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  A nonlinear model for the chemical process Benfield Solution (B.S.) stage in urea plant system is 

presented .This stage in a closed loop chemical process to a chive certain range of values for the 

concentration of that (B.S.). Different types of controllers such as PID, fuzzy and Neuro-fuzzy are 

proposed to achieve the required performance. Comparison study was made to select the best con-

troller from point of view of transient response parameters (over shoot percentage, settling 

time ,steady state error) . Therefore, the proposed design confirms the fact that fuzzy control is 

relevant to the fast control of non-linear processes such as system drives where quantitative meth-

ods are not always appropriate. 

ABSTRACT 

RÉSUMÉ 
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Un modèle non linéaire pour le processus chimique de solutions Benfield (BS) dans le système phase usine 

d'urée est présente. Cette étape dans un procédé chimique en boucle fermée à une gamme de valeurs de ci-

boulette certaine pour la concentration de ce (BS). Différents types de contrôleurs tels que PID, logique 

floue et neuro-floue sont proposées pour atteindre les performances requises. Etude comparative a été faite 

pour sélectionner le meilleur contrôleur à partir du point de vue des paramètres de réponse transitoire (plus 

de pourcentage tournage, le temps de stabilisation, erreur en régime permanent). Par conséquent, la concep-

tion proposée confirme le fait que la commande floue est pertinent pour le contrôle rapide des processus non 

linéaires tels que les lecteurs du système où les méthodes quantitatives ne sont pas toujours approprié.  

UN HYBRIDE NEURO-FLOUE (ANFIS) APPROCHE DE LE SYSTÈME DE CONTRÔLE DE LA PHASE 

SOLUTION DANS BENFIELD USINE D'URÉE  

MOTS CLÉS: contrôle Fuzzy, neuro-flous Techniques, Adaptive système d'inférence neuro-floue (ANFIS), Fuzzy 

Clustering soustractif, fonctions d'appartenance. Benfield Solution (b.s.), le contrôle PID.  
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1-INTRODUCTION 

In our presents Urea plant, some chemical processes 

is offered to the present system, in the stage of carbon 

dioxide removal, nature gas reforming and the singers 

shift conversion produce a large amount of carbon 

dioxide that shall be removed to make syngass suit-

able for Ammonia unit. A Benfield hot carbonate 

system is used for carbon dioxide removal and 

recovery as by - prooduct for use in Urea 

manufacture. Benfield solution. The Raw synthesized 

gas which contains carbon dioxide is reduced in the 

present system by the Benfield activated (potassium - 

carbonate solution ) carbonate process. In the 

absorption at elevanted pressure, the Co2 is removed 

(T102) by an aquaeous solution of potassium 

carbonate .The present system under study is simpli-

fied as shown in Figure (1).Figure (1) illustrates the 

drum (D107),feeding Benfield solution through 

valve (18) from tower (T102) under the pressure sys-

tem .The pumps(117&101) take from (D107) to 

(T101) through valves(41 &42) .The flow  to  (T 102) 

from (T101) through valves (29&62).The transmitters 

(29,12&18) measure the  level in the     tower (T101), 

tower (T102) and drum (D107) respectively[ 1 ] .In 

this paper we targeted to construct a simulation model 

of that system in order to develop a fuzzy logic con-

troller instead of the PID controller conventionally 

used in Fertilizing industry and also new design con-

troller for concentration of B.S.in tower (T102)   .  

Fuzzy logic design is not based on the mathematical 

model of the process. The controller designed using 

fuzzy logic implements human reasoning that has 

been programmed into fuzzy logic language (member 

ship function, rules and the rule interpretation). 

Closed loop control adding PI mode and select opti-

mal parameters to minimize error between measured 

point and reference point is compared. Design of con-

trol systems using the classical s-plane methods is 

difficult for non experts because of the nature of the 

design methods which require iterations and visual 

inspection of the root locus. Expertise and experience 

often play a major role in a accomplishing a design 

[2]. Forming the design and building an operational 

real- time knowledge based system for process con-

trol [3]. 

  ( a) 

        (b)     

Fig. 1: (a) A typical industrial diagram of (B.S) stage 

in urea plant ; (b) Schematic diagram of (B.S.) stage 

in urea plant  

2. MODEL DEVELOPMENT

The industrial installation shown in Fig. 1 is more 

complicated because a number of effects are addition-

ally interconnected in series. Examination of a typical 

installation, suggests that the configuration and pa-

rameter values may differ widely from one effect to 

another, but the form of the dynamic equations for 

each component of the system remains the same .The 

B.S process tends to exhibit long time delay and sig-

nificant response time, due mainly to container num-

bers and their capacities, piping, flow ratio, local 

level controllers and heat transfer dynamics. Model 

order reduction can be obtained by assuming the ac-

tion of local level controllers for the Benfield level 

effect allows neglecting the variations of the hold-up 

masses ,and developing the model relationships di-

rectly from mass balances  .  Consequently, the physi-

cal model consists of a number of linear and non lin-

ear differential equations and can be written as fol-

lows: 
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   (1) 

where 

x1 (t), is the level of the Benfield solution liquid in D

(107), (m), 

x2(t), is the level of Benfield solution in the tower, 

(T101),(m). 

 x3(t), is the level of Benfield solution in the tower

(T102), (m). 

q1 (t), is the inlet flow, m3/min.

According to the last equations (1), a Simulink model 

has been developed for B.S system. On the other 

hand, in order to carry out a performance comparison 

between the results of our case study and the results 

obtained by application of advanced control ap-

proaches, we adopted the same operating parameters 

Table 1: Model parameters 

Table 1, shows the values of model parameters above 

list all the variables in the complete process model, 

and their nominal steady state values. In order to vali-

date the developed model, whether all outputs vari-

ables take on the respective steady-state values when 

the inputs are given the nominal steady-state values, 

we replaced the imports by either Constant blocks or 

Step Input blocks, with the appropriate amplitudes. 

The correct steady state values of these parameters 

have been obtained after transients have finished. 

This leads to the following expressions can be ob-

tained  

This models (NLM) non linear model and linear 

model are obtained in detail   in [5].The linear model 

can be obtained from the nonlinear model at the 

nominal steady state variables and can be rewritten 

inform transfer function as :  

         (2) 

where 

Gp(s), is the system transfer function model.The block 

diagram for this system can be represented as shown 

in Fig. 2.  

Fig. 2: Block diagram of the system 

Taking in consideration the values of different pa-

rameter at normal operation this process transfer 

function can be written as: 

   (3) 

Also we can be put in the form of state variable 

representation. 

Table 1 model parameters

As the following 

       (4) 

Where the matrix A can be obtained and the matrix B 

 (5) 

    (6) 

Y=      (7) 
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Where the matrix C: 

3. CONVENTION CONTROL

The PID controller may be implemented in continu-

ous or discrete time, in a number of controller struc-

tures. The ideal continuous time PID controller is 

expressed in Laplace form as follows: 

 (i.e. P control), then the closed loop measured value 

will always be less than the desired value for proc-

esses without an integrator term, as a positive error is 

necessary to keep the measured value constant, and 

less than the desired value. The introduction of inte-

gral action facilitates the achievement of equality 

between the measured value and the desired value, as 

a constant error produces an increasing controller 

output. 

The introduction of derivative action means that 

changes in the desired value may be anticipated, and 

thus an appropriate correction may be added prior to 

the actual change. Thus, in simplified terms, the PID 

controller allows contributions from present, past and 

future controller inputs. In many cases, the design of 

PID controllers for delayed processes is based on 

methods that were originally used for the controller 

design of delay-free processes. However, there is 

general agreement that PID controllers are not well 

suited for the control of dominant delay processes. It 

has been suggested that the PID implementation is 

recommended for the control of processes of low to 

medium order, with small delays, when controller 

parameter setting must be done using tuning rules and 

when controller synthesis may be performed a num-

ber of times (Isermann 1989). [22].Ziegler-Nichols 

method (the process reaction method) is used for tan-

ning PI (proportional gain, 78.66 and integral time 

constant, 26.66, s) controller, also trial and error 

method for these parameters is used. 

4. FUZZY LOGIC CONTROLLER OF THE

SYSTEM METHODOLOGY 

4-1 Design Steps of Fuzzy Controller (FC) of Pre-

sent System  

The general fuzzy logic controller design procedures 

consist of the following steps [8, 9, 10, 14, 15,  16]: 

1) Definition of the inputs and outputs (linguistic

variables), in terms of fuzzy sets, the number of lin-

guistic labels, and the respective membership func-

tions for each labels. 

2) Construction of fuzzy control rules based upon

the knowledge and experience of process operation. 

3) Selection of the model of fuzzy inference system

FIS (e.g. Mamdani, Sugeno .. Types); and the compo-

sitional rule of inference (e.g. Min-Max method)  

4) Choosing the method of defuzzification (e.g.,

COG  , MOM ..) , i.e., transformation of the fuzzy 

control statement into specific control actions since 

the controlled process takes only crisp values as in-

puts .  In this section, the design procedures of fuzzy 

PI controller for the present system, based on Fuzzy 

Inference System FIS- Editor in MATLAB7.0.4 / 

Simulink , is discussed . Conceptually , FLC can be 

derived from the original classical (proportional -

integral differential) PID mathematical model [11, 

12]: 

 u(t)=KP e(t)+Ki ∫e(t)dt + Kd de /dt                 (8) 

 u (k) =KP e(k)+Ki Σe(m) + Kd Δe(k), m = 0,..,k (9) 

The increment of the output signal is: 

Δu(k)=u(k)-u(k-1)  (10) 

 Δu(k) = KP Δe(k)+Ki e(k)+ KdΔ2 e(k)    (11) 

Depending on the choice made in the design phase 

we can have different types of FLCs: P, PI, PD, or 

PID. 

In our (system) the FC is a two-input single-output 

PI-fuzzy controller: 

ΔUS(k)=KPΔEc(k)+KiEc(k)                       (12)    

The inputs of the FC are: Ec(k) the Benfield level 

error which is given by : 

  Ec(k)=href.(k)-h(k)  (13) 

where href.(  k ) is the level set- point , h (k) is the 

actual Benfield level at sample k . 

The second input signal is ΔEc(k) the change of Ben-

field level error : 

ΔEc(k)=Ec(k)-Ec(k-1),  (14) 

The output of the fuzzy control part is the the incre-

mental control action 

ΔUS(k)=US(k)-US(k-1) ,  (15) 

Finally, we have (Us) signal as integrated control 

action which will be imposed on the level valve . The 

input and output membership functions (labels: 

NEGATIVE, POSITIVE ) for the Ec , ΔEc , and 

(labels : NEGATIVE , ZERO , POSITIVE )for 

ΔUS.Using the aforementioned membership func-

tions, the following control rules are established for 

the fuzzy logic control part: 

 100
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(R1) If Ec(k) is NEG AND ΔEc(k) is NEG Then ΔUS

(k) is NEG. 

(R2) If Ec(k) is NEG AND ΔEc(k) is POS Then ΔUS

(k) is ZERO. 

(R3) If Ec(k) is POS AND Δ Ec(k) is NEG Then ΔUS

(k) is ZERO. 

(R4) If Ec(k) is POS AND ΔEc(k) is POS Then ΔUS

(k) is POS. 

The formulation of these rules can be understood as 

follows: For Rule 1 (R1): if we look at this rule for 

the controller, condition Ec(k) (the error is negative) 

implies that the system’s output, h(k), is above the 

reference href.(k), and Δ Ec(k) (rate of error negative) 

implies h(k )>0 (meaning that the controller at the 

previous step is driving the system output upward, 

leaving the reference). Hence, we set ΔUS(k) to nega-

tive to turn the motion of the stem valve around to the 

opposite direction. Similarly, for Rule 2 (R2), since 

the output is above the reference but moving down-

wards, we set term ΔUS (k) = 0 (no control action is 

needed in this case since the output trajectory is mov-

ing toward the reference) .Rules 3 and 4 are similarly 

determined. The final step in the fuzzy logic control-

ler design is to combine the fuzzy outputs into a crisp 

output. The commonly used Center of gravity “COG” 

formula is employed to defuzzify the incremental 

control ΔUS (k) of the fuzzy logic part: 

         (16) 

where the finally tuned values of the scaling factors , 

associated to each variable are used .  The scaling 

factors enable the use of normalized universes of dis-

course in the [-1, 0, +1] domain, and play a role simi-

lar to that of the gain coefficient in conventional con-

trollers [10, 13]. For more details of FC tuning, see 

[16]. 

In our study the Mamdani type of FIS, and Min-Max 

method for the rule evaluation process, were selected. 

Fig. (3) shows a Fuzzy Feedback Control System  

Figure 3: General Structure of a Fuzzy Feedback 

Control System 

 4.2. Fuzzy Logic Controller of System Using 

ANFIS Methodology  

The fuzzy logic controller provides an algorithm, 

which converts the linguistic control, based on expert 

knowledge into an automatic control strategy [14]. 

 ] Therefore, the fuzzy logic algorithm is much closer 

in spirit to human thinking than traditional logical 

systems [6, 15]. The main problem with fuzzy logic 

controller generation is related to the choice of the 

regulator parameters [12]. For this reason, we apply 

the ANFIS methodology to adapt the parameters of 

the fuzzy controller according to real data about the 

system [13, 23].  

Two control applications that require system for suc-

cess and make use of hierarchical architecture of the 

control system are described and the control result is 

provided. 

 Using the GENFIS2 function (which is based on the 

subtractive clustering algorithm in the SUBCLUST 

function) in mat lab, we generate a fuzzy inference 

system that calculates the output based    on the actual 

data for {∆e, e} for control inputs B.S. level. Actual 

data are given in Table(2)   

4.2.1. Takagi-Sugeno controller for the B.S stage 

level 

Sugeno-type fuzzy inference system was generated 

using subtractive clustering in the form:  

       (17)   

where e is the control error, de is the derivation of the 

control error, u is the calculated control and pi, qi, ri 

are consequent parameters[ 4,6 ]. The symmetric 

Gaussian function (gaussmf in MATLAB) was cho-

sen as the membership function and it depends on 

two parameters σ and c as it is seen in (18)  

   (18) 

  where c, σ are the center and the width of the Gaus-

sian function respectively. The parameters σ and c for 

gauss mf are listed in Table 3. For obtaining of these 

parameters, it was necessary to have the data sets of 

e, de and u at first. These data were obtained   as in 

Table (2) by simulation of PID control of the system.  

The consequent parameters in the control input rule 

(17) are listed in Table 4 and the resulting plot of the 

output surface of a described fuzzy inference system 

is presented in Fig. 4.  
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Fig. 4. Takagi-Sugeno controller - control signal u 

(out) as function of control error e(in1) and its 

derivation De.(in2) . 

Table 2 Experimental error e, derivative ∆e and 

control action u 

Table3: Parameters of the Gaussian curve member-

ship function 

Table 4: Consequent parameters

Figure 5(a ,b, c, d) (a)shows the FIS Editor is the  

fuzzy design tool ,(b) :Membership functions of Ben-

field level error e inputs with 8 Gaussian fuzzy sets, 

(c)Fuzzy Rules Viewer and (d) Fuzzy Logic Control-

ler Surface. For inputs (e, ∆e) numbers of rules (8) as 

mentioned and for using N-F to obtain adaptive rules 

(4) for actual data of (e, ∆e) .Using the block diagram 

of fuzzy logic (eg=5   , ug= 5) based on the simulated 

models of the (B.S) and FLC, obtained in previous 

sections a complete fuzzy control FCS for system was 

developed .The simulation is conducted using MAT-

LAB  SIMULINK AND FUZZY LOGIC TOOLBOX  

Figure 6 presents the simulation results of (FLC)  

of B.S level .These results are compared with those 

obtained by PID control of B.S level.  

Fig. 5: (a) The FIS Editor is the fuzzy design tool 

 (b) Membership functions of Benfield level error EC , 

(c) Fuzzy Rules Viewer 

(d) Fuzzy Logic Controller Surface  

Fig.6 Comparison of the B.S system control, (FLC) 

fuzzy control, PID control, reference trajectory. 

4.2.2 Fuzzy logic controller of the system using 

ANFIS methodology 

We apply the ANFIS methodology to adapt the pa-

rameters of the fuzzy controller according to real data 

about the System as in Table (2). This method is de-

scribed in [7]. 

4.2.2.1 ANFIS architecture 

The ANFIS neuro fuzzy controller was implemented 

by Jang (1993) and employs aTakagi – Sugeno-Kang 

(TSK) fuzzy inference system. The basic ANFIS ar-

chitecture is shown in Figure 7. Square nodes in the 

ANFIS structure denote  

Fig. 7: Adaptation network based fuzzy inference 

system (ANFIS) architecture (after Graven) 
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parameter sets of the membership functions of the 

TSK fuzzy system. Circular nodes are static / non – 

modifiable and perform operations such as product or 

max/min calculations. A hybrid 

learning rule is used to accelerate parameter adaption. 

This uses sequential least squares in the forward pass 

to establish the premise parameters.If the fuzzy infer-

ence system has inputs x1 and x2 and output F as 

shown in Fig. 7, then a first – order TSK rule base 

might be     

 Rule 1: If x1is A1 and x2is B1 then 

Rule2: if x1is A2and x2is B2 then 

Rule n: If x1is An and x2 is  Bn 

    (19) 

Where A1…….An, B1……Bn are membership func-

tions and P1…..Pn, q1……..qn and r1…..rn are con-

stants within the consequent functions.  

 Layer 1 contains adaptive nodes that require suitable 

premise membership functions (triangular, trapezoi-

dal, bell etc). Henc 

       (20) 

  Layer2 undertakes a product or T-norm operation.  

    (21) 

Layer 3 calculates the ratio of the firing strength of   

 (22) 

Layer 4 generates the linear consequent functions as 

given in equation (19). 

Layer 5 sums all incoming signals 

   (23) 

Limitation of the ANFIS technique is that it cannot be 

employed on multivariable systems. The Coactive 

(CANFIS) developed by Craven (1999) extends the AN-

FIS architecture to provide a flexible multivariable con-

trol environment The linguistic control rules are es-

tablished considering the dynamic behavior of the sys-

tem drive and analyzing the error and its variation. 

These control rules are expressed as follows: 

If Error is LP and Change Error is LP then output 

drive= p1 × Error + q1 × Change Error + r1 

If Error is LP and Change Error is MP then output 

drive = p2 × Error + q2 × Change Error+ r2, . . 
This is a Surgeon fuzzy model for controlling our 

system. We used the ANFIS methodology to estimate 

the parameters of the membership functions and the 

consequent functions. We used a fuzzy model of four 

rules and two membership functions for each linguis-

tic variable. This was the fuzzy controller that gave 

the best results. In Fig. 8a we show the non-linear 

surface of the fuzzy model. In Fig. 8b we show Fuzzy 

rule viewer for calculating the output of the fuzzy 

system for specific values. The parameters of the 

membership functions and the consequent functions 

are obtained. We show in Fig. 9a the architecture of 

the fuzzy system with the ANFIS approach. The 

fuzzy rules generated by the ANFIS method are 

shown in Fig 9b. These rules are generated automati-

cally with the ANFIS method. We also show in Fig. 9 

c the membership functions generated automatically 

by ANFIS. Fig.9d shows ANFIS architecture show-

ing the inputs (e, ∆e) and outputs (u) of the sys-

tem .Table 5 shows consequent parameters (pi, qi, ri).  

Table 5: Consequent parameters 

Fig. 10 presents the simulation results of the ANFIS 

control of the present system .These results are com-

pared with those obtained by fuzzy control (FLC) and 

PID control of the (B.S.) level. Figure 11shows the 

error response of the three cases and the comparison 

with them. The root mean square error (RMSE) com-

parison between three cases in range of time tabulated 

as in Table 6. 

Table 6: Comparison between (FLC, ANFIS &PID) 

Controllers 

Comparing the statistic data  with 4 curves tabulated 

as in Table 7.  
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Table 7: Statistical data of (PID,FLC &ANF) control-

lers 

Fig. 8. (a):Non-linear surface of the Sugeno fuzzy 

model (b): Fuzzy rule viewer for calculating the 

output of the fuzzy system for specific values. 

Fig. 9: (a):Architecture of the Sugeno fuzzy system with 

the ANFIS approach, (b):Fuzzy rules generated by the 

ANFIS method, (c): Membership functions generated by 

the ANFIS method, (d): ANFIS architecture showing 

the inputs (e, ∆e) and outputs (u) of the system  

Fig. 10 Comparison of B.S level control 
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Fig. 11: Error responses of three cases 

5. RESULTS

 There are three major benefits of the (B.S) control 

system: the energy saving, disturbances rejection, and 

robustness. These benefits are mainly achieved by 

reducing overshoot and recovering time after distur-

bances. In our (system), the overall control objective 

was to regulate the Benfield level at 30% at the outlet 

of the effect with constant flow rates in the absence or 

presence of disturbances. Particularly, Benfield level 

is to be controlled by adjusting the steam flow rate 

incoming the first effect (co2). Based on the simu-

lated models of the B.S and the FLC, obtained in pre-

vious sections, a complete fuzzy control system FCS 

for system was developed. The simulation is con-

ducted using MATLAB7.0.4/Simulink and Fuzzy 

Logic Toolbox .Figure 2 shows the general structure 

of a fuzzy feedback control system. The transient 

process of our system have been obtained and ana-

lyzed as follows: 

1-Investigating the system (NLM) due to change in 

set point (step) (.24, 0.2) is obtained .Figure 12 shows 

the output response at different points (t1=300, 

t2=500, t3=700 and t4=870 s) and change in refer-

ence point (0.3, 0.35, 0.25 and 0.4). Change (in2= 

0.24 to 0.29 load disturbance), Figure 13 shows the 

(FLC) due to reference point (step, change at t, 300, 

500, 700and 800). Figure 14 shows the response due 

to change (in2= 0.01, 0.04) and change in step 0.4, 

0.3 and 0.4 

  Fig.12 Output response at different point 

Fig.13 FLC due to reference point load disturbance 

 Fig.14 Response due to change in reference point 

2-Change set point (0.3, 0.45 , 0.35) and during 

change concentration from(0.01, 0.06 i. e. 20% are 

performed .Figure 15shows the response of the sys-

tem due to FLC . change  [ in4, 0.01  , 0.03 ,0.02

(0.2604 at t, 427s) ],[ in3 , 0.08, 0.1 (0.375 at t, 

621s ),0.02(0.24,at t, 759s)and change set point 

( 0.35 , 0.25 and 0.4). Figure 16 shows the output 

response tracking reference point  
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 Fig. 15 Response of the system due to FLC 

Fig. 16 Output response tracking reference point 

3-The simulink immplemention of the linear model 

system is obtained with PID controller 

(proporational ,2 and integral,0.6 . Block diagram of 

the Fuzzy Logic with gains  eg=1.8 , Deg=4 and ug 

=56.Figure 17 shows the comparison  with PID 

controller and FLC (19 rules , step change , 0.3 , 0.38 

and 0.34 at different time (t1,200,t2,300and t3,400). 

Fig. 18 shows the performance of the system (ReF, 

FLC , PI controllers). 

4- Beside above in our (system), the overall control 

objective was to regulate the Benfield level at 38% at 

the outlet of the effect with constant flow rates in the 

absence or presence of disturbances. Particularly, 

Benfield level is to be controlled by adjusting the 

steam flow rate incoming the first effect (co2 –T102). 

  Fig. 17 Comparison  with PID controller and FLC 

 Figure 19 presents the simulation results of the AN-

FIS control of the present system. These results are 

compared with those presents the simulation results 

of the ANFIS control of the present system. These 

results are compared with those obtained by fuzzy 

control (FLC) and (PIC) control of the B.S level. Fig-

ure 20 shows the error response of the three cases and 

the comparison with them. The root mean square er-

ror (RMSE) comparison between three cases in range 

of time tabulated as:  

  Fig 18 Comparison of the B.S system control, (FLC) 

fuzzy control,  PID control, reference trajectory  

Fig. 1 9 Comparison of the B.S level control: ANFIS 

control , fuzzy control , PIC control , reference trajec-

tory  
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Fig. 20 Error responses of the three cases 

6. CONCLUSIONS

In this paper, the powerful aspects of artificial intel-

ligence techniques applications in industry have 

been investigated. In this paper, where we presented 

different types of controllers for the concentration of 

Benfield solution in Urea plant. The results reported 

here indicate, that from, neuro-fuzzy controller and 

PID controller, neuro fuzzy control scheme shows 

the best performance. It also compares results with a 

classical PID controller and with a fuzzy Mamdani 

controller, to measure how much the adaptive fuzzy 

approach could improve the performance. Of 

course, our fuzzy controller (designed with ANFIS) 

was better in tracking and adaptability than the other 

controllers. Another advantage of this method over 

classical quantitative controllers is that it does not 

require a fixed sampling time. Therefore, the pro-

posed design confirms the fact that fuzzy control is 

relevant to the control fast of non-linear processes 

such as system drives where quantitative methods 

are not always appropriate. 
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