined as {X, Y}

=> {Z}. In retail stores if customer buys X,

Y, he is likely to buy Z. The concept of

"Association Rule" is applied today in many

fields, such as intrusion detection,

biometrics, production planning ...etc.

Association Rule Mining means to find out

association rules that satisfy the predefined

minimum support and confidence from a

given database. If an item set is said to be

frequent, that item set supports both

minimum support and confidence. The

problem of finding the association rules can

be divided into two parts

 Find all frequent item sets: Frequent item

sets will occur at least as frequently as a

pre- determined minimum support count,

i.e. they must satisfy the minimum

support.

 Generate strong association rules from

the frequent item sets: These rules must

satisfy minimum support and minimum

confidence values. Frequent Pattern

Mining is the process of mining data in a

set of items or some patterns from a large

database. The resulted frequent set data

supports the minimum support threshold.

A frequent pattern is a pattern that occurs

frequently in a dataset. A frequent item

set should appear in all the transactions

of that data base. Frequent pattern

mining [5] plays a major field in

research, since it is a part of data mining.

Many research papers and articles are

published in the field of Frequent Pattern

Mining (FPM). This Paper provides

details about frequent pattern mining

algorithm, types and extensions of

frequent pattern mining, association rule

mining algorithm, rule generation, and

suitable measures for rule generation. This

paper describes about various existing

FPM algorithms and data mining

algorithm for big data by applying

frequent pattern mining algorithm and

suitable measures [6]. Frequent pattern

mining is fundamental in data mining. The

goal is to compute on huge data

efficiently. Finding frequent patterns plays

a fundamental role in association rule

mining, classification, clustering, and

other data mining tasks.

 Frequent Data Item set

Mining
Frequent patterns, such as frequent item

sets, substructures, sequences term-sets,

phrase sets, and sub graphs, generally exist in

real-world databases [7]. Identifying frequent

item sets is one of the most important issues

faced by the knowledge discovery and data

mining community. Frequent item set mining

plays an important role in several data mining

fields as association rules, warehousing,

correlations, clustering of high-dimensional

biological data, and classification. The

frequent item set mining is motivated by

problems such as market basket analysis. A

tuple in a market basket database is a set of

items purchased by customer in a transaction.

An association rule mined from market basket

database states that if some items are

purchased in transaction, then it is likely that

some other items are purchased as well. As

frequent data item sets mining are very

important in mining the association rules.

Therefore there are various techniques

proposed for generating frequent item sets so

that association rules are mined efficiently

E: Mansoura Engineering Journal, (MEJ), Vol. 40, Issue 4: [the 8th International Engineering Conference, December 2015, Part I]

(FIG 1: Techniques of Frequent Itemsets Mining.)

Using Novel Data structure Algorithm for Frequent Itemsets are divided into basic four techniques as show in Fig

 Candidate generation approach (E.g. Apriori algorithm)

 without candidate generation approach (E.g. FP-growth algorithm)

 Vertical layout approach (E.g. Eclat algorithm

 Using novel data structure approach (E.g. FIN algorithm)

Mining

frequent

item sets

with

multiple

supports

Mining

generator

frequent

item sets

Mining

Rare tem

set

Mining

high to

Item

sets

Algorithms

The MS

Apriori

The CFP

Growth++

Algorithms

The DefMe

The Pascal

The Zart

Algorithms

The Apriori

Inverse

Rare

Algorithms

The FHM

The HUI-Miner

The UP-

Growth

The IHUP

The Two-

Phase

Discovering

frequent

closed

Item Sets

Discovering

frequent

maximal

item sets

Discovering

frequent item

sets from

stream

Novel data

structure

algorithm

for

discovering

frequent

item set

[Frequent Item set Mining]

Discovering frequent

item set from a

transaction database

Mining frequent item

set from a transaction

database

Algorithms:

The Charm

The dCharm

The DCI_Closed

The LCM

The aprioriClose

aka Close

Algorithms

The Charm-

MFI

Algorithms

The EstDec

The cloStream

The U-Apriori

The VME

4-Frequent item

sets using novel

data structure

such as FIN

algorithm and the

LCMFreq

algorithm and the

PrePost algorithm

3-Vertical

layout approach

such as Eclat

algorithm and

the dEclat

algorithm

2-Without

candidate

generation

approach such as

FP-growth

Algorithm and

the H-Mine

algorithm and the

Relim algorithm.

1-Candidate

generation

approach such

as apriori

algorithm and

the aprioriTID

algorithm

Engy A. El-Shafaiy, Ali I. El-Desouky and Yousry M. AbdulAzeem E:

One of the challenges of frequent

pattern mining is that a large number of

redundant patterns are often mined [9]. For

example, the subset of a frequent pattern is

also guaranteed to be frequent and by mining

a maximal item set, one is assured that the

other frequent patterns can also be generated

from this smaller set. Therefore, one

possibility is to mine for only maximal item

sets. However, the mining of maximal item

sets loses information about the exact value

of support of the subsets of maximal

patterns. Therefore, a further refinement

would be to find closed frequent item sets

[10, 11]. Closed frequent item sets are

defined as frequent patterns, no superset of

which have the same frequency as that item

set. By mining closed frequent item sets, it is

possible to significantly reduce the number

of patterns found, without losing any

information about the support level. Closed

patterns can be viewed as the maximal

patterns from each group of equi-support

patterns (i.e., patterns with the same

support). All maximal patterns are, therefore,

closed. The depth-first method has been

shown to have a number. There are number

of algorithms used to mine frequent item

sets. The most important algorithms are

briefly explained here. The algorithms vary

in the generation of candidate item sets and

support count. The approaches of generating

frequent item sets are divided into basic four

techniques as show in Fig

 Algorithms for Mining with

Candidate generation approach
Algorithms for Mining with Candidate,

each row of database represents a transaction

which has a transaction identifier (TID),

followed by a set of items

 Apriori Algorithm:
Apriori algorithm is, the most classical

and important algorithm for mining frequent

itemsets. Apriori is used to find all frequent

itemsets in a given database DB. Apriori

algorithm is given by Agrawal. The apriori

algorithm uses the apriori principle, which

says that the item set I containing item set X is

never large if item set X is not large or all the

non-empty subset of frequent item set must be

frequent also[13].

Based on this principle, the apriori

algorithm generates a set of candidate item

sets whose lengths are (k+1) from the large k

item sets and prune those candidates, which

does not contain large subset. Then, for the

rest candidates, only those candidates that

satisfy the minimum support threshold

(decided previously by the user) are taken to

be large (k+1)-item sets. The apriori generate

item sets by using only the large item sets

found in the previous pass, without

considering the transactions. Steps involved

are:

 Generate the candidate 1-itemsets (C) and

write their support counts during the first

scan. 2. Find the large 1-itemsets (L) from

C by eliminating all those candidates

which does not satisfy the support criteria.

 Join the L to form C and use apriori

principle and repeat until no frequent

itemset is found.

 Partitioning Algorithm:
Partitioning algorithm is to find the

frequent elements on the basis of dividing

database into n partitions. It overcomes the

memory problem for large database which do

not fit into main memory because small parts

of database easily fit into main memory. The

algorithm executes in two phases. In the first

phase, the Partition algorithm logically

divides the database into a number of non-

overlapping partitions. The partitions are

considered one at a time and all large itemsets

for that partition are generated [14]. At the

end of phase I, these large itemsets are

merged to generate a set of all potential large

itemsets. In phase II, the actual support for

these itemsets is generated and the large

itemsets are identified. The partition sizes are

chosen such that each partition can be

E: Mansoura Engineering Journal, (MEJ), Vol. 40, Issue 4: [the 8th International Engineering Conference, December 2015, Part I]

accommodated in the main memory so that

the partitions are read only once in each

phase.

 The Apriori TID algorithm:
This is an alternative to Apriori Itemset

Generation. In this itemsets are dynamically

added and deleted as transactions are read.

This algorithm also used to reduce the

number of database scan. It is based upon the

downward disclosure property in which this

adds the candidate itemsets at different point

of time during the scan. It reduces the

database scan for finding the frequent

itemsets by just adding the new candidate at

any point of time during the run time

 The Apriori Hybrid algorithm:
The Apriori still examines every

transaction in the database. On the other

hand, rather than scanning the database,

AprioriTid scans Ck for obtaining support

counts, and the size of Ck has become smaller

than the size of the database. Based on these

observations Apriori Hybrid algorithm has

been designed to execution times for Apriori

and Apriori Tid for different passes. In the

earlier passes, Apriori does better than

AprioriTid. However, AprioriTid beats

Apriori in later passes, the reason for which is

as follows. Apriori and AprioriTid use the

same candidate generation procedure and

therefore count the same itemsets. In the later

passes, the number of candidate itemsets

reduces However; uses Apriori in the initial

passes and switches to AprioriTid in the later

passes. Apriori performs better than

AprioriTid in the initial passes but in the later

passes AprioriTid has better performance than

Apriori

(Table 2: Comparison of Apriori, AprioriTid and AprioriHybrid.)

SNO PROPERTIES Apriori Algorithm
Apriori Tid

Algorithm
Apriori Hybrid Algorithm

Candidate

generation

Candidate item- sets are

generated using only the

large item-sets of the

previous pass without

considering the

transactions in the

database.

The database is not

used at all for counting

the support of

candidate item- sets

after the first pass.

Hybrid Algorithm can be

designed that uses Apriori

in the initial passes and

switches to AprioriTid in

the later passes.

The

methodology

used

Uses Join &prune steps.
Uses Join &prune as

well as Tids.
Uses Apriori + AprioriTid

 Database scans
Multiple scan over the

database.

Uses the database only

one.
Uses Apriori + AprioriTid

 Memory usage

It takes more space and

memory for the

candidate generation

process.

In the Kth pass

AprioriTid needs

memory for Lk-1 and

Ck-1 during candidate.

An additional cost is

incurred if it cannot

completely fit into the

memory.

An extra cost is incurred

when shifting from

Apriori to AprioriTid.

 Execution Time

It takes more execution

time for the candidate

generation process.

For small problem it's

better than Apriori but

it takes more time for

Large problem.

It's better than Apriori

and AprioriTid.

Engy A. El-Shafaiy, Ali I. El-Desouky and Yousry M. AbdulAzeem E:

2.2 Algorithms for Mining without

candidate generation approach

This type of database uses divide and

conquer strategy to mine itemsets therefore

it counts the support more efficiently then

Apriori based algorithms. Tree projected

layout based approaches use tree structure

to store and mines the itemsets. The

projected based layout contains the record

id separated by column then record. Tree

Projection algorithms based upon two kinds

of ordering breadth-first and depth-first

 FP-Growth Algorithm:

FP-Growth Algorithm using a

compact data structure called FP-tree and

extracts frequent itemsets directly from this

structure. This algorithm is based upon the

recursively divide and conquers strategy;

first the set of frequent 1-itemset and their

counts are discovered. Starting from each

frequent pattern, Construct the conditional

pattern base, and then its conditional FP-

tree is constructed (which is a prefix tree).

Until the resulting FP-tree is empty, or

contains only one single path [18] [19].

(Single path will generate all the

combinations of its sub- paths, each of

which is a frequent pattern). The items in

each transaction are processed in L order.

(i.e. items in the set were sorted based on

their frequencies in the descending order to

form a list).

 H-mine Algorithm:

A memory-based, efficient pattern-

growth algorithm, H-mine (Mem), is for

mining frequent patterns for the datasets

that can fit in (main) memory. A simple,

memory-based hyper structure, H-struct, is

designed for fast mining. H-mine (Mem) has

polynomial space complexity and is thus more

space efficient than pattern growth methods like

FP-growth and tree projection when mining

sparse datasets, and also more efficient than

apriori-based methods which generate a large

number of candidates. H- mine has very limited

and exactly

Predict table space overhead and is faster

than memory-based a priori and FP-growth. H-

mine uses H-struct new data structure for

mining purpose known as hyperlinked structure.

It is used upon the dynamic adjustment of

pointers which helps to maintain the processed

projected tree in main memory. Therefore, H-

mine proposed for frequent pattern data mining

for datasets that can fit into main memory.

 The Relim algorithm:

This algorithm for finding frequent item

sets, which is strongly inspired by the FP-

growth algorithm and very similar to the H-

mine algorithm. It does its work without prefix

trees or any other complicated data structures,

processing the transactions directly. Its main

strength is not its speed (although it is not slow,

even outperforms Apriori and Eclat on some

data sets), but the simplicity of its structure.

Basically, all the work is done in one simple

recursive function [21].

2.3 Algorithms for Mining from,

Vertical Layout Database
The vertical pattern mining algorithms

use a vertical representation of the transaction

database to enable more efficient counting. In

vertical layout data set, each column

corresponds to an item, followed by a TID list,

which is the list of rows that the item appears

[22]. A vertical organization means that the

layout of the data is column-wise as shown in

Figure 2. Advantages of vertical achieved the

best possible runtime performance.

E: Mansoura Engineering Journal, (MEJ), Vol. 40, Issue 4: [the 8th International Engineering Conference, December 2015, Part I]

Table 2: Comparison of FP-Growth, H-mine and The Relim.

SNO Properties FP-Growth Algorithm H-mine Algorithm The Relim algorithm

 Technique

It constructs conditional

frequent pattern tree and

conditional pattern base from

database which satisfy the

minimum support.

It uses the hyperlink

pointers to store the

partitioned projected

database in main

memory.

Relim (Recursive

elimination) processes

the transactions

directly, based on FP-

Growth algorithm

without the prefix tree.

Memory

utilization

Due to compact structure and

no candidates generation

require less memory.

Memory is utilized

according to needs and

partitions of projected

database.

It save a lot of memory

for storing the

transaction. Relim

algorithm deletes all

items from the

transaction database

that has least frequent

items.

Relim is better when

min support is low.

 Databases
Suitable for large and medium

datasets.

Suitable for sparse and

dense datasets.

Suitable for large

datasets

Execution

Time

Execution time is large due to

complex compact data

structure.

Execution time is large

then FP-tree and others

because of partition the

database.

Execution time is

large.

Horizontal Layout

LIST OF ITEMS

M S I W

Vertical Layout

TID LIST OF ITEMS

 M, S, W

 M , I, S

 M, S

 I, M, W

 I, W, S

 (Fig 2: Vertical Layout Database)

 Eclat algorithm:

Equivalence Class Clustering and

bottom up Lattice Traversal is known as

ECLAT algorithm. This algorithm is also

used to perform item set mining [23]. It uses

TID set intersection that is transaction id

intersection to compute the support of a

candidate item set for avoiding the

generation of subsets that does not exist in

the prefix tree. For each item store a list of

transaction id. In this type of algorithm, for

each frequent itemset i new database is

created Di.

This can be done by finding 'j' which is

frequent corresponding to 'I' together as a set

Then j is also added to the created database

i.e. each frequent item is added to the output

set. It uses the join step like the Apriori only

for generating the candidate sets but as the

items are arranged in ascending order of their

support thus less amount of intersection is

needed between the sets.

Engy A. El-Shafaiy, Ali I. El-Desouky and Yousry M. AbdulAzeem E:

 The d Eclat algorithm
Algorithm developed to generate all

frequent itemsets in a depth-first manner is the

Eclat (Equivalence Class Transformation)

algorithm. If the database is stored in the

vertical layout, the counting of support can be

much easier by simply intersecting the covers

of two its subsets that together give the set

itself. The Eclat algorithm essentially used this

technique in the Apriori algorithm. Always

this is not possible since the total size of all

covers at a certain iteration of the local set

generation procedure could exceed 28 main

memory limits. It is usually more efficient to

first find the frequent items and frequent 2-sets

separately and use the Eclat algorithm only for

all larger sets [24]

Table 3: Comparison of Eclat and The dEclat.

SNO PROPERTIES Eclat algorithm The dEclat algorithm

 Technique
Use intersection of transaction ids list for

generating candidate itemsets

Use set intersection. Of

transaction ids list for

Generating candidate itemsets

 Memory utilization
Require less amount of memory

compare to apriori if itemsets are small

in number

Suitable for large databases

 Databases
Suitable for medium and dense datasets

but not suitable for small datasets

Suitable for medium and large

datasets,

 Execution Time
Execution time is small then apriori

algorithm

Execution time is small then

Apriori algorithm

 Algorithms for Mining using

Nodesets
Node-list and N-list, two novel data

structure proposed in recent years, have

been proven to be very efficient for mining

frequent itemsets. A node-set contains two

tables: one called mapping and the other

called itemlist. The main problem of these

structures is that they both need to encode

each node of a PPC-tree [26] with pre-order

and post-order code. This causes that they

are memory- consuming and inconvenient

to mine frequent itemsets. [28] propose

Nodeset, a more efficient data structure, for

mining frequent itemsets. Nodesets require

only the pre-order (or post-order code) of

each node, which makes it saves half of

memory compared with N-lists and Node-

lists. Based on Nodesets, an efficient

algorithm called FIN to mining frequent

itemsets.These three algorithms were

proposed by Deng et al , and

are based on three novel data structures

called Node-list , N-list , and

Nodeset respectively for facilitating the

mining process of frequent itemsets. They

are based on a FP-tree with each node

encoding with pre-order traversal and post-

order traversal. Compared with Node-lists,

N-lists and Nodesets are more efficient. This

causes the efficiency of PrePost and FIN is

higher than that of PPV.

 N-list

A novel vertical data representation

called N-list, which originates from an FP-

tree-like coding prefix tree called PPC-tree

that stores crucial information about

frequent itemsets. Based on the N-list data

structure it develop an efficient mining

algorithm, PrePost, for mining all frequent

itemsets. Efficiency of PrePost is achieved

by the following three reasons. First, N-list

is compact since transactions with common

prefixes share the same nodes of the PPC-

tree Second, the counting of itemsets’

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2010-20
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2012-21
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2014-22
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2010-20
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2012-21
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm#cite_note-Deng2014-22

E: Mansoura Engineering Journal, (MEJ), Vol. 40, Issue 4: [the 8th International Engineering Conference, December 2015, Part I]

supports is transformed into the intersection

of N-lists and the complexity of intersecting

two N-lists can be reduced to O (m + n) by

an efficient strategy, where m and n are the

cardinalities of the two N-lists respectively.

Third, PrePost can directly find frequent

itemsets without generating candidate

itemsets in some cases by making use of the

single path property of N-list. N-list have

experimentally evaluated PrePost against

four state-of-the-art algorithms for mining

frequent itemsets on a variety of real and

synthetic datasets. The experimental results

show that the PrePost algorithm is the fastest

in most cases. Even though the algorithm

consumes more memory when the datasets

are sparse, it is still the fastest one.

 Node-list

Node-list and N-list, two novel data

structure proposed in recent years, have

been proven to be very efficient for mining

frequent itemsets. The main problem of

these structures is that they both need to

encode each node of a PPC-tree with pre-

order and post-order code. This causes that

they are memory- consuming and

inconvenient to mine frequent itemsets.

Node-list Based on PPC-tree and efficiently

mining frequent patterns in large datasets.

First, PPV obtains the Node-list of each

frequent item. Then, PPV obtains Node-lists

of the candidate patterns of length (k+1) by

intersecting Node-lists of frequent patterns

of length k and thus discovers the frequent

patterns of length (k+1). The advantages of

PPV are that it transforms the mining of

frequent patterns into the intersecting of

Node-lists, which makes mining process

easier, and adopts an efficient method for

intersecting two Node-lists, which has an

average time complexity of O(m+n)

 Nodeset

Nodeset, a more efficient data

structure, for mining frequent itemsets.

Nodesets require only the pre-order (or post-

order code) of each node, which makes it

saves half of memory compared with N-lists

and Node-lists. Based on Nodesets, who

present [28] an efficient algorithm called

FIN to mining frequent itemsets. For

evaluating the performance of FIN. A novel

structure called Nodeset to facilitate the

process of mining frequent itemsets. Based

on Nodesets, The advantage of Nodeset lies

in that it encodes each node of a POC-tree

with only pre-order (or post-order)

constructed. The extensive experiments

show that the Nodeset structure is efficient

and FIN run faster than PrePost on the

whole. Especially, FIN consumes

Much less memory than PrePost on

dense datasets. These three algorithms were

Proposed by Deng et al [26] [27] [28], and

are based on three novel data structures

called Node-list , N-list , and

Nodeset [28] respectively for facilitating the

mining process of frequent itemsets. They

are sets of nodes in a FP-tree with each node

encoding with pre-order traversal and post-

order traversal. Compared with Node-lists,

N-lists and Nodesets are more efficient. This

causes the efficiency of PrePost and FIN

[28] is higher than that of PPV[27].

Engy A. El-Shafaiy, Ali I. El-Desouky and Yousry M. AbdulAzeem E:

Table 4: Comparison of N-list, Node-list and The Nodeset.

SNO PROPERTIES N-list Node-list Nodeset

 Technique PrePost employs a

novel data

structure, N-list, to

represent itemsets.

N-list stores all

crucial information

about itemsets. By

combining the

search approach of

candidate set

generation-and-test

and the search

approach of

mining frequent

itemsets directly

without candidate

generation, PrePost

achieves very high

efficiency in

mining frequent

itemsets.

A novel vertical

algorithm called

PPV for fast

frequent pattern

discovery. PPV

works based on a

data structure

called Node-lists,

which is obtained

from a coding

prefix-tree called

PPC-tree.

Nodesets require only the

pre- order (or post-order

code) of each node, which

makes it saves half of

memory compared with N-

lists and Node-lists. Based

on Nodesets, we present an

efficient algorithm called

FIN to mining frequent

itemsets.

 Memory

utilization

Algorithm

consumes more

memory when the

datasets are sparse.

Memory is

utilized according

to needs.

It saves a lot of memory

for storing the transaction.

it saves half of memory

compared with N- lists and

Node-lists.

 Databases Suitable for sparse. Suitable for large

and medium

datasets.

Suitable for large datasets.

 Execution Time PrePost runs faster

under all minimum

supports.

Execution time is

large then N-list

FIN is faster than PrePost.

 Conclusion
Frequent itemsets play an important

role in many real-world applications. In this

paper, we provide a survey of research on

Frequent Itemsets Mining. The focus on

frequent itemset mining and have tried to

cover both early and recent literature related

to mining frequent itemsets (FIs) and

Frequent Itemsets Mining for Big Data

(FIM). In particular, we have discussed in

detail a number of algorithms [13, 14, 15,

 , , , 19, 20, 21, 22, 23, 24, 25, 26, 27,

and 28] on mining FIs or FIM. Moreover,

in this paper gives a brief survey on different

approaches for mining frequent itemsets

using association rules. The performance of

algorithms depends on support level, nature

and size of the datasets.

References.
 Zeng, Li, et al. "Distributed data

mining: a survey." Information

Technology and Management 13.4

 -

 X. Wu, V. Kumar, J.R. Quinlan, J.

Ghosh, Q. Yang, H. motoda, G.J.

MClachlan, A. Ng, B. Liu, P.S. Yu, Z.

Zhou, M. Steinbach, D. J. Hand,D.
Steinberg,―Top Algorithms in Data

Mining,Knowl Inf Syst (2008) -

E: Mansoura Engineering Journal, (MEJ), Vol. 40, Issue 4: [the 8th International Engineering Conference, December 2015, Part I]

 Aggaraval R; Imielinski.t; Swami. A.

1993. Mining Association Rules

between Sets of Items in Large

Databases. ACM SIGMOD

Conference. Washington DC, USA.

 R.C. Agarwal, C.C. Aggarwal, and

V.V.V. Prasad. A tree projection

algorithm for generation of frequent

itemsets. Journal of Parallel and

Distributed Computing, 61(3):350–

371, March

 S Vijayarani el al , “Mining Frequent

Item Sets over Data Streams using

Éclat Algorithm” International

Conference on Research Trends in

Computer Technologies (ICRTCT-

 R. Agrawal and R. Srikant. Fast

algorithms for mining association

rules. In J.B. Bocca, M. Jarke, and C.

Zaniolo, editors, Proceedings 20th

International Conference on Very

Large Data Bases, pages 487–499.

Morgan Kaufmann,

 Savasere A, Omiecinski E, Navathe S

(1995) an efficient algorithm for

mining association rules in large 687

databases. In: Proceedings of

international conference on very large

data bases, pp. 688–

 R. Agrawal, T. Imielinski, and A.N.

Swami. Mining association rules

between sets of items in large

databases. In P. Buneman and S.

Jajodia, editors, Proceedings of the

1993 ACM SIGMOD International

Conference on Management of Data,

volume 22(2) of SIGMOD Record,

pages 207–216. ACM Press,

 J. Han, H. Cheng, D. Xin, and X. Yan.

Frequent Pattern Mining: Current

Status and Future Directions, Data

Mining and Knowledge Discovery,

15(1), pp. 55– ,

 C. Lucchese, S. Orlando, and R.

Perego. Fast and memory efficient

mining of frequent closed itemsets.

IEEE TKDE Journal, 18(1), pp. 21–

36, January

 F Pan, A. K. H. Tung, G. Cong, X. Xu.

COBBLER: Combining column and

Row Enumeration for Closed Pattern

Discovery. SSDBM,

 J. Pei, J. Han, H. Lu, S. Nishio, S.

Tang, and D. Yang. H-mine: Hyper-

structure mining of frequent patterns in

large databases. In Data Mining,

ICDM Conference,

 Q. Lan, D. Zhang, and B.Wu. A new

Algorithm For Frequent Itemsets

Mining Based On Apriori And FP-

Tree, IEEE International Conference

on Global Congress on Intelligent

Systems, pp. 360– ,

 Savasere E. Omiecinski and Navathe

S , “An efficient algorithm for mining

association rules in large databases,” In

Proc Int’l Conf Very Large Data

Bases (VLDB), pp: 432– ,

 http://associationrule.blogspot.in/200

8/09/apriori-aprioritid-and-apriori-

hybrid.html.

 Guofeng Wang, Xiu Yu, Dongbiao

Peng, Yinhu Cui, Qiming Li, Research

of Data Mining Based on Apriori

algorithm in Cutting Database, IEEE,

 pp.

 J. Han, J. Pei, and Y. Yin. Mining

frequent patterns without candidate

generation. In W. Chen, J. Naughton,

and P. A. Bernstein, editors, 2000

ACM SIGMOD Intl. Conference on

Management of Data, pages 1–12.

ACM Press, 05

 E. Azkural and C. Aykanat. A Space

Optimization for FP-Growth, FIMI

workshop,

 B. Racz. nonordfp: An FP-Growth

Variation without Rebuilding the FP-

Tree, FIMI Workshop,

 J. Pei, J. Han, H. Lu, S. Nishio, S.

Tang, and D. Yang. H-mine: Hyper-

structure mining of frequent patterns in

http://associationrule.blogspot.in/200

Engy A. El-Shafaiy, Ali I. El-Desouky and Yousry M. AbdulAzeem E:

large databases. In Data Mining,

ICDM Conference,

 http://www.borgelt.net/relim.html

http://www.borgelt.net/doc/relim/reli

m.html

 Laila A. Abd EI. Megid et al, “Vertical

Mining of Frequent Patterns using

Diffset Groups”, International

Conference on Intelligent systems

Design and Applications

 M. J. Zaki. Scalable algorithms for

association mining, IEEE Transactions

on Knowledge and Data Engineering,

12(3), pp. 372– ,

 M. Zaki and K. Gouda. Fast vertical

mining using diffsets. ACM KDD

Conference,

 M. Zaki, S. Parthasarathy, M. Ogihara,

and W. Li. New Algorithms for Fast

Discovery of Association Rules. KDD

Conference, pp. 283– ,

 Deng, Z. & Wang, Z. A New Fast

Vertical Method for Mining Frequent

Patterns . International Journal of

Computational Intelligence Systems,

 - ,

 Deng, Z.; Wang, Z. & Jiang, J. A New

Algorithm for Fast Mining Frequent

Itemsets Using N-Lists [2]. SCIENCE

CHINA Information Sciences, 55 (9):

 - ,

 Deng, Z. & Lv, S. Fast mining frequent

itemsets using Nodesets. Expert

Systems with Applications, 41(10):

4505– ,

http://www.borgelt.net/relim.html
http://www.borgelt.net/relim.html
http://www.borgelt.net/doc/relim/relim.html
http://www.borgelt.net/doc/relim/relim.html
http://www.borgelt.net/doc/relim/relim.html
http://www.tandfonline.com/doi/abs/10.1080/18756891.2010.9727736

