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ABSTRACT 

 This paper presents an adaptive incremental approach capable of handling elastoplastic contact problems 
with friction. Using the finite element method (FEM), the problem is formulated as an incremental convex 
programming model (ICPM) under the inequality contact constraints and friction conditions. The Lagrange 
multiplier approach is adopted for imposing the contact constraints. The classical Coulomb's law of friction 
is used for simulating the friction conditions throughout the contact interface. The incremental constitutive 
relations based on the Prandtl-Reuss equations and von Mises yield criterion are adopted to simulate the 
elastoplastic response. The adopted model advantage is that the model gets rid of the inclusion of any 
artificial element or intervene user defined parameters such as penalty values and the number of load steps. 
Numerical examples for the frictional contact having advancing and receding nature under normal load are 
presented. Illustrated examples prove the capability of the incremental procedure to investigate the 
sequence of different events during monotonic application of external load. Variations of the contact 
pressure, relative tangential displacement (RTD), tangential stress over the contact area and equivalent 
stress within the domain with the coefficient of friction are presented to validate the model. Good agreement 
has been found with published results. 
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RÉSUMÉ 

Cet article présente une approche progressive adaptative capable de gérer les problèmes de contact avec 
frottement élasto-plastiques. Utilisation de la méthode des éléments finis (FEM), le problème est formulé 
comme un modèle de programmation convexe incrémentale (CIMP) sous les contraintes de contact de 
l'inégalité et conditions de frottement. L'approche des multiplicateurs de Lagrange est adoptée pour imposer 
les contraintes de contact. La loi de Coulomb classique de frottement est utilisé pour simuler les conditions 
de frottement dans l'interface de contact. Les relations constitutives supplémentaires basés sur les équations 
de Prandtl-Reuss et von Mises critère de rendement sont adoptées pour simuler la réponse élasto-plastique. 
L'avantage du modèle adopté est que le modèle se débarrasse de l'inclusion de tout élément artificiel ou 
intervenir les paramètres définis par l'utilisateur tels que les valeurs de pénalité et le nombre de prises en 
charges. Des exemples numériques pour le contact de friction ayant entrants et sortants nature sous une 
charge normale sont présentés. Exemples illustrés prouvent la capacité de la procédure incrémentale à 
rechercher la séquence d'événements différents lors de l'application monotone de charge externe. Les 
variations de la pression de contact, le déplacement tangentiel relatif (RTD), contrainte tangentielle sur la 
surface de contact et la contrainte équivalente au sein du domaine avec le coefficient de frottement sont 
présentés pour valider le modèle. Un bon accord a été trouvé avec les résultats publiés. 

MOTS CLÉS: Non Linéaires, Élasto-Plastique De Contact, Friction Loi De Coulomb, Programmation 
Convexe, FÉM. 
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1. INTRODUCTION

 Contact mechanics is a fundamental discipline 
of the engineering sciences, which is 
indispensable for the construction of safe designs. 
Contact problems between deformable bodies 
involve complicated surface phenomena, are 
modeled by strongly nonlinear boundary value 
problems. Introduction of the material 
nonlinearity and friction are additional 
formidable complications as they represent an 
irreversible processes that make the contact 
problems of deformable bodies highly nonlinear 
and much more difficult. 

In the literature, many numerical approaches 
had developed to deal with contact problems that 
were based on the incremental and iterative 
methods. Using the load incremental theory, 
Okamoto and Nakazaw [1] developed an 
incremental method for the solution of elastic 
frictional contact problems using classical 
Coulomb friction law. Oden and Pires [2] 
proposed nonlocal and nonlinear friction law. The 
nonlocality was attributed to the pattern of 
pressure distribution over deformed asperities. 
The nonlinearity resulted from the occurrence of 
relative micro-displacements between contact 
pair nodes before the gross sliding of the two 
contacting surfaces. Bathe and chaudhary [3] 
formulated an incremental method with iterative 
technique for the analysis of planar and 
axisymmetric contact problems using FEM and 
Coulomb's law of friction. The contact conditions 
were imposed by considering the total potential 
of contact forces with the geometric compatibility 
conditions. Zhong and Sun [4] developed a 
numerical procedure for solving an elastic contact 
problem with Coulomb's friction using the 
parametric quadratic programming. The 
formulation was based on the FEM and penalty 
method for the introduction of contact 
constraints. Paris and Garrido [5], using the 
boundary element method (BEM), proposed an 
incremental procedure to solve the frictional 
contact problems between elastic deformable 
bodies using Coulomb's friction law.  

Garrido et al. [6] extended Paris and Garrido 
[5] through an integral boundary formulation of 
the three-dimensional friction contact problem. 
Lee [7] developed a numerical procedure for the 
solution of 2-D frictional contact problems using 
FEM with Coulomb's friction law. Saleeb et al. 
[8] developed a FE model for analysis of two 

dimensions static frictional contact problems, 
based on perturbed Lagrange type and the 
classical Coulomb frictional law. Mahmoud et al. 
[9] proposed an adaptive incremental approach to 
solve multiphase elastic frictional contact 
problems using the non-classical local nonlinear 
friction law. 

Mijar and Arora [10] formulated the frictional 
contact problems as variation equality using an 
augmented Lagrangian method (ALM). Renaud 
and Feng [11] presented a comparative study of 
boundary element method (BEM) and FEM for 
the analysis of two dimensional elastostatic 
Signorini contact problems using Coulomb's 
friction law and penalty method. Hassan and 
Mahmoud [12] developed an incremental model 
for the solution of a general class of convex 
programming problems. These problems have 
linear constraints with zero and nonzero free 
coefficients. The incremental procedure was 
applied to solve the elasto-static frictionless 
contact problems. Mohamed et al. [13] proposed 
an elastic incremental FE model to simulate the 
frictional contact using non-classical friction 
model. The friction effect was represented by an 
equivalent nonlinear stiffness rather than 
additional constraints. Qin and Wang [14] 
suggested an incremental iterative scheme to 
solve frictional contact problems using a hybrid 
Trefftz FE formulation and the Coulomb friction 
Law. Ahn and Barber [15] formulated the 
receding contact problem with the classical 
Coulomb's friction law for an elastic block 
against a rigid surface using the FEM. They 
concluded that all the concepts of receding 
contact stated by Dundur's [16] can be extended 
to frictional receding contact problem as long as 
the loading is monotonic. Kanber and Demirhan 
[17] analyzed the problem of elastic thin-coated 
contact surfaces under friction or frictionless 
conditions. They used the theory of thin coating 
contact mechanics and ANSYS F. E commercial 
package. All models analyzed using the Newton-
Raphson solution algorithm under static loading 
conditions. Abdalla et al. [18] developed an 
adaptive incremental procedure to solve the 
elastic friction advancing or receding contact 
problems based on the classical Coulomb’s 
friction law and FEM. The problem was 
formulated as a convex programming model 
(CPM) under the inequality contact constraints 
and friction conditions using the Lagrange 
multiplier approach. 
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 The incremental method for solving 
elastoplastic problems by FEM based on Prandtl-
Reuss equations and von Mises yield criterion 
was developed. Yamada et al. [19] presented an 
incremental solution algorithm based on the 
piecewise linearization of the equations for each 
load increment. The piecewise linearization 
technique used results at the end of the previous 
increment without any iteration. Zinckiewiz et al. 
[20] proposed a general formulation of the 
elastoplastic matrix relates the increments of 
stresses and strains for any yield surface with 
associated flow rule and for work hardening and 
ideal plastic material through an iterative solution 
technique.  

Dumas and Baranet [21] solved the plane 
strain frictionless indentation of rigid cylinder 
and elastoplastic half-space using FEM. They 
concluded that with increasing load, the pressure 
distribution changed from elliptical to a rather flat 
shape. Nagaraj [22] studied the interaction of real 
surfaces by the simulation of asperities contact. 
The asperity contact was modeled as a rigid 
cylinder contacting an elastoplastic half-space 
with high friction coefficient to prevent the gross 
slip. Cheng and Kikuchi [23] proposed an 
incremental procedure, based on of the updated 
Lagrangian formulation, to solve the elastoplastic 
large deformation contact problem using Prandtl-
Reuss equations and Coulomb's friction law. 
Komvopoulos [24] studied the frictional elastic-
plastic indentation contact problem of a layered 
half-space and a rigid cylinder using the 3-node, 
interface gap elements. Wang et al. [25] solved an 
elastoplastic contact problem of Vickers 
indentation using the FEM through an 
incremental-iterative technique. Montmitonnet et 
al. [26] studied the elastoplastic indentation, with 
or without friction, of half-space by spherical 
indenter using isoparametric FE analysis. They 
found that for frictionless elastoplastic contact, 
the contact pressure profile changed from elliptic 
to nearly flat and did not greatly affected by 
friction. Zhu [27] presented finite element 
mathematical programming method to solve 
elastoplastic contact problems with friction. The 
problem formulated based on virtual work, which 
was applied to elastic-perfectly plastic problems. 

 Pantuso et al. [28] presented a solution 
procedure for the analysis of thermo-mechanical 
conditions of solids in contact with large plastic 
deformations adopting Coulomb friction model. 
The contact constraints imposed using Lagrange 
multiplier method. Menezes and Teodosiu [29] 
presented a 3-D model for the numerical 

simulation of the frictional contact problem of 
deep-drawing process, using the FEM and 
Coulomb's classical law through an augmented 
Lagrangian formulation. The large elastoplastic 
strains and rotations with anisotropic plastic 
properties of the sheet was considered in the 
model. Sheng et al. [30] presented numerical 
formulation for frictional contact problems 
associated with pile penetration using the theory 
of hardening/softening plasticity. The 
formulation and numerical procedure based on 
the FEM and the classical Coulomb frictional law 
with automated load stepping scheme. 
Vijaywargiya and Green [31] used ANSYS FE 
commercial Package to simulate 2D sliding 
between two interfering elastic-perfectly plastic 
cylinders that follows the von Mises yield 
criterion. The results provided the deformations, 
reaction forces, and the stresses. Anahid and 
Khoei [32] modeled arbitrary interfaces with 
large elastoplastic deformation. The model was 
based on the X-FEM coupled with the Lagrangian 
formulation and the incremental elastoplastic 
stress-strain relation. They applied the model to 
the crack propagation problem without re-
meshing.  

Bandeira et al. [33], using the FEM with exact 
linearization, formulated the 3D contact problems 
with friction undergo large deformation within an 
elastoplastic range using ALM and a node-to-
surface algorithmic. For sliding region, the node-
to-surface contact formulation was not sufficient, 
and special cases of node-to-edge and node-to-
node contact formulations were employed. Adam 
and Swain [34] used ABAQUS to explore the 
effect of friction in simulation of bone 
nanoindentation using spheroconical indenter. 
An axisymmetric FE simulation of the elastic–
perfectly plastic frictional contact problem was 
performed with Dracker-Parger and von-Mises 
yield surfaces. Boudaia et al. [35] presented a 
theoretical and FE analysis of elastoplastic 
frictional contact problems for large deformation. 
Coulomb’s friction law and Penalty method used 
to simulate the contact constraints. Chatterjee and 
Sahoo [36] studied the effect of strain hardening 
on elastic-plastic contact of a sphere with a rigid 
flat under full stick contact condition. They used 
ANSYS with different bilinear isotropic 
hardening. They found that under a full stick 
contact condition, strain hardening greatly 
influenced the contact parameters, i.e., pressure 
and area, and the contact conditions had 
negligible effect in comparison between perfect 
slip and stick contact. Weyler et al. [37] 
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formulated the friction contact problem with 
large deformation and plastic behavior. The 
Lagrange multiplier and the penalty strategies 
were used to impose the contact constraints. They 
concluded that the use of the Lagrange multiplier 
based strategy had an advantage in a few critical 
situations, where the penalty method failed to 
produce convincing results due to excessive 
penetration. Kumar et al. [38] studied 
experimentally the influence of applied normal 
load and the roughness on the tribological 
behavior during nanoindentation contact. They 
observed that the friction coefficient was constant 
during elastic contact regime and increased with 
increasing load when the contact involved plastic 
deformation. The transition load from elastic to 
plastic contact increased with increasing the size 
of the indenter and decreased with roughness. 
Poulios and Klit [39] presented a FE model for 
frictionless conformal contact of nominally flat 
rough surfaces using Lagrange multiplier 
method, and elastic and perfectly elastic-plastic 
materials. Deformation, contact pressure and real 
contact area were obtained under normal load 
only. 

The objective of this study is to investigate the 
frictional contact of elastoplastic solids with 
strain hardening due to static normal load using 
the classical Coulomb’s friction law. Based on 
the FEM, the contact problems presented as an 
incremental convex programming model that is 
solved using an adaptive incremental procedure 
where contact and friction constraints are handled 
using the Lagrange multiplier method. The solved 
examples, the contact of a cylinder that is pressed 
against a rigid support and the contact of a block 
with deformable foundation, are illustrated. 
Distribution of the contact pressure, tangential 
stress, RTD over the contact area, and the 
distribution of equivalent stress inside the domain 
are presented while varying the coefficient of 
friction. The obtained results are compared with 
the available results in the literature, and good 
agreements are obtained. 

2. GOVERNING RELATIONSHIPS

 In this section, we shall discuss the 
relationships that describe the physical 
phenomena of friction by Coulomb law and the 
elastoplastic behavior of the material through the 
Prandtl-Reuss flow rule. 

2.1 Coulomb's Friction Law 

 One of the most popular friction laws is 
Coulomb's friction law, which states that the 
friction force is proportional to the normal 
applied force, Popov [40]; 

 t nF F                (1) 

where Ft and Fn are the tangential (frictional) 
force and the normal force, respectively, and μ 
defines the static coefficient of friction. The 
contact zone can be divided into two parts; 
sticking and slipping. Therefore, the contact 
status can be specified according to the tangential 
force as follows: 

   sticking and  0
 

   slip and 0,  0
n t

t
n t t

F u
F

F u   (2) 

where ut  is the relative tangential displacement 
and σt is the tangential stress, which is related to 
the normal stress, σn, by 

t n t tu u   (3) 

In Eq. (3), the negative sign means that the 
tangential friction force acts in a direction 
opposite to the relative motion.  

2.2   Elastoplastic Incremental Stress-Strain 
Relations 

 The incremental plastic strain–stress 
relationship in its general form is given by, 
Mendelson [41]; 

p
ij

ij

fd d      (4) 

where dεij
p is the plastic strain increment tensor, 

σij  is the stress tensor; f  is the loading function 
that depends upon the chosen yielding criterion, 
and dλ  is a nonnegative constant that depends 
upon the loading history and the strain hardening 
properties of the material. 

 For the von Mises yielding criterion, the 
relation between the increments of plastic strain 
and stress that known as Prandtl-Reuss flow rule 
is given by 
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3
2

p e
ijij

e

dd S
H

   (5) 

in which 

3 2,  and 
2 3

p p e
ij ije p ij ij

p

dS S d d d H
d    (6) 

where Sij is the current stress deviator tensor, 
3ij ij ij kkS . e  is the current equivalent

stress, dεp is the equivalent plastic strain 
increment, and H′ is the slope of uniaxial stress-
plastic strain curve. The increment of equivalent 
stress, dσe, can be expressed as 

e
e ij

ij
d d                (7) 

Assuming small displacements and rotations, 
the total strain increment can be additively 
decomposed; 

pe
ij ij ijd d d     (8) 

where dεije and dεijp are the components of elastic 
and plastic strain increments, respectively. The 
elastic incremental strain-stress relationship is 
simulated using Hooke's law; 

e e
ij ijkm kmd C d                   (9) 

where e
ijkmC  is the elasticity compliance matrix, 

depends only on the modulus of elasticity, E, and 
Possion ratio, , for isotropic materials, which 
can be inverted to give stress-strain elasticity 
matrix, e

ijkmD . 
Assuming small deformations, the engineering 
incremental strian-displacement relations are 
given by 

, ,

, ,

0.5( )    

( )    
i j j i

ij
i j j i

u u for i j

u u for i j   (10) 

where Δui are the displacement increment 
components. 
 Using Eqs. (5-10), the explicit matrix form of 
the elastoplastic incremental strain-stress 
relations are derived in appendix (A) that 
represented by Eqs. (A.2), (A.3) and (A.6) for 

different cases. The increments of total strain and 
increments of stress are related through the 
elastoplastic compliance matrix. It is evident that 
the source of the nonlinearty is due to the 
dependence of the elastoplastic compliance 
matrix coefficients on values of the current (total) 
stresses, which depend on the values of the 
unknown stress increments. 
 The elastoplastic incremental stress-strain 
relation is given by 

ep
ij kmijkmD                   (11) 

where ep
ijkmD is the elastoplastic matrix that 

depends upon the loading history and the strain 
hardening properties of the material.  

2.3   Yield Scale Factor 

 In the incremental method, which will be 
described later, it is need to scale the stresses 
within an element that will change from the 
elastic to the plastic state in order to induce it to 
the onset of yield. 
 Let σx, σy, σz and τxy be the stresses at the 
beginning of the increment, and Δσx, Δσy, Δσz and 
Δτxy be the stress increments due to the 
application of the load.  

For plane stress analysis let, 

2 2 2

2 2 2

= 3

2[ Δ Δ 3 Δ

 0.5( Δ Δ )]

= 3

e x y xy x y

x x y y xy xy

x y y x

e x y xy x y

D= + τ τ
  (12) 

Also, for plane strain case, let 

2 2 2

2

2 2 2

2

3

D 2 2 2 ( )

 ( ) ( ) 6

            3

e x y z x y y z x z

xy

x x y y z z z y x

x z y x y z xy xy

e x y z x y y z

z x xy

(13) 

Therefore, the current value of the equivalent 
stress within an elastic element tends to be plastic 
is given by 
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2
e e e D     (14) 

At the onset of yielding, the equivalent stress, σe, 
have to be equal to the yield stress, Sy. Thus 

2 2
y e p p eS S D S                          (15) 

where Sp is the yield or the plasticity scale factor 
that for plane stress or plane strain is given by 

2 2 24 ( )

2
e y e e

p
e

D D S D
S           (16) 

3. MATHAMTICAL FORMULATION OF
ELASTOPLASTIC FRICTIONAL
CONTACT PROBLEM

 Consider two deformable bodies having an 
elastoplastic strain hardening material that are 
subjected to an external load and coming into 
contact with each other, as shown Figure (1). 
Each of the two bodies occupies a bounded 
domain in RN, N=1, 2, 3 with open interior . 
The boundary  of each body is assumed to 
consist of three disjoint parts: U, t, and C. U 
is a part of the boundary at which displacements 
are prescribed. t is a part of the boundary at 
which boundary tractions (forces) are prescribed. 

C is a part of the boundary that contains the 
contact constraints.  

Fig. (1) A schematic of two bodies in contact. 

 The classical formulation of the frictional 
contact problem is presented as follows: 
 The static equilibrium equations of particles 
within  are given by 

, 0ij j if   in   (17) 

where Δσij is the stress increment tensor and Δfi 
are the body force increments per unit volume. 
 The incremental material constitutive model is 
given by 

ij ijkm kmD                     in   (18) 

where Δεkm is the engineering strain increment 
tensor and Dijkm is  given by e

ijkmD  or ep
ijkmD  for 

elastic region or plastic region, respectively. By 
assuming small deformations, the engineering 
incremental strian-displacement relationship is 
given by Eq. (10). 

The boundary conditions are as follows: 

iu U   on U   (19) 

i ij jt n  on t   (20) 

where nj are the components of the unit outward 
normal to  and Δti are the surface tractions. 
 The contact constraints on the contact 
interface are: 
1. The normal contact constraints: the relative
normal displacement between the candidate 
contact pair nodes on the surfaces of the two 
bodies I and II are given by 

( ) ( )II I T
n i i i i nU u n u n C u      on C      (21) 

The unilateral contact law takes the following 
form: 

  or 0T
n n nU b T C u b   on C     (22) 

0n ij i jn n   on C     (23) 

( ) 0T
n nC u b    on C     (24) 

The free coefficient vector, b, representing the 
gap between the contact nodes is greater than or 
equal to zero for advancing and receding 
contacts, respectively.Tn is a vector that indicates 
the violation of the normal contact. In other 
words, a positive nonzero value of any of its 
components points out to a violation of the 
contact constraint. The violation means that the 
relative normal displacement exceeds the initial 
gap, which is prohibited as be noticed in Eq. 
(22).This equation demands that contactor and 

U U 

t 

C 

t 

ΩI 

ΩII 

146



NUMERICAL INCREMENTAL PROCEDURE FOR SOLVING NON-LINEAR ELASTOPLASTIC  
FRICTIONAL CONTACT PROBLEMS UNDER NORMAL LOAD 
Abdalla, Ali-Eldin, Ghazy 

target cannot penetrate each other, i.e., 
impenetrability condition. Eq. (23) shows that the 
normal stress vector and hence the contact force 
at the contact region is compressive. The 
complementary condition repesented by Eq. (24) 
indicates that in the case of separation, we have 

0n , ( ) 0T
nC u b  and in the case of 

contact, we have 0n , ( ) 0T
nC u b . The 

unilateral contact law can be repesented 
graphically as shown in Figure (2). 

Fig. (2) A representation of the unilateral contact 
law. 

2. The tangential contact constraints: the
relative tangential displacement increment 
between pair nodes on the surfaces of the two 
bodies I and II, having tangetnial displacement 
increments I

tu  and II
tu , respectively, is given 

by 

I II T
t t t tU u u C u   onГC           (25) 

( ) 0T
tt nT T C u  onГC  (26) 

where Tt is a vector that indicates the violation in 
the tangential direction. The coefficient matrices 
shown in Eqs. (21), (22) and (25) for normal and 
tangential contact constraints are given by 

1 2 3         ... n n n Nc nnC C C C C   (27) 

1 2 3   ... t t t Nc ttC C C C C (28) 

where NC-n is the number of candidate contact 
constraints, NC-t is the number of tangential 
contact constraints, and Ci-n and Ci-t are column 
vectors. The design variable u is definedU , 
where  is a set defined as 

1 : ( ) ,U U  on U
NU U H   (29) 

where H1 is the Hielbert space continous to the 
first order and N=1,2. 

The unit step function ( )nT  is defined by 

1     0
( )

0     0
n

n
n

  if T  
T

if T
           (30) 

The inequality constraints given by Eq. (26) can 
be interpreted as follows: when ( ) 1nT , there 
are two cases. If Tt= 0, we have sticking case, i.e., 

0T
tC u . On the other hand, if Tt>0, we have 

slipping case, i.e., 0T
tC u . 

 This classical formulation is equivalent to the 
dual formulation of minimizing the total potential 
energy but in the incremental form. Thus the 
variational inequality formulation of that problem 
considering the surface traction t and neglecting 
the body force f  is written as follows: 

( ) .  . T T

t

Mini F u d u t dmize     (31) 

subject to: 
The unilateral contact constraint

or 0T T
n n nC u b T C u b          onГC       (32) 

The stick-slip constraints

( ) 0T
tt nT T C u         onГC      (33) 

 The equivalent Lagrangian formulation of the 
above model which constitutes both the objective 
functional F(u) and the constraints set of Eqs. 
(32) and (33) is formed as 

( , , ) ( ) ( )

( )

T T
n t n n

T T
tt n

L u F u C u bMini

u

m ze

T

i

C
    (34) 

where λn and λt are the vectors of Lagrange 
multipliers associated with normal and tangential 
constraints, respectively. λn and λt represent the 
normal and tangential contact forces (reactions), 
respectively. 
 Assume that at certain level of load, the 
current increment is J and the previous increment 
is (J-1). Equation (34), using piecewise 
linearization, can be rewritten as

n

nT
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J-1 J J-1 J J-1 J
J-1 J

J-1 J J-1 J J-1 J
J-1 J

1 , ,  ( )

(

2

)  

T T T T T
t n nn n

T T T T T
t

V

t t n

Minimize u d C u u b

C u u

V

PT u u P
          (35) 

 Assuming that the two bodies are descritized 
into finite elements. To equilibrate the system, the 
variation of the functional given by Eq. (35) with 
respect to the unknown vectors, Δu, Δλt, and Δλn, 
must be vanished that results in the following 
equations: 

J J J

J-1 J-1 J-1

       P  

  

t t

V

n n tot

T
n n t t

K u C C

VB d C C
    (36) 

 J-1 J 0T
t t
TC u C u   (37) 

J-1J 0n
T T

nbC u C u  (38) 

In Eq. (36), K represents the global stiffness 
matrix of rank n,    T

VK B D B dV , and

J-1 J totP P P   is the total applied load. Matrix 
D for plastic elements, defined in Eq. (11) by

ep
ijkmD , is computed based on the stresses at the 

beginning of each increment. The matrix B is the 
strain-displacement matrix that relates strain and 
displacement increment vectors through Δε=BΔu. 

The sticking pairs have Ct
TuJ-1= 0. Therefore,

Eq. (37) turns to the following relation, which 

represents the compatibility conditions for 
displacement; 

J 0t
TC u         (39) 

The  tangential constraints set, Ct, may be 
decomposed into two subsets,which is given by 

t ta tsC C C                                                   (40) 

where Cta  and Cts are the stick subset and slip 
subset, respectively. For the slipping pairs, the 
subset Cts are omitted from the compatibility 
conditions of Eq. (39) and the force equilibrium 
conditions that are given by 

JJ
 n t tt U U            (41) 

are forced into the subset Cts of Eq. (36), where 
Ut is the total relative tangential displacement. In 
Eq. (38), the term (b-Cn

TuJ-1) represents the
updated (current) gap. Let 

J 1P T
V B dV  (42) 

                                               Combining Eqs. (36), (38), (39), and (42), the 
system of equilibrium equations can be written as 

J-1

J-1

J-1

P P 0
0 0 0 0 0 0 0

0 0 0 00 0 (b ) 0

t n ttot t nT
t t n
T Tnn n

K C C
u C C

C

C C u

                        (43) 

 The normal contact constraints can be 
decomposed into active constraints, CnA, 
associated with pairs in contact and inactive 
constraints, CnN, associated with separated pairs. 

Therefore, the normal Lagrange multipliers are 
decomposed into active set, λnA, and inactive set, 
λnN, which are equal zero. Thus, Eq. (43) will be 
rewritten as 

J-1

J-1

J-1

P P 0 0
0 0 0 0 0 00 0 0
0 0 0 0 0 0 00 0 0

0 0 0 0 0(b ) 00 0 0

t nA nN ttot t nAT
t t nA
T nAnA

TT nN nnN

K C C C
u C C

C

C
C uC

         (44) 
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In all the above equations, the columns of the 
matrices Cn and Ct are of the rank n, n equals the 
number of displacement degrees of freedom, and 
for each contact condition are given by  

0 0 1 0.......0 0 1 0 T
niC   (45) 

0 1 0........0 0 1 0 0 T
tiC   (46) 

4. SOLUTION PROCEDURE

 Once the two bodies are discretized into finite 
elements, the solution procedure starts according 
to the following steps: 
 If there are receding contact, i.e., pairs have 
initial zero gaps, the initial contact status for that 
pairs are assumed to be stick. With the application 
of full or test normal load  and using the criterion 
of both separation and slipping described later, 
the contact status is adjusted incrementally with 
the change of one contact condition to the next 
trail increment. Once the receding contact status 
has been established, the incremental procdure 
will conduct as follows:  

1. Initiate the increment number, i.e., J=1,
with the application of the total normal load. If 
there are active constraints, the total Lagrange 
multipliers are zero. The system represented by 
Eq. (44) turns into 

 totT P   (47) 

where T  is the global system matrix and Δ  is the 
unknowns vector that may be {Δu    Δλt    ΔλnA}T 
if there are active contact pairs or {Δu} otherwise. 

2. Solving this system of equations for the
unknown vector Δ. 

3. At this stage, five potential events must be
specified to determine the load required to 
activate it. The different scale factors required to 
determine each event are given as follows: 

For CnN  calculate the normal contact
constraints violation vector 

,J,  
T

n nN k kkV T C u g  (48) 

where, gk is the updated gap for the constraint 
number k. Among the set of positive values of 
VJ,k, select the maximum one to may be active in 
the next increment that is designated by ac. The 
adaptive contact scale factor is given by 

,  T
c ac nN acS g C u  (49) 

For CnA, the criterion of separation is given
by 

*J 1
A

*J-1

0nA nA n

nA nA
  (50) 

where nA  and *J 1
nA  are the total normal

Lagrange multipliers at the end of the current and 
the preceding increment, respectively. The 
separation scale factor is given by 

*J 1
r nA nAS                       (51) 

Select that one has the Min [Sr] to may change 
from CnA to CnN  at the next increment. 

For the pairs taC  at the beginning of the
load increment, J, the criterion of slipping is 
given by 

*J 1 *J 1( )t t nA nA                           (52) 

The slipping scale factor is calculated according 
to the following equation 

*J 1 *J 1  nA t nAf tS   (53)

and select the Min [Sf] to may slip at the next 
increments. 

Figure (3) shows the point on the slip line
which may has forward slip, I, backward slip 
toward the origin, II, or moves toward the stick 
region, III. The pairs have situation I continue to 
slip. Pairs have situation II tend to release or 
separate. Pairs have situation III tend to stick. The 
measure of adhesion or sticking is the dissipative 
energy. The dissipative energy that given by 

*J 1Δ 0t tU  indicates continuous slipping. 

Fig. (3) Slipping pair status. 

t

I 

III II 
nA
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For pairs tsC  that obey the following sticking 
criterion  

*J 1Δ 0t tU       (54) 

may change to the subset Cta at null or zero scale 
factor. The stick scale factor is given by 

0AS   (55) 

For the elements in the elastic zone, the
plasticity criterion is given by 

e yS         (56) 

For the elastic elements obey Eq. (56), the 
plasticity scale factors, Sp, are computed 
according to Eq. (16). Select the element of Min 
[Sp] to may change from elastic to be plastic at the 
next increment. 

4. The adaptive scale factor for the most
probable event is chosen as follows: 

 ( ,  ,  ,   ,  )c p f r AS Min S S S S S    (57) 

5. Update the contact status as follows :
 The remaining gaps vector at the next solution 
step are given by 

J 1 J N T
ng g S C u   (58) 

 The accumulated displacement field and 
stresses are given by 

* * * *
J J-1 J J-1 J

 & kl kl klU U S u S       (59)  

where Jkl  is computed according to Eq. (18) 
for elastic elements or elastoplastic elements that 
use the stresses at the beginning of the increment. 
 The Lagrange multipliers for normal and 
tangential contact constraints must be updated 
according to 

*J *J 1  nA nA nAS       (60) 

If the contact pairs taC , then 

*J *J 1
t t tS   (61) 

If the contact pairs tsC , then 

 *J *J *J *J
t nA t tU U   (62) 

where, *J
tU  is the updated total relative tangential 

displacement. 
6. Update the system of equations using Eq.

(44) to accommodate the detected event. 
7. Update the increment number, J = J+1.
8. Repeat steps 2 to 8 until there are no

change in the events, i.e., S = 1.0. The number of 
candidate contact pairs, NC-n, must be sufficient 
to give the correct solution.  

5. NUMERICAL RESULTS

5.1   An infinite cylinder resting on a rigid 
surface 

 The contact of an infinite cylinder resting on a 
rigid semi-infinite medium is shown in Figure 
(4). The cylinder is made of Aluminum alloy, 
(Al-5%Mg), Boyer [42]. Plane strain condition is 
assumed. The right quarter of the cylinder is 
discretized into 1022 constant strain triangular 
elements (CST) with 571 nodes. The problem 
will be solved for elastic and elastoplastic 
analysis at different friction coefficients of μ = 0, 
0.1 and 0.35. 

Figure (5) presents the equivalent stress 
distribution inside the cylinder to determine the 
plastic zone size. It is evident that, the increase in 
friction coefficient increases the plastic zone due 
to the increase of the tangential stress. 

Fig. (4) A cylinder resting on rigid surface. 

 Johnson [43] states that for frictionless 
elastoplastic solution, the threshold of plastic 
flow will occurs at maximum contact pressure of 
1.79Sy under the surface at a depth of 0.7a, where 
a is the half contact length. The numerical and 
analytical results are shown in table (1) for full 
load elastic solution and elastoplastic solution 
corresponding to the onset of plasticity. The finite 

P=1000N; 
R=125 mm; 
E=70 GPa; 
ν=0.3; 
Sy=200 MPa; 
Sut=270 MPa. R 

P 
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(a) μ = 0 

(b) μ = 0.1 

(c) μ = 0.35 

Fig. (5) The von Mises equivalent stress 
distribution. 

element results are in good agreement with the 
analytical results. 
 Figure (6) shows the contact pressure 
distribution for the elastic and the elastoplastic 
solutions. It is clear that the elastic solution shows 
small increase in the central contact pressure as 
the friction coefficient increase. The elastoplastic 
solution shows that contact pressure distribution 
for frictionless is nearly flat due to the decrease in 
the stiffness results from the plastic flow, while 
the contact length increases. For μ= 0.1, the 
central contact pressure increases slightly and the 
contact length decreases. For μ= 0.35, the central 
contact pressure drops to nearly the value of 
frictionless due to the expansion of the plastic 
zone that reaches the surface as shown in Figure 
(5-c). 
 Figure (7) presents the relative tangential 
displacement at the contact interface. It is shown 
that the RTD for elastoplastic solution less than 

the elastic one and the stick region increases with 
the increase of the friction coefficient. 

 Figure (8) shows the tangential stress 
distribution at the contact interface. It is evident 
that the elastic tangential stresses are greater than 
the elastoplastic tangential stresses due to the 
decrease in the stiffness that results from the 
plastic flow near the surface. For the elastoplastic 
solution, as the coefficient of friction increase the 
tangential stresses increase and the stick region 
increase. 

 Figure (9) shows the growth of the half contact 
length with the applied load fraction. The elastic 
solution shows as the coefficient of friction 
increases, the half contact length decreases and 
the fraction of applied load increases for the same 
contact length. The elastoplastic solution shows 
that the half contact length decreases with small 
increase in the friction coefficient but the half 
contact length increase to near the frictionless 
value with higher friction coefficient due to the 
enlargement of the plastic zone.  For the same 
half contact length, the applied load fraction 
increases with small increase in the friction 
coefficient where the plastic zone effect is small, 
but it decreases with higher friction coefficient 
where the plastic zone effect is noticeable. 

Figure (10) shows the load percent at the onset 
of yielding versus the friction coefficient. As μ 
increases the applied load at the onset of yielding 
decreases due to the increase in the stress that 
results from the friction. 

5.2  A punch intended on Half-space 

Figure (11) shows the indentation of a half 
space (II) by a block (I). The block is made up of 
elastic-perfect plastic material while the half 
space is made up of elastic-linear strain hardening 
material. The right half is discretized into 2000 
CST elements with 1092 nodes. Assuming plane 
strain condition and friction coefficient of 0.2. 

This problem was solved elastically by Qin 
and Wang [14] assuming q = 1.2 MPa, and they 
compared their results with ABAQUS.  We solve 
this elastic problem to validate the model for the 
receding contact type called the stationary 
contact. The results for contact stresses and the 
RTD are shown in Figures (12) and (13), 
respectively. It is cleared that the present FE 
model has a good agreement with the results 
obtained from Qin and Wang [14].  
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Fig. (6) Contact pressure distribution at 
contact interface. 

Fig. (7) Relative tangential displacement at 
contact interface. 

Fig. (8) Tangential stress distribution at 
contact interface. 

Fig. (9) Growth of half contact length with load 
fraction. 

Table (1): Results for Elastic Full Load and Elastoplastic 
Frictionless at Threshold of Plasticity. 

Solution Parameter Analytical 
Johnson [43] 

FEM 
Present results 

Error % 

Elastic 
(El) 

a, mm 1.438 1.43 0.58 
Pressure, MPa 442.6 451 1.86 

Elastoplastic 
(El-Pl) 

a, mm 1.036 1.08 4.04 
Pressure, MPa 358 323.9 9.5 
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Fig. (10) Load percent at onset of yield vs. the 
friction coefficient. 

Fig. (11) Two deformable blocks under distributed 
load. 

 Re-assuming plane stress condition, the 
elastoplastic solution for this problem with μ=0 
and 0.2 are carried out for q = 36 MPa to produce 
considerable plastic effects. 

 Figure (14) shows the contact pressure 
distribution versus the half contact length. It is 
nearly flat but rises rapidly near the lower end 
point of contact, singularity point, due to the 
stress concentration at that zone. Central contact 
pressure for μ=0.2 is slightly larger than that of 
μ=0. 

 Figure (15) shows the variation of RTD with 
the increase of loading. It is evident that as the 
load increases, the slip zone decreases. This 
phenomenon is consistence with the results 
published by Zhu [27]. 

 Figure (16) presents the variation of the 
tangential stress with the increase of the load. As 
the load increases, both the tangential stress and 
the stick zone increase. It is evident from Figures 
(15) and (16) that the tangential stress opposes the 
RTD. 

6. CONCLUSIONS

 An adaptive incremental approach handling 
nonlinear elastoplastic frictional contact 
problems is developed using the FEM and 
piecewise linearization technique. The problem is 
formulated as an incremental convex 
programming model under inequality contact 
constraints. The Lagrange multiplier approach is 
used to enforce the contact constraints. Friction is 

 (a) Present FE Model  (b) Qin and Wang [14] 

Fig. (12) Contact stresses along the interface. 
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EI = EII= 4000 Mpa; 
νI = νII = 0.35; 
SyI =288 MPa; 
SyII = 28.8 MPa; 
SutII = 85 MPa. I
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 (a) Present FE Model  (b) Qin and Wang [14] 
Fig. (13) Relative tangential displacement at the contact interface. 

 Fig. (14) Contact pressure distribution.   Fig. (15) RTD distribution along the interface. 

Fig. (16) Tangential stress distribution along the interface. 

154



NUMERICAL INCREMENTAL PROCEDURE FOR SOLVING NON-LINEAR ELASTOPLASTIC  
FRICTIONAL CONTACT PROBLEMS UNDER NORMAL LOAD 
Abdalla, Ali-Eldin, Ghazy 

simulated using the classical Coulomb's friction 
law. The incremental stress-strain constitutive 
relations based on the Prandtl-Reuss flow rule 
and von Mises yield criterion are adopted.  

 The developed adaptive incremental 
procedure is applied successfully to the elastic 
and elastopalstic contact problems of a cylinder 
resting on a rigid frictional surface, and the 
indentation problem of a half-space by an elastic 
block under normal load. The obtained results 
agree well with the results available in the 
literature. The elastic results show that as the 
friction coefficient increases the central contact 
pressure undergoes a small increase with small 
decrease of the contact area. Elastoplastic 
analysis shows that increasing the friction 
coefficient results in a slight increase in the 
central contact pressure until the friction 
coefficient reaches a higher values, the pressure 
distribution returns nearly to the frictionless one. 
As the friction coefficient increases, the plastic 
zone enlarges and the slip region decreases. 
Additionally, the adaptive incremental procedure 
has the ability to determine the load capacity 
required for certain contact length and size of 
plastic zone that is important in the design 
analysis.  
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Appendix [A] 

Incremental Elastoplastic Flow Rule 

Let σx, σy, σz, τxy, τyz and τzx are the current or 

total values of the stresses. Thus 

0.5( ),

0.5( ),  and

0.5( )

x x y z

y y x z

z z x y

S

S

S

  (A.1) 

Three dimensional elastoplastic incremental 
strain-stress relation in explicit matrix form is 
given by 

2
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   (A.2) 

Special Forms of The Elastoplastic
Relationship 

Three dimensional elastoplastic incremental 
strain-stress relations, represented by Eq. (A.2), 

can be reduced to the two-dimensional analysis as 
follows: 

For the plane stress distribution, Eq. (A.2), is 
reduced to 

2

2 2 2
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          (A.3) 

 For the plane Strain distribution, using Eqs. (A.1, 2), let 
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We find that 

3 6 9

8 8 8
   z x y xy

C C C
C C C

  (A.5) 

The incremental strain-stress relation of the 

plane strain state is given by
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