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ABSTRACT: 
A new configuration peripheral air jet model of annular-conical convergent nozzle 

positioned in proximity with a flat plate to create air cushioned in between with high pressure 
is investigated experimentally. Different model configurations obtained by varying some jet 
parameters like as; annular thickness  푡 , conic angle   , nozzle-plate spacing  퐿  and jet 
velocity 푉  are tested. The time average pressure distributions at the created air cushion and its 
surroundings; impinged plate, platform, nozzle exit and plenum chamber are measured. A 
power-height parameter  퐶   which serves as a good measure for the relative power 
requirements of selected nozzle configurations is calculated by the exponential potential theory 
and estimated from the present measurements. The experimental results of 퐶  has the same 
trend as its predicted values with reasonable differences. In all configurations the ratio of 
nozzle-plate spacing to upper platform diameter 퐿 퐷⁄  has strong effects on cushion 
characteristics and 퐿 퐷 = 0.1⁄  may be considered as a critical value over which the cushion 
begins to explode producing irregularly with time. 
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ÉTUDE EXPERIMENTALE DE JET PERIPHERIQUE CONIQUE 
NORMALEMENT EMPIETER SUR UNE PLAQUE PLANE 

RÉSUMÉ: 
Une nouvelle configuration périphérique modèle à jet d'air de la buse convergente 

annulaire conique placé à proximité d'une plaque plane de créer sur coussin d'air entre la haute 
pression est étudiée expérimentalement. Différentes configurations du modèle obtenu en 
faisant varier certains paramètres comme le jet que; annulaire〗 épaisseur  푡 , angle conique  , 
buse-plaque espacement  퐿 et jet vitesse  푉  sont testés. Les distributions de temps de la 
pression moyenne à coussin d'air créé et ses environs; plaque empiété, plate-forme, sortie de la 
tuyère et la chambre de tranquillisation est mesurée. Un paramètre de puissance-hauteur 퐶  
qui sert une bonne mesure pour les exigences de puissance relative des configurations de buse 
choisie est calculé par la théorie exponentielle potentielle et estimée à partir des mesures 
actuelles. Les résultats expérimentaux de 퐶  a la même tendance que ses valeurs prédites avec 
des différences raisonnables. Dans toutes les configurations du rapport de l'espacement des 
buses-plaque supérieure diamètre plateforme 퐿 퐷⁄  a des effets importants sur les 
caractéristiques de coussin et 퐿 퐷 = 0.1⁄  peut être considéré comme une valeur critique sur 
laquelle le coussin commence à exploser et irrégulière avec le temps. 

MOTS - CLES:, jet périphérique, jet conique, jet annulaire, coussin d'air. 
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Experimental Investigation of Conical Peripheral Jet Normally Impinging on a Flat Plate 
Ibrahim A. M. Gad
1. INTRODUCTION

  Jet flows, as a part of fluid mechanics, 
concerns many theoretical problems such 
as stability phenomenon, laminar, 
turbulent, transition, fluid entrainment and 
mixing. The jets are utilized in various 
applications such as propulsion of aircrafts 
and rockets, burners, mixers, etc. An 
interaction of the jet with a solid surface is 
of fundamental importance both for fluid 
dynamics and heat/mass transfer. 
Impinging jets are used in many 
applications such as cooling (electronic 
component, turbine blades), heating, 
drying, etc.; Garimella (2000), Trávníček 
and Peszyński (2002), Yang et al. (1999) 
Cooper et al. (1993). The jet-induced 
forces generated on short take off and 
vertical landing (STOVL) aircraft when in 
close proximity to the ground can have a 
significant effect on air craft performance. 
Special care and concentrated search 
efforts are done for understanding of the 
impinging jet flow field for design of 
efficient (STOVL); Tam (1990), Glass 
(1968) and Alvi (1999), Donaldson & 
Snedeker (1971) Carling & Hunt (1974), 
Lamont & Hunt (1980), Karamcheti et al., 
(1969), Krothapalli et al.,(1999), Sheplak, 
and Spina, (1994). The studies mainly 
emphasized on the mean properties of this 
flow with most of the measurements 
limited to mean surface properties, such as 
pressure distribution on the impingement 
surface. Jet impingement solid surface at 
low nozzle-plate spacing are investigated 
for mass/heat transfer; Lytle and Webb 
(1994), Chatterjee and Deviprasath (2001). 
Jet-induced ground effects on a parametric 
flat-plate model of a hover are studied by 
Wardwell et al. (1993). Air cushion 
machines, such as; power augmented ram 
and hovercraft are supported by the 

dynamic air cushion formed by air jets 
injected below the vehicle platform. 
Numerical simulation of flow emerging 
from annular-conical nozzle combinations 
impinging onto a cylindrical cavity is 
studied by Shuja et al. (2009). A 
simplified two-dimensional peripheral Jet 
theory for the equilibrium performance of 
an air cushion vehicle is investigated by 
Rogers and John, R. (1973). The proposed 
theory intends to yield a rapid prediction 
of the actual flow rate and actual power 
requirements for an air cushion landing 
system in the hover condition. Nine 
specific nozzle configurations were tested 
to determine whether the theory is able to 
predict the experimental data. An 
experimental study of Jet induced pressure 
distribution under platform in presence of 
ground effect has been undertaken by 
Soderlund et al. (2010). They aimed to 
determine steady state pressure 
distribution under a static model. Main 
controlled parameters include the jet 
thickness and platform height is tested.  
    The present investigation presents an 
experimental study of annular-conical air 
jet impinging normally on a flat plate 
surface at low nozzle-plate spacing. 
Measurements of the pressure 
distributions at impinged plate, model 
platform, plenum chamber, and jet exit 
will be conducted. Effects of various 
parameters on the air cushion pressure 
behavior like as; jet thickness  푡 , jet 
angle  , nozzle-plate spacing  퐿  and jet 
velocity 푉  are studied.  

In the literature there may not be any 
model having the same configuration of 
the current model. This makes difficulty 
of comparison the results. It may be useful 
to use the theories studying peripheral jet 
air cushion hovering on a rigid surface for 
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comparison of the results. The important
three theories studying peripheral jet air
cushion hovering on a rigid surface are:
theory of thin peripheral, exponential
theory of air cushion, theory of plenum
chamber on a rig
indirect comparison of the experimental
result will be tried with Ref (14).

2.   EXPERIMENTAL 
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chamber
annular nozzle. The annular nozzle is
convergent having two coaxial walls. The
nozzle exit is placed in proximity of an
impinged plate. The air cushion region
between the impinged plate and the
mo
condition of the nozzle.
     
model is fabricated with good accuracy
from aluminum, steel and wood. The solid
work drawing of this model is presented
in Fig 3. The impinged plate is fix
supported table
rod is fixed on one side of the table. A
complex support can be fixed or slid up
and down on this rod. This complex
support has a ring can be rotated around a
horizontal axis Fig
imping
complex support and the real aluminum
model is presented in Fig 5.
square plate of length 50 cm and thickness
3mm is pierced by 53 pressure taps which
located on the circumference of seven
circles of different
Fig 6 and table 1.
Pressure taps also are needed to be
pierced on the platform of the model
(circular area surrounded by the annular
jet).
available to supply the jet model by air
with different mass flow r
b). The nozzle jet exit is kept in the
proximity of the flat plate with small,
variable nozzle
air sources are use to enlarge the range of
investigated mass flow rates. The jet
pressure is measured using 4 pressure
taps just upstream of the nozzle exit and
the pressure inside the plenum chamber
is measured using 2 pressure taps in the
top
Fig
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The annular jet thickness 푡  and jet 
conical angle 휃 are varied to obtain 
different model configurations. The 
models which are tested in these studies 
are described in table 1. 

Table (2): tested models 

Model 휃  tj  mm 

1 15 5 
2 30 5 

3, 4, 5 45 3, 5, 8 
6, 7 55 9, 7 

8, 9, 10 90 5, 10, 

       The air mass flow rate is controlled by 
a gate with circular cross sectional area, 
has a diameter of 150 mm. The gate 
rotates about a vertical axis to change the 
opening pass of the air. The gate is 
calibrated by Pitot - static tube. Two 
electronic and water manometers are used 
for pressure measurements. The standard 
accuracy of the measurements reaches 
0.04 mm H2O. To change the jet gap with 
the stationary plate a mechanical 
mechanism are used to raise and down the 
whole model on its table. To change the 
jet thickness and its direction angle, the 
lower part containing the jet thickness and 
direction is changeable.   Eight models 
with different jet thickness and direction 
were manufactured - see table 2.  

4. RESULTS AND DISCUSSIONS

The time average measured 
gauge pressure distributions on the 
impinged plate and the model platform are 
indicated as  푃  mm H2O. The absolute 
pressure values will be indicated when it 
is needed. All models in table 1 are tested. 
The results recorded in this paper are 
those necessary to clarify the flow 

characteristics. The jet velocity 푉  is 
ranged from 14 to 55 m/s in all tested 
cases. The nozzle-plate spacing strongly 
affects the ratio 푃 푃⁄ . The results show 
that,  푃 푃  ⁄ equal 1 nearly. The small 
푃 푃⁄ means that the flow is 
incompressible. The pressure distributions 
on impinged plate and the model platform 
were measured as function of the air jet 
velocity, the nozzle-plate spacing, the jet 
thickness, and the conical jet angle. Figs. 8 
(a, b) show comparisons between 
measured time averaged pressure 
distributions on the impinged plate and on 
the model platform, respectively. Figs. 9 
(a, b, c, d, e, f, g, h) present the results of 
measured pressure distribution for 
 = 30  for; 푡 , 퐿   = (7, 3), (7, 10), (7,
20), (7, 25), (9, 3), (9, 10), (9, 20), (9, 25), 
respectively. 
Fig 10 presents the space time average 
pressure P  , over the impinged plate for 
different nozzle-plate spacing and 
different jet velocities. Figs 11 (a, b, c… l) 
represent the variation of measured 
pressures  P , P  and P  for cone angle 
 = 45  and different values of jet
thickness and nozzle-plate spacing, 
respectively. These results show that at 
low values of nozzle-plate spacing 
퐿 퐷⁄ < 0.1  the flow is axisymmetric 
and the measured time averaged gauge 
pressure  푃 (푥, 푦) at the model platform is 
constant. Some negligible decrease near 
the internal circumference of the jet is 
noticed. While at the impinged plate  the 
measured gauge pressure  푃  shows three 
distinguished regions; 1) at inner central 
region of diameter 퐷 < 퐷  ,  퐷 =
D (1 − 2L tan ⁄ )  the gauge pressure 
 푃  is nearly constant, 2) at the outer 
region of diameter 퐷 > 퐷  the gauge 
pressure  푃 increases and tends to 
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approach to zero by increasing the 
diameter and 3) at intermediate region of 
diameter  퐷 < 퐷 < 퐷  a negative gauge 
pressure  푃  is noticed after a sudden drop 
of its positive value in central region. The 
region of negative measured time 
averaged pressure  푃  diminishes by 
increasing L /D  until it disappears at 
퐿 퐷⁄ = 0.1nearly. At high nozzle-plate 
spacing L /D > 0.1  the measured time 
average pressure P  on the impinged plate 
and model platform is begun to deregulate 
from its axisymmetric shape which was 
noticed at low values of  L /D < 0.1 . 
This irregularity increases by 
increasing L /D . The measured value of 
P  is noticed to be varied during the time 
of measurements. The results show also 
that P  nearly equal P  and that the range 
of 푉  is incompressible due to the 
proximity of jet and plate for all studied 
cases. For all presented cases the 
measured gauge pressures of P , P  and P  . 
The results show that the measured P , P  
and  P  increase by increasing jet velocity 
V  or decreasing L . It is seem that their 
values tend to certain maximum values. 
Fig 9 presents the measured pressure in 
case of  휃 = 30 ,  푡 = 9푚푚  and    퐿 =
9푚푚 ; at impinged plate and model 
platform. Fig 10 (a through f) present the 
gauge pressure differences measured at 
the impinged plate for the cases  = 30  
described in table 3. 

(a) Measurements Uncertainty 
The method applied here for 

calculating the uncertainty of 
measurements is guided by    Sun, Z. et al. 
(2008), Zhang, H. et al. (2006) and Bell, 
S. (1999). Bell, S. (1999) briefed the steps 
of calculation as; 1) Decide what you need 

to find out from your measurements. 
Decide what actual measurements and 
calculations are needed to produce the 
final result 2) Carry out the measurements 
needed 3) Estimate the uncertainty of each 
input quantity that feeds into the final 
result. Express all uncertainties in similar 
terms 4) decide whether the errors of the 
input quantities are independent of each 
other. 5) Calculate the result of your 
measurement including the calibration) 6) 
Find the combined standard uncertainty 
from all the individual aspects 7) Express 
the uncertainty in terms of a coverage 
factor together with a size of the 
uncertainty interval, and state a level of 
confidence 8) Write down the 
measurement result and the uncertainty, 
and state how you got both of these. In 
this work the jet velocity and pressure are 
the output of these measurements. The 
apparatus used are electronic manometer; 
thermocouples, barometer and Pitot-static 
tub are used.  

The calculated uncertainty of 
measured gauge pressure  UP = 2.1% 
and the uncertainty of measured velocity 
are 푈푉 = 5.2%. 

Table (3): description of Fig 10 
(a through f) 휽풋 = ퟑퟎ풐  

Fig 10 푡  mm 퐿  mm 퐷  mm 
5-a 0.7 1 11.5 
5-b 0.7 10 11.5 
5-c 0.7 20 11.5 
5-d 0.7 25 11.5 
5-e 0.9 1 11 
5-f 0.9 10 11 
5-g 0.9 20 11 
5-h 0.9 25 11 
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(a) - Measured time averaged gauge pressure distribution 
 푷풄(풙, 풚) at impinged plate 

(b)  Measured time averaged gauge pressure distribution 푷풄 at model platform 
Fig. (8): measured time averaged gauge pressure in case of  휽풐 = ퟑퟎ풐, 풕풋 =

ퟗ 풎풎, and 푳풋 = ퟗ 풎풎 (a) impinged plate & (b) model platform 
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퐛 − 퐭퐣 = ퟕ 퐦퐦,     퐋퐣 = ퟏퟎ 퐦퐦 

4. 3. Cases Studied  휽풋 = ퟑퟎ풐 for Different Values of   풕풋, 푳풋 

퐚 −  퐭퐣 = ퟕ 퐦퐦,     퐋퐣 = ퟑ 퐦퐦 
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퐝 − 퐭퐣 = ퟕ 퐦퐦,     퐋퐣 = ퟐퟓ 퐦퐦  

퐜 −  퐭퐣 = ퟕ 퐦퐦,     퐋퐣 = ퟐퟎ 퐦퐦 
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퐟 − 퐭퐣 = ퟗ 퐦퐦,     퐋퐣 = ퟏퟎ 퐦퐦 

퐞 −  퐭퐣 = ퟗ 퐦퐦,     퐋퐣 = ퟑ 퐦퐦 
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퐠 −  퐭퐣 = ퟗ 퐦퐦,     퐋퐣 = ퟐퟎ 퐦퐦 
 

퐡 −  퐭퐣 = ퟗ 퐦퐦,     퐋퐣 = ퟐퟓ 퐦퐦 
Fig. (9):     퐂퐚퐬퐞퐬 퐬퐭퐮퐝퐢퐞퐝   = ퟑퟎ퐨 퐚퐧퐝 퐝퐢퐟퐟퐞퐫퐞퐧퐭 

풕풋, 푳풋 = ퟕ, ퟑ ퟕ, ퟏퟎ ퟕ, ퟐퟎ
ퟗ, ퟑ ퟗ, ퟏퟎ ퟗ, ퟐퟎ  ퟕ, ퟐퟓ

ퟗ, ퟐퟓ 
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Fig. (10): Space time averaged pressure 퐏퐜   measured over impinged plate for 
various Nozzle-plate spacing 푳풋 and various gap jet velocities 푽풋 
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4. 3. Cases Studied  휽풋 = ퟒퟓ풐 for 
Different Values of   풕풋, 푳풋 
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Fig. (11): Cases of jet angle θ=45o for 
different 풕풋  풂풏풅  푳풋 in matrix form  

푡 , 퐿  =
3,4 3,8 3,12  
5,4 5,8 5,12 
8,4 8,8 8,12 

3,16
5,16
8,16

 

(b) Exponential Theory Analysis 
 

      There are a number of theories for 
predicting the performance of peripheral 
jet systems. Among them, the so-called 
“exponential theory” is one of the most 
commonly used. In this theory, it is 
assumed that from the outlet of the nozzle 
to the point of ground contact, the jet 
maintains its thickness as well as its 
circular path, and that the air is inviscid 
and incompressible. The total pressure 푝  
is assumed to be constant across the jet 
with a static pressure gradient within it. 
The distribution of static pressure 푝 across 
the jet must satisfy the boundary 
conditions, that is, 푝 = 0  at the outside 
and 푝 = 푝  at the cushion side. Digges 
(1973) introduced a power-height 
parameter  퐶  involves all the physical 
variables in the power problem. Thus 퐶  
serves as a good measure for the relative 
power requirements of competing nozzle 
configurations as:  

퐶 = 550퐻푃 퐾 ⁄
퐾 = 144퐷 (2푔 휌⁄ ) ⁄ (푃 − 푃 ) ⁄  

퐻푃 =
144푄 (푃 − 푃 )

550
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The exponential theory is used here to 
calculate the power-height parameter  퐶  
and from the present measured data 
 퐶  is estimated. Fig 12 makes a 
comparison between 퐶  calculated by 
the exponential theory and its estimated 
values from present experimental data and 
the measured data by Rogers (1973). The 
deviation between the present and 
Rogers’s experimental results shown in 
Fig 12 are due to the two completely 
different configurations. While the 
deviation of present experimental results 
than the predicted by the exponential 
theory is due to lot assumptions in the 
theory.   

0 0.2 0.4 0.6 0.8 1
R

0

1

2

3

C
hd

Exponintial Theory
present Exp.
John R. Rogers Exp.

Fig. (12): Predicted and experimentally 
estimated power-height parameter 

versus cushion to total pressure ratio 

5. CONCLUSIONS
 A new geometric configuration 

peripheral air jet model of annular conical 
convergent nozzle positioned in proximity 
with a flat plate to create air cushion is 
investigated experimentally. In the 
literature there may not be any model 
having the same configuration of the 
current model. Therefore the results of 
experimental investigation conducted by 

Digges (1973) on a rectangular peripheral 
jet opened by distributed number of slots 
conducted by Digges (1973) as well as the 
exponential theory calculation is used for 
comparison with the present experimental 
results. The power-height parameter 
퐶 (introduced by Digges (1973)) serves 
as a good measure for the relative power 
requirements of competing nozzle 
configurations is used for comparison. For 
annular conical peripheral jet 
configurations it can be concluded that: 

[1] The ratio of nozzle-plate spacing to 
upper platform diameter 퐿 퐷⁄  has strong 
effects on cushion characteristics, 

[2] The ratio  퐿 퐷 = 0.1⁄  may be 
considered as a critical value over which 
the closed air cushion begins to explode 
producing irregular periodicity with time. 

[3] The time and space averaged 
values P ,  P , P   increase by increasing 
푡  or/and decreasing   퐿 , 

[4] The experimental results of the power-
height parameter exhibits the same trend 
as its predicted values by exponential 
theory with reasonable differences,  

[5] The power-height parameter is 
sensitive to the peripheral jet 
configurations,  

[6] The optimal range pressure ratio 
푅 = 푃 푃⁄  may be ranged from (0.3 to 
0.8). 

FUTURE WORK: 
In future we will use all available data for 
the validation of some suitable turbulence 
model in solving this type of flow to 
benefit the advantage of CFD.  
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NOMENCLATURE: 

퐶  power-height parameter 
퐷  Plenum chamber diameter  
퐷  Platform diameter  
ℎ  Height of plenum chamber 
푉  Jet exit velocity m/s 
퐿 jet height 
퐿  nozzle-plate spacing 

퐿 퐷⁄  Non dimensional gap 
푚̇  Mass flow rate 

p Time averaged gauge 
pressure  

푃 Time space averaged 
pressure  

푄̇  Jet volume flow rats 

R Cushion to total  gauge 
pressure ratio  푅 = 푃 푃⁄  

푡 퐷⁄  Jet thickness Ratio 

 Conical angle of the 
nozzle 

 Conical  jet angle 
Subscripts 

a atmosphere 
c cushion 
j jet 
o Plenum chamber
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