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ABSTRACT 

Production rate estimation is one of the most frequently discussed topics in construction industry. Production 

rates of excavation operation in building construction are affected by several factors. Among these factors are: 

hauling distance, loading area layout, dumping area layout, pile foundation, excavator bucket capacity, size and 

number of hauling units. Consequently, estimation accuracy here is challenged when the effects of these 

multiple factors are simultaneously considered. In this paper, a comprehensive review of literature and interview 

with project managers were performed to identify the most significant factors affecting the production rates 

excavation operations. Sixteen factors were identified as the most significant factors affect the production rates 

of such operations. These factors were classified into three categories, namely: 1) Job - Site Conditions, 2) 

Equipment Characteristics, 3) Management Conditions. The objective in this paper is the development of a 

suitable tool that can be effectively used to predict the production rates of the excavation operation in building 

construction projects. For this purpose, field observations were conducted to collect realistic production rates 

over a period of twelve months (12/7/2009 to 17/7/2010) in the city of Alexandria (Egypt). Eighty-five actual 

case studies taken from seventeen building projects were used as raw data to develop the proposed neural 

network (NNM) and multiple regression (MRM) models. These data were randomly divided into two groups: 

(1) training data (75 actual production rates), (2) validating data (10 actual production rates).  In conclusion, 

comparison between the predictive capabilities of both the best NNM and the best MRM indicates that the NNM 

outperforms the MRM.  

KEY WORDS: Production rates; Excavation operation; Neural network; Regression.  

RESEAU NEURONAL ET DE MODELES DE REGRESSION MULTIPLE POUR L'ESTIMATION 
DES TAUX DE PRODUCTION DANS LES OPÉRATIONS DE EXCAVATION 

RÉSUMÉ 

Estimation du taux de production est l'un des sujets les plus fréquemment discutés dans l'industrie de la construction. 

Les taux de production de l'opération de fouilles dans le bâtiment sont affectés par plusieurs facteurs. Parmi ces 

facteurs sont: le transport à distance, le chargement structure de l'espace, le dumping mise en espace, fondation sur 

pieux, la capacité de godet de l'excavatrice, la taille et le nombre d'unités de débardage. Par conséquent, sa précision 

d'estimation pourrait être contestée lorsque les effets de ces multiples facteurs sont considérés simultanément. Dans ce 

document de recherche à un examen complet de la littérature et des entrevues avec des gestionnaires de projet ont été 

réalisées pour identifier les facteurs les plus importants qui affectent les taux de production de l'opération de fouilles. 

Seize facteurs ont été identifiés comme les facteurs les plus importants qui affectent les taux de production de 

l'opération d'excavation. Ces facteurs ont été classés en trois catégories, à savoir: 1) Job - Conditions du site, 2) 

caractéristiques des équipements, 3) Condition de gestion. L'objectif de ce document de recherche est le 

développement d'un outil adapté qui peut être efficacement utilisé pour prédire le taux de production de l'opération 

d'excavation dans la construction de projets de construction. A cet effet, les observations de terrain ont été menées 

pour collecter des taux de production réalistes sur une période de douze mois (07/12/2009 au 17/7/2010), à Alexandrie 

- Egypte. Quatre-vingt-cinq études de cas réels tirés de dix-sept projets bâtiment construit à Alexandrie - Egypte ont 

été utilisées comme données brutes pour développer le modèle de réseau neuronal proposé (NNM) et le modèle de 

régression multiple (MRM). Ces données ont été répartis aléatoirement en deux groupes: (1) les données 

d'entraînement (75 taux de production réels), (2) la validation des données (10 taux de production réels). En 

conclusion, la comparaison entre les capacités prédictives des deux meilleurs NNM et la meilleure MRM a indiqué 

que la NNM surperformé le MRM. 

MOTS CLÉS: simulation, opération d'excavation, les rate de la production, le cost unitaire. 
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1. INTRODUCTION

Excavation operation is often one of the most 

important operations in any construction project 

in terms of its serious effect on both cost and 

time of these projects. Production rates 

estimation of excavation equipment generally 

based on the company's historical data and 

experts' opinion. In addition to these sources, 

production rates in handbooks and information 

from equipment suppliers are often used as 

references for estimation. The inaccuracy of 

production rates estimation is not only resulted 

from ineffective verification, but is also caused 

by the inconsistent consideration of the most 

important factors affecting the production rates 

of the excavation operation. Moreover, the 

accuracy of the production rates estimation in the 

planning phase could be challenged when the 

effect of multiple factors is considered 

simultaneously. 

The duration of a construction project is usually 

determined by the clients at the design stage and 

is then documented in the bid documents. 

Contractors are usually under an obligation to 

evaluate the feasibility of the project duration 

before a contract has been awarded. However, 

time pressures typically do not allow contractors 

to perform this analysis. Further complicating 

the matter, clients frequently use inaccurate 

production rates to estimate construction time. 

Therefore, many projects are developed using 

unrealistic contract time duration. 

Using inaccurate production rates to estimate 

construction time and cost has been recognized as a 

major source of bias in cost and time estimation. 

The only way to prevent inaccurate contract time 

estimation is to use realistic production rates. This 

research aims to develop NNM and MRM by using 

the realistic production rates to assist the planners 

and estimators to reduce the effort required for 

planning excavation operation as well as to 

improve the accuracy of production rates 

estimation. 

2. FACTORS AFFECTING

PRODUCTION RATES OF 

EXCAVATION OPERATIONS 

In this paper a comprehensive review of literature 

and interview with project managers were 

performed to identify the most significant factors 

affecting the production rates of the excavation 

operation. 

Chao and Skibniewski (1994) performed a case 

study in which a neural network was used to 

predict the productivity of an excavator. Flood and 

Christophilos
7
 (1996) modeled earthmoving 

operations utilizing neural networks. Shi
18

 (1999) 

developed an artificial neural network for 

predicting earthmoving operations in a mining 

reclamation project. Smith
19

 (1999) used linear 

regression model to estimate the productivity of the 

earthmoving operations in highway projects. 

Edwards and Holt
6
 (2000) developed regression 

model to calculate the excavator productivity and 

output costs. Peurifoy et al.
16

 (2010) considered the 

shovel machine as a dependent unit in the 

excavation operation. They identified nine factors 

affected the production rate of the shovel. Jonasson 

et al.
10

 (2002) studied the productivity of earthwork 

for different types of advanced positioning systems. 
Tam et al.

20
 (2002) developed a quantitative model 

for predicting the production rate of excavator 

using artificial neural networks (ANN) to establish 

a higher precision model. Bhurisith and Touran
4
 

(2002) conducted a case study with regard to 

obsolescence and equipment production rate and 

the ideal production rates of wheel type loaders, 

track-type loaders, scrapers, and crawler dozers. 
Hegazy and Kassab

8 
(2003) presented a simple and 

powerful approach for resource management and 

optimization in construction projects using a 

combination of flow chart-based simulation and 

genetic algorithms (GAs). Two examples were 

presented in this study to show the power and 

diversity of the proposed GA-optimized simulation 

planning approach: concrete-columns placing and 

earthmoving operation at Hong Kong International 

Airport. Marzouk and Moselhi
11

 (2003) presented a 

simulation engine, developed to model 

earthmoving operations. Marzouk and Moselhi
12

 

(2004) presented a framework for optimizing 

earthmoving operations using computer simulation 

and genetic algorithms. Moselhi and Alshibani
15

 

(2009) developed optimization model for 

earthmoving operation in heavy civil engineering 

projects. 

Based on the above comprehensive review of 

literature and interview with project managers 

sixteen factors (Table 1) were identified as the most 

significant factors affecting the production rates of 

excavation operation. According to Table (1), such 

factors were classified into three categories. Such 

categories mainly include: Job- site Condition, 

Equipment Characteristics and Management 

Conditions. 
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Table 1: Factors affecting production rates of excavation operations 

Category Description Factors included in Category Symbol 

(1) Job- Site Conditions 

(1) Loading area layout X1 

(2) Dumping area layout X2 

(3) Type of soil X3 

(4) Excavation depth X4 

(5) Haul distance X5 

(6) Pile foundation 
X6 

Weather conditions: 

(7) Temperature 

(8) Relative humidity 

(9) Rainfall 

X7 

X8 

X9 

(2) Equipment Characteristics 

(1) Excavator bucket capacity 

(2) Maximum digging depth of excavator 

X10 

X11 

(3) Swing angle X12 

(4) Size of hauling units X13 

(5) Number of hauling units X14 

(3) Management Conditions 
(1) Efficiency of supervision X15 

(2) Operator skill X16 

3. DATA COLLECTION

In this research, the production rates of the 

excavation operation for building foundation will be 

defined as the total amount of material loaded by the 

excavator to the trucks, the trucks once loaded, haul 

to the dump area, dump the load and return  to the 

queue in a unit time such as a minute or an hour.  A 

field observation is conducted by the researcher over 

a period of twelve months (12/7/2009 to 17/7/2010) 

in the city of Alexandria (Egypt). A data collection 

form was designed for collecting the required data. A 

total number of eighty-five actual case studies were 

collected from seventeen construction projects. 

These data were divided into two groups randomly: 

(1) training data (75 actual production rates), (2) 

validating data (10 actual production rates). The 

collected data of these cases mainly include the 

production rates of excavation operation as well as 

the different factors affecting such production. For 

further information, the reader is referred to Thabet
21

 

(2011). 

4. ARCHITECTURE OF NEURAL

NETWORK MODEL  

The sixteen factors that listed in Table (1) and 

the production rates are used as input and output 

neurons of the back-propagation neural 

network, respectively. To determine the number 

of hidden layers, Bailey and Thompson
2
 (1990) 

suggested, as a rule of thumb, start with one 

hidden layer and add more as long as the 

performance of the network is improved. The 

size of the hidden layer (number of hidden 

neurons) can be specified by using a number of 

heuristics including: 1) Bailey and Thompson
2
 

(1990) suggested the number of neurons to be 

around 75% of the size of the input layer, 2) 

BrainMaker Professional user’s guide
3
 (1998) 

suggested that the number of neurons in hidden 

layer to be as per the following formula:  

… (1)

All the above recommendations are considered 

as a first step to develop the present model. 

Moreover, Moselhi et al.
14

 (1991) advised that 

the proper number is determined by the 

experimentations. Therefore, for verifying this 

work, the traditional trial and error process was 

performed in order to reach the best possible  
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Fig. 1. Architecture of neural network model 

network that gave the minimum error during 

training and the best results when applied to the 

validation set. In this research, two hidden 

layers (6 hidden neurons in the first layer and 4 

hidden neurons in the second layer) were found 

to be capable of achieving the best results for 

predicting the production rates of excavation 

operation. The architecture of the best NNM is 

shown in Fig. (1). 

4.1 Training and Testing Neural Network 

Model 

Training is required to continuously adjust the 

connection weights until they reach values that 

allow the artificial neural network to predict 

outputs that are very close to the actual outputs 

while being able to generalize well on new 

cases (Hegazy et al.
9 
(1994)). 

In order to develop the NNM BrainMaker 

Professional software package 3.75 (2001) has 

been used for its ease of use, speed of training, 

 and for its host of neural network architectures 

including back propagation with flexible user 

selection of training parameters. BrainMaker 

Professional 3.75 includes a simplified set of 

procedures for building and executing complete 

and powerful neural networks application. The 

user has the ability to specify the learning rate,  

tolerance, activation functions, number of 

hidden layer and number of hidden neurons. It 

also has multiple criteria for stopping training in 

addition to different methods for handling 

missing data, pattern selection and viewing 

weight and neuron values during training 

(BrainMaker Professional- User’s Guide and 

Reference Manual
3 

(1998)). During training, a 

neural network is presented with the data many 

thousands of times (called cycles or epochs). 

After each cycle, the error between the neural 

network predicted outputs and the actual outputs 

are propagated backwards to adjust the weights 

in a manner that is mathematically guaranteed to 
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Fig. 2. Statistical graph of training results 

Table 2: NNM architecture, parameters and training results 

NNM Architecture 

Learning 

Rate 
Tolerance 

Transfer 

Function 

RMS 

Error Input 

layer 

First 

Hidden 

Layer 

Second 

Hidden Layer 

Output 

Layer 

16 6 4 1 0.1 0.1 Sigmoid 6.08 % 

converge (Rumelhart et al.
17

 (1986)). Several 

training experiments were conducted to arrive at 

the best training model. 

In these experiments, parameters of the 

networks structure such as the number of hidden 

layers, the number of hidden neurons, learning 

rate, tolerance, and transfer function such as 

sigmoid function, linear function, and other 

functions available on the software were 

changed and the best results were documented.  

After training the network, the user can evaluate 

the training and testing processes by using the 

training and testing statistical files. The best 

model was selected based on reaching 

acceptable minimum values of the root mean 

square error (RMS Error). The collected data 

were divided into two sections, training data (90 

% of the training data set) and testing data (10 

% of the training data set). The training RMS 

Error for the network is the average of the root 

square of the difference between the actual and 

predicted outputs for the training data set. The 

testing RMS Error for the network is the 

average of the root square of the difference 

between the actual and predicted outputs for the 

testing data.  

  The mean squared error equation is: 

2
  ………...    (2)   

Where RMS Error = root mean square error; N 

= number of cases; A = actual production rate; P 

= predicted production rate. 

During training, the RMS Error between the 

actual and predicted values for the production 

rates was plotted as shown in Fig. (2). It was 

clear that the error decreased as the number of 

runs increase and then become stable. The 

network used as the best model for this research 

that trained and tested successfully has a 

minimum RMS Error of approximately 6.08 %. 

The network stabilized at this error rate and 

training was stopped at 4924 runs. The architec-
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Table 3: NNM validation results 

No. of Cases Actual Production Rates 
Predicted Production 

Rates 
Error 

1 375 363.84 11.16 

2 445 409.83 35.17 

3 338 363.17 - 25.17 

4 454 445.37 8.63 

5 1067 1020.7  46.3 

6 492 487.14  4.86 

7 1040 1044.3 - 4.3 

8 430 428.49 1.51 

9 368 405.38 - 37.38 

10 694 725.97 - 31.97 

RMS Error = 8.17 % 

MAPE = 4.11 % 

R
2
 = 0.991 

ture, parameters and training results of the best 

NNM are tabulated in Table (2). 

4.2 Neural Network Model Validation 

Once the network was trained and a satisfactory 

error level was achieved, the validation data that 

had not been presented to the network during 

training were used to check how well the trained 

model predicts the production rates that it has 

never seen before. Three evaluation parameters 

were used as a basis for evaluating the 

performance of the trained neural network model: 

(1) Root mean square error (RMS Error); (2) 

Mean absolute percentage error (MAPE); (3) 

adjusted square multiple R (R
2
). Mathematically,

these parameters are defined as follows: 

2
  ……………… (3)   

 …………..(4) 

Where N= number of cases; A= actual value; P= 

predicted value. 

The results of the validation process were 

summarized in Table (3). As shown in Table (3), 

the RMS Error, MAPE and R
2
 were found to be

8.17 %, 4.11% and 0.991 respectively. These 

results reveal that the developed model has 

excellent predictive capabilities. 

5. REGRESSION ANALYSIS

Many problems in engineering and science 

involve exploring the relationships between two or 

more variables. Regression analysis is a statistical 

technique that is very useful for these types of 

problems (Montgomery and Runger
13 

(2010)).

The multiple regression model (MRM) will be 

used to determine the statistical relationship 

between a response or dependent variable (e.g. 

actual production rate) and the explanatory 

variables or independent variables (e.g., excavator 

bucket capacity, haul distance, or truck capacity). 

The responses to the regression model are what 

the planning engineer ultimately wants to 

estimate.  
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Table 4: MRM 1- using stepwise technique 

Adjusted square multiple R = 0.962 

F ratio = 316.413 , P- value = 0.00 

Variables Coefficients t-ratio Partial F 

Constant - 667.668 -7.970 0.000 

Excavator bucket 

capacity 
251.693 2.082 0.041 

Type of soil 12.923 1.979 0.052 

Haul distance -61.161 -8.534 0.000 

Haul unit number 94.435 9.515 0.000 

Haul unit size 68.885 9.263 0.000 

Loading area layout 39.351 3.368 0.001 

Table 5: MRM 2 – using backward technique 

Adjusted square multiple R = 0.964 

F ratio = 283.043 , P- value = 0.00

Variables Coefficients t-ratio Partial F 

Constant -567.305 -4.652 0.000 

Dumping area 

layout 
48.811 4.002 0.000 

Type of soil 18.218 2.596 0.012 

Haul distance -65.581 -9.803 0.000 

Haul unit size 68.784 9.349 0.000 

Obstacles -78.518 -2.301 0.024 

Haul unit number 104.443 16.784 0.000 

Loading area layout 16.516 2.275 0.026 

  The MRM is given by the equation: 

)6..(..........22110 ipp xxxY     

    i = 1, 2, …n    

  and assuming the following: 

• is the response that corresponds to the levels

of  the  explanatory variables x1, x2,…, xp  at  the 

i th observation. 

 • p ,...,, 10  are the coefficients in the linear 

relationship. For  a single  factor  (p = 1), 0   is 

the intercept, and  is the slope of the straight 

line defined. 

 • n ,...,, 21  are the errors that create scatter 

around the linear relationship at each of the i = 1 

to n observations.  

To make estimates of the coefficients in the 

regression model, the method of least squares is 

used for both its mathematical convenience and 

its ability to provide explicit expressions for 

these estimates (Smith
19 

(1999)). 
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Table 6: MRM 3 – using forward technique 

Adjusted square multiple R = 0.963 

F ratio = 288.107, P- value = 0.00

Variables Coefficients t-ratio Partial F 

Constant -527.090 -4.284 0.000 

Excavator bucket 

capacity 
231.864 1.927 0.058 

Type of soil 17.509 2.462 0.016 

Haul distance -60.248 -8.463 0.000 

Obstacles -69.10 -1.547 0.127 

Haul unit size 87.296 8.042 0.000 

Haul unit number 62.528 7.416 0.000 

Dump area layout 46.895 3.736 0.000 

5.1 Regression Model Development 

Various regression models for excavation 

operations were developed using statistical 

analysis techniques (stepwise, backward, and 

forward techniques). The SPSS 18 package, which 

was used to analyze the data and develop the 

models, provides the user with the ability to select 

one of the three different techniques. 

The collected data set was divided randomly into 

two main groups: model developing (75 

observations), and validation (10 observations) 

data sets. These data were organized and saved in 

Microsoft Excel spreadsheet. The SPSS 18 

package is compatible with Microsoft Excel. 

Therefore, the data exported from Excel to SPSS 

using the file import option in SPSS.  

 For a model, that includes sixteen variables with 

the use of seventy-five case case studies:  

 Fcritical  = F , p-1, n-p = F0.05, 16, 58  = 1.84..…..   (7) 

where n= number of observations, which equal to 

eighty-five; p= independent variables in the 

complete model, which equal to sixteen variables 

plus the constant (total 17). P-1= number of 

degree of freedom for the regression, n-p = degree 

of freedom for the error. 

Several modelling experiments took place; the 

three most suitable models are shown in Tables 

(4), (5) and (6). 

Based on the statistical tests, it can be concluded 

that the regression model produced by using the 

backward technique is more useful in predicting 
the dependent variable (production rates) since it 

provided a better statistical diagnostics with regard 

to its F-ratio, t-ratio, Adjusted square multiple R. 

The Adjusted square multiple R = 0.964. This 

statement means that the model is able to explain 

96.4% of the variability on the data. The tolerance 

is an indicator of multicollinearity, which inflates 

the variance of the least square estimators and 

possibly predictions made (Attalla et al.
1
 (2003)).

The results that obtained from the statistical 

analysis indicated that all of the independent 

variables in model 2 have a tolerance > 0.1, which 

indicated that multicollinearity does not exist 

among the independent variables (Attalla et al.
1

(2003)).  

The best model is given by the formula: 

Production Rate = -567.305 + 16.516 X1   + 

48.811X2 + 18.218 X3  -  65.581 X5  -  78.518 X6  

+  68.784 X13  + 104.443 X14 …………...       (8) 

5.2 Regression Model Validation 

The data, which were provided in the ten 

validation sets, were applied to the equation (8). 

The model produced ten predicted values for the 

production rates of excavation operation. Three 

evaluation parameters were used as the basis for 

evaluating the performance of the MRM: (1) Root 

mean square error (RMS Error); (2) Mean 

absolute percentage error (MAPE); (3) adjusted 

square multiple R (R
2
).

The results of the validation were tabulated in 

Table (7). As shown in Table (7), the RMS Error, 

MAPE and R
2
 were found to be 10.98 %, 5.66 %

and 0.986 respectively. These results reveal that 

the developed model has excellent predictive 
capabilities.     
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Table 7: MRM validation results 

No. of Cases Actual Production Rates 
Predicted Production 

Rates 
Error 

1 375 352.06 22.94 

2 445 418.39 26.61 

3 338 324.72 13.28 

4 454 388.11  65.89 

5 1067 1038.15 28.85 

6 492 460.28  31.72 

7 1040 1096.72 - 56.72 

8 430 421.42  8.58 

9 368 388.11 - 20.11 

10 694 721.62 - 27.62 

RMS Error = 10.98 % 

MAPE = 5.66 % 

R
2
 = 0.987 

6. COMPARISON BETWEEN NEURAL

NETWORK MODEL AND MULTIPLE 

REGRESSION MODEL 

The results (i.e. predicted values) obtained by 

using the best NNM were compared to those 

obtained by using the best MRM. Table (8) 

illustrates a comparison between the predictive 

capabilities of the best NNM versus the 

predictive capability of the best MRM. 

This comparison was based on five evaluation 

parameters: 1) Mean absolute percentage error 

(MAPE), 2) Root mean square error (RMS 

Error), 3) Adjusted square multiple R (R
2
), 4) 

Number of variables and 5) Number of cases 

within a specified percentage error. 

As shown in Table (8), the results indicated that 

the NNM outperformed the MRM in the five 

evaluation parameters. The values of MAPE, 

RMSE, and R
2 

for the neural network model are 

4.11 %, 8.17 % and 0.991 respectively, while 

the values of the same parameters, for the 

regression model, are 5.66 %, 10.98 % and 

0.986. In addition, the value of the number of 

variables indicated that the NNM was able to 

predicate the production rates by utilizing the 

sixteen variables, whereas the MRM utilized 

seven variables only. From a planner or user’s 

point of view, the ability to use more variables 

in predicting the production rate of future 

projects may be advantageous. For the number 

of cases within a certain percentage of error 

range, the results of the fifth evaluation 

parameters indicated that there were no cases 

within 0% error for both models. However, 

there are more cases of NNM in the “<5%” 

range of error. Finally, the comparison’s results 

indicated that the NNM outperformed the MRM 

in these ranges of error.  

Another useful comparison is to plot the 

prediction error (Actual-Predicted), for each 

case, for NNM and MRM. This comparison 

gives clear indication about the accuracy of each 

model. As shown in Fig. (3), the prediction error 

plot indicated that the NNM outperformed the 

MRM in five cases (1, 4, 6, 7 and 8 cases). The 

prediction error of these cases is close to 0 while 

the prediction error of the same cases, for the 

MRM, is not close to 0. Although the 

comparison between the values of the remaining 

five cases, cases 2, 3, 5, 9 and 10, indicates that 

the MRM outperformed the NNM, but the 

difference between these values is not large 

compared to the difference between the values 

of the previous five cases. In general, the 

prediction error plot indicates that the NNM 

outperformed the MRM. 
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Table 8: Comparison between the NNM and MRM 

Fig. 3. Prediction errors of NNM and MRM 

7. CONCLUSIONS

This paper attempts to develop two NNM and 

MRM that can be effectively used to predict the 

production rate of excavation operation. Based 

on a comprehensive review of literature and 

interviews with project managers sixteen factors 

were identified as the most significant factors 

affecting the production rates of excavation 

operation. A data collection form was designed 

for collecting the data required. A total number 

of eighty-five actual case studies were collected 

from seventeen construction projects. It can be 

concluded from the results of this study that: 

1. The use of the NNM and MRM can help

estimators to reduce the effort required for 

planning excavation operation as well as to 

improve the accuracy of production rate 

estimates to complete a project within budget 

and schedule.  

2. The results indicate that both NNM and

MRM can be effectively used to predict the 

production rates of excavation operation. 

However, the comparison between the 

predictive capabilities of the best NNM versus 

the predictive capabilities of the best MRM 

indicates that the NNM outperformed the MRM. 
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