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FEED CONCENTRATES

Said Elshahat Abdallah,* Wael Mohamed Elmessery,**
Abdelfattah A. Elkeway *** and  Mesbah Morgan Abdelaal ****

ABSTRACT

Due to increasing the prices of fish and animal feed, a big gap in feed
nutrition is generated. Also the increment necessitates of the sources of
animal protein creates and maximize this nutritional gap in Egypt. So the
creation of local and alternative source of feed concentrates instead of
import is needed. Huge quantities of small sizes of fish are thrown on
land without any manipulation during fish ponds harvesting. It is
necessary to process and recycle these wastes in order to be a useful
component. Drying process was used in the present investigation for fish
wastes treatment that adds to obtain feed concentrates with low costs
(Fishmeal). Therefore, the objective of this research work is to dry a
sample of the whole fish waste, by using the heat exchangers, at the
experimental station of Rice Mechanization Center (RMC), Meet
Eldeebah village, Kafr Elsheikh Governorate during September of the
year 2015 by using a stream of hot air at different drying air velocities of
1.5, 2 and 3m/s. The manufactured heat exchanger has the cylindrical
shape. Its dimensions were of 30.48cm in diameter internal, 50cm in
diameter external and 150cm long. The heat exchanger is connected with
a flat plate solar collector with the dimensions of 100 x 100cm. The
working medium in the heat exchanger is the hot water output of flat plate
solar collector. The extreme values of thermal energy stored in water and
thermal efficiency of the solar system are of 50.284 and 53.549%,
respectively.
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Maximum effectiveness of the parallel flow system was of 28.152% with
the drying air velocity of 1.5m/s, whereas for the counter flow system was
of 19.46% with the drying air velocity of 2m/s. Also, the highest values of
heat energy transferred rate from water to air were of 2.21kW and
2.81kW with the drying air velocity of 3m/s for the parallel and counter
flow heat exchangers, respectively. In general the counter is better than
the parallel system with the maximum drying rate of 0.42kg water/(kg dry
matter. min) at drying air velocity of 1.5m/s. Maximum internal energy of
water tank was of 6.09kJ at 5.00PM, temperature of water was of 40.6 €
and less radiation was of 77.43W/m?. In addition, maximum exergy rate
of the parallel flow system was of 2.49kW with drying air velocity of 2m/s,
whereas for the counter flow system was of 0.433kW with the drying air
velocity of 3m/s. Maximum specific enthalpy of the parallel and counter
drier units of drying air are of 214.56 and 180kJ/kg at drying air velocity
of 2m/s, respectively. While specific enthalpy of drying air of counter
drier unit is higher than that of parallel one at drying air velocities of 1.5
and 3m/s while lower at drying air velocity of 2m/s.

NOMENCLATURE
ai, a Coefficients in the heat loss terms of the efficiency, W/m°K
A Total hot side or cold side heat transfer area, m*
Co Specific heat, J/kg K
Crax Maximum heat capacity rate of two fluids, W/K
Chmin Minimum heat capacity rate of two fluids, W/K
ol Ratio of heat capacity rate of Cpnaxand Cpin
dMm Amount of change of fish waste, g
dt Time interval for sampling, h
DR Drying rate, kg water/(kg dry matter. min)
hi, ho Heat transfer coefficient for inside and outside flows, W/m*K
Iy Solar radiation falling on the heater surface, W/m?
K Thermal conductivity, W/mK

L Length, m
LMTD Logarithmic mean temperature difference, K

m Mass airflow rate, kg/s
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Mass of product to be dried, kg
Initial moisture content, %wb
Moisture content at time t, %owb
Mass of dry solids, kg

Mass of evaporated water from the product during drying day,
kg
Initial mass of the dried product, kg

Mass of product to be dried at any time, kg
Overall heat transfer coefficient, W/m°K
Number of transfer units = UA/Cpin

Thermal effectiveness of heat exchanger, decimal
Total heat transferred rate , W

Amount of useful energy, W

Amount of absorbed energy, W

Radius of the cylinder heat exchanger, m
Thermal resistance, m?K/W

Total thermal resistance of tube to heat flow, m*K/W
Total time, h

Ambient air temperature, °C

Inlet water temperature of heat exchanger, °C
Outlet water temperature of heat exchanger, °C
Water temperature in the tubes, °C

True mean temperature difference between two fluids of heat
exchanger, K
Thermal resistance of a heat exchanger, m*K/W

Thermal efficiency of flat plate solar collector, %
Optical efficiency of the water in glass collector, %
Storage efficiency of flat plate solar collector, %

Subscripts
Cold fluid i,0 Inlet and outlet
Counter drier unit PDU Parallel drier unit
Counter flow heat PFHE Parallel flow heat
exchanger exchanger
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INTRODUCTION

ried fish as a fishmeal, is one of the most important exported

marine products in many countries such as Turkey, Iran, India

wherever the fish powders containing about 55-72% crude
protein and fat content of 5%. Fishmeal production peaked in 1994 at
30.2 million tonnes, in 2010 it was dropped to 14.8 million tonnes owing
to the reduced catches of anchoveta, increased in 2011 to 19.4 million
tonnes and then declined to 16.3 million tonnes in 2012. Owing to the
growing demand for fishmeal and fish oil and rising prices, more
fishmeals are being produced from by-products of fish, which previously
were often discarded. This can affect the composition and quality of the
fishmeal. According to the recent estimates, about 35 percent of world
fishmeal production was obtained from fish wastes in 2012 (FAO, 2014).
Fish is an important source of protein for both humans and animals where
small fish and other by-products are used in the production of feed
(Fishmeal) or direct feeding for aquaculture and livestock. In 2014,
fishmeal production was of 15.8 million tonnes due to reduced catches of
small fish. Non-official estimates of the contribution of by-products to the
total volume of fishmeal and fish oil produced indicate that it is about 25-
35% (FAO, 2016). The province of Kafr Elsheikh represents 40% of the
fish production in Egypt (FWA, 2010). Total fish production in Egypt is
about 1.06763 million tonnes and Kafr Elsheikh governorate represents
almost 442000 tonnes per year of fish farms (WFC, 2011). The wasted
quantities of small fish are forming low-value of fish ponds harvesting.
These wastes can be used as a source of protein for animal and fish feed
"Fishmeal”. The international trend towards fishmeal production is
noticeable in a lot of countries such as Vietnam (RIMF, 2001), but it is
still not considered in Egypt. There are two types of fishmeal in Vietnam:
"fish powder" produced in a traditional, artisanal way by sun drying and
grinding; and fishmeal produced using an industrial process in which raw
materials are cooked before being dried. Fish powder is mainly used to
feed livestock (Edwards et al., 2004). Alaska produces about 1-2% of the
world fishmeal through processing fish by-products (Knapp, 2008).
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Production of fish stock is about 10 thousand tonnes; the main producers
are being Iceland and Norway. The biggest producers of the other dried
products are countries in Asia and Africa. The annual export of dried
heads from Iceland is about 15 thousand tonnes, mainly to Nigeria, where
they are used for human consumption (Arason, 2001). The fishmeal
industry is likely to use geothermal steam in the processing and hopefully
within a few years, geothermal steam will be transported through pipes. It
can be expected that the price of oil will increase more than the local
energy in the future and, therefore, it is worth paying attention to the use
of locally available energy sources in the fishing industry. It was
recommended that further work on optimizing the technique and a
feasibility study for a freeze drying production have been done
(Gudlaugsson, 1998). The fishing sector produces a huge amount of
waste in fish farms and processing industries. These by-products are
mainly used in the manufacture of fishmeal. However, there are other
potentially valuable uses. One low investment possibility is the
elaboration of agricultural products by composting the fish remains with
other marine materials such as seaweed. The main purpose of their
research work is to obtain a fertilizer suitable for use in organic
agriculture, by composting a mix of seaweed and fish wastes (Lopez-
Mosquera et al., 2011). The Arabian Gulf has an abundant source of
animal protein in the form of surplus fish according to the report (MAF,
1995). Small pelagic landings in Oman, for example, were of 41496
tonnes, (80%) of which were sardines (Sardinella longiceps) (33054
tonnes). Waste disposal and by-products management in food
processing industry pose problems towards the environmental
protection and sustainability (Russ and Pittroff, 2004). There is a gap
between the available quantity of green forage and the required amount of
animal feed. This gap between the availability and requirement of feed
is wide and the estimated shortage is 3.1 million tonnes of total
digestible nutrients per year. The forage gap or the feed shortage has been
partially narrowed to become 2.42 million tonnes because of using new
forage resources. The drying rate is another important factor in describing
the characteristics of the drying process. Double layer covered plastic
greenhouse of 4cm dead air space was the best to be used as a solar
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drier because of increasing temperature and humidity reduction inside
the solar greenhouse drier (Abdallah, 2010). A solar drying system of a
cylindrical section which consists of a flat plate solar collector, drying
chamber cylindrical section and a fan was built and designed for the
purpose of drying 70kg of bean crop (Gatea, 2011). Temperature is being
a very important factor accelerating the process of spoilage where the
spoilage reactions connecting on the death of the fish proceed at a very
rapid rate where solar drying produced better quality dried fish compared
to that of sun drying due to reduction in insect infestation and other
contaminants (Sablani et al., 2003). Fresh fish contains up to 80% of
water, fish weight loss in solar driers differs in the ecological zones of
Nigeria with the North-East recording the highest value while the value of
weight loss was least in South; this was attributed to the influence of
relative humidity on drying (Olokor et al., 2009). The problem of the
shortage of animal feed in Egypt is well recognized. Several efforts had
been done to improve the nutritive value of agricultural byproducts. Rice
straw, wheat straw, corn stalk, sugarcane, basse vine of broad bean,
squash vine and other vegetable wastes were used for increasing the
available feed (Ali, 1996). This fact reduces the wastes to be used as
animal feed to fruit-vegetable and fish wastes. One of the main
drawbacks of using fruit-vegetable and fish wastes in the formulation of
animal diets is that their composition may be extremely variable
depending on the area of production and the period of the year and reports
of FAO also indicated that the quantity and quality of these wastes vary
from country to country (Westendorf, 2000). Nowadays there are a lot of
engineering techniques used for drying purposes of agricultural
production wastes. The trend towards the exploitation of solar energy as
an alternative source of energy was considered by a lot of investigators
such as greenhouses as a solar energy collector for drying agricultural
wastes (E1-Sahrigi et al., 1993; Abdallah, 1999; El-Keway, 2003;
Eldreeny, 2015 and Elbadawy, 2016 ), solar tunnel and flat plate solar
drier (Bala and Mondol 2001; Bala et al., 2001; Goddard and Perret,
2005; Dhiwahar, 2010; Montero et al., 2010; Basunia et al., 2011;
Gatea, 2011; Bala and Debnath, 2012), Solar cabinet and chimney drier
"mixed-mode” (Mumba, 1996; Ekechukwu and Norton 1999;
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Pangavhane et al., 2002; Vlachos et al., 2002; Sablani et al., 2003;
Sankat and Mujaffar, 2004; Gbaha et al., 2007; Forson et al., 2007;
Bukola and Ayoola, 2008; Afriyie et al., 2009; Jairaj et al., 2009;
Ramana Murthy, 2009; Sharma et al., 2009; Fudholi et al., 2010;
Banout et al.,, 2011; Mujaffar and Sankat, 2011; Vijaya Venkata
Raman et al., 2012). On the other hand, there are limits literatures that
investigate the utilization potential of the heat exchangers for drying air
heating processes by solar energy. Therefore the main aim of the present
research work is investigate the thermal performance of heat exchangers
operated by solar energy in the drying process of fish farm wastes for the
production of feed concentrates.

MATERIALS AND METHODS
Experimentation
The solar drying system is consisted of drying chamber, flat plate solar
collector supplemented with parallel and counter flow heat exchangers.
1. Drying chamber
Drying chamber consists of greenhouse with dimensions of 2m long, 1m
wide and 0.9m height and covered all sides by polyethylene plastic,
placed under shadow to avoid the effect of direct heating by solar rays in
drying chamber on heat exchanger performance analysis. The drying
chambers are equipped with load cells (type S, Model YZC-516C, China)
with an accuracy of 50g and measuring up to 500kgs, to acknowledge the
whole weight of the drying chamber and loaded fish wastes to be dried. In
this investigation, the drying air was supplemented by a solar heat
exchanger unit to the drying chamber through an isolated steel duct
located at the top of the drying chamber greenhouse type. A suction fan
powered AC (Future, Motore Asincrono Trifase; 50Hz- 0.37kW-
2850RPM, Italy) fixed on the opposite side at the bottom of the air
chamber. Exit air velocities were adjusted by valves and calibrated by the
anemometer (microprocessor digital meter with vane probe, AM 4838,
Taiwan).
2. Flat plate solar collector
Flat plate solar collector with a wooden frame of 1 x 1m, consists of cover
plate of ordinary transparent glass 6mm in thick and inside there is a heat
absorbent dark colored plate to absorb the sun's rays and inner copper
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pipes (seven pipes with the dimensions of 0.9m length and a diameter of
0.6cm) through which the water to be heated and the distance between
each tube is 15cm. The product of heated water was stored in a thermally
insulated tank (150 litres in capacity).

3. Heat exchanger

The investigated heat exchanger has two flow patterns: parallel and
counter flow. Both of them consist of two parts: an internal galvanized
iron conduict with a diameter of 0.3048m, 1.5m in length and 0.0009m in
thickness, which is overlapped with an outer galvanized iron conduict of
0.5m in diameter used for solar heated water paths. The internal conduict
is filled with commercial micro-wires which stand against fresh air
passage. Micro-wires of iron generate airflow resistances on the fresh air
that adds heat to be transferred from the hot surface to fresh air bulk. The
heat exchanger is isolated from the outside with glasswool, Figure 1.
Experimental procedure

Fourteen kilograms of the small fish sizes were collected from fish ponds
with the average dimensions of 3.6+1.4cm length, 2+0.7cm thick and
weight of 19+2.88 grams, Figure 2 from Damro village, Sedi Salim
district, Kafr Elsheikh Governorate during September of 2015. They were
divided into two halves, the first half for the parallel flow heat exchanger
and the second half for the counter one. After that they were conveyed to
the experimental station of Rice Mechanization Center (RMC) at Meet
Eldeebah village, Kafr Elsheikh Governorate located at 31° 07'N
Latitude, 30° 57'E Longitude and 20m Altitude (Abou- Zaher, 1998).
The oven drying method was used for determining fish wastes moisture
content at 105°C for 24h (AOAC, 2005 and Sultana et al., 2009). The
initial moisture content of the experimented sample was of 76.9+1%wb.
Solar drying experiments were conducted at an averaged ambient air
temperature of 31.3+4.5°C, averaged air relative humidity of 61.8+1%
(Chino Digital Humidity Meter HN-K & HN-L18 Sensor, Japan) and
intensity of solar radiation incident ranged between 560.48 and
949.78W/m? per hour. Fish wastes were spread on the drying tray for a
drying bed depth of 2cm as a thin layer, inside greenhouse solar drier. The
solar drier was positioned in a shaded place to avoid any additions of
thermal energy from the direct solar radiation. A centrifugal suction fan
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was adjusted to provide with three levels of drying air velocities of 1.5, 2
and 3m/s. The effect of the investigated variables on relative humidity,
moisture content loss, ambient air temperature, drying rate of fish wastes,
heat exchanger performance analysis and drying air temperatures inlet
and outlet of the drying chamber was investigated. The readings of weight
loss in the sample were recorded at an interval of 2 hours during the
drying experiment by using a load cell connected with a digital screen,
Figures 3 and 4.

D — == Water inlet

Air outlet
D < Airinlet

Water outley

(a) Parallel flow heat exchanger

[E—— I—3— = Water outlet

B « Airinlet

Air outlet

Water irﬂe/

(b ) Counter flow heat exchanger

Figure 1. Fluid flow direction for both parallel (a) and counter (b) flow
heat exchangers

Figure . A photograph of fish pond wastes (fry) sed in the drying
experiment
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Figure 3. Perspective view of the drying chamber supplemented with the
parallel and counter flow heat exchangers

Sy

L = R Y O S

Electric suction fan
Greenhouse drying chamber
Load cell

Screen weight

Steel cantilever

Parallel flow heat exchanger
Counter flow heat exchanger
Water tank

Water pump

Flat plate solar collector

—

Figure 4. Schematic drawing of the whole solar drying system
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Heat exchanger manufacture calculations

Specific surface area calculations of the filling material of internal
tube (drying air path):

Micro-wire was identified by a digital vernier (Digital Caliper, 0-150mm,
Germany) which has a thickness of 100um, width of 290um and a length
of 0.65m and the weight of it is 19.6 grams measured by a digital balance
(Citizen, Model CX 220, Max.capacity 220g, Accuracy of 0.1mg, China).
The specific surface area per weight unit is 5.228m?kg. Thermal
conductivity of micro-wires is of 80W/mK (Incropera and DeWitt,
2002). Heat exchanger design criteria are considered by assuming that the
air temperature at heat exchanger inlet is 26°C (average weather
temperature during the experiment of period) and the required drying air
temperature is 56°C, therefore the amount of heat transferred rate is
2.7KW. This value requires a temperature gradient of 1.77K/m on heat
transfer surfaces (between micro-wires and internal surface of the heat
exchanger). Assuming 10% of heat transferred from water to the drying
air is dissipated in the transfer path. The tube of heat exchanger obtained

is 1.34m in length, given by Equations 1 and 2 as follows:

Q=k=*A=AT Eqn 2
Bulk density of micro-wire was calculated by the actual volume of the
wire at Rice Mechanization Center Lab, which is equal to the volume of
an internal conduict then, getting on the length of conduict. Overall heat
transfer coefficient of heat exchanger was calculated by heat transfer total
resistance, given by Equation 3 as follows:

U=— Eqn 3

AsL R

The LMTD method for heat exchanger performance analysis

In heat transfer analysis of heat exchangers, the total heat transferred rate,
Q through heat exchanger is the quantity of primary interest. Let us
consider a simple counter flow or Parallel flow heat exchanger (Kakac
and Liu, 2002). The form in Equation 4 may be applied to determine an

energy balance for a different area element in the hot and cold fluids.

Q =UA AT, Eqgn 4
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Thermal effectiveness of heat exchanger

Heat exchanger effectiveness is defined as the ratio of the actual amount
of heat transferred to the maximum possible amount of heat that could be
transferred with an infinite area (Fakheri, 2006 and Guo et al., 2010)
using Equations 5 and 6 as follows:

_ 1-exp[-NTU(1 +C")]
Pprue = 1+0 Eqn 5

p _ 1-exp[-NTU{1- C")]
CFHE 1-C* exp[-NTU(1-C*}]

Egn 6

Thermal resistance of heat exchanger

Thermal resistance of heat exchanger is commonly defined as the ratio of
the temperature difference of the heat flux or the reciprocal of (UA), can
be calculated by Agarwal et al., 2014 using Equation 7 as follows:

1
ln.I._ o

UA = Eqgn 7

Thermal and storage efficiency of flat plate solar collector

The optical efficiency of the water in glass collector under experiment is
assumed to be 0.536 (Budihardjo and Morrison 2009), determined from
energy gain measurements at solar noon when the radiation level and
incidence angle are approximately steady. The heat loss coefficient varies
with the temperature, the coefficients in the heat loss terms of the
efficiency equation were determined by testing individual tubes (Marco
et al., 2015), given by Equation 8. The storage efficiency of flat plate
solar collector is the ratio between the amount of useful energy and the
amount of absorbed energy is given by Equation 9.

- - To—Temp _ (To~Tamp)®
n=rng d4 I, az I, Eqn 8
— Egn 9
N Qabs q

Instantaneous moisture content (Mt)
To evaluate the performance of each drying unit, a methodology proposed
by Leon et al., 2002 was used in this study. The instantaneous moisture
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content on wet basis at any time can be calculated by the following
equation:

W
M, =, +1) W—f] —1 Eqn 10

Drying rate

Drying rate (DR) was calculated according to Banout et al., 2011;
Michael Ayodele and Adesoji Matthew, 2012 and Darvishi et al., 2013
using Equation 11 as follows:

DR=(T) = (=) Eqn 11

dt M.t
RESULTS AND DISCUSSION

The incident solar radiation on a horizontal surface of the drying chamber
and ambient air temperatures were recorded, Figure 5. The drying
process starts from 9:00AM to 9:00PM for all the investigated variables.
Solar radiation rises up to a maximum value of 743.843, 783.7833 and
895.1W/m? at 11:00AM during the experimentation for 1.5, 2 and 3m/s
drying air velocity, respectively. Figure 6 shows the inverse relationship
between the ambient air relative humidity and ambient air temperature.
As the temperature increases from 30.06 to 34°C, the air relative humidity
decreases from 63.43 to 53.27% during the period from 9.00AM to
3.00PM at drying air velocity of 1.5m/s. The same behavior was noticed
at the other drying air velocities of 2 and 3m/s.

-1.5m/s ==2m/s -2-3m/s

NE 1000 - / / /

~~

= 800 -

S 600 -
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= 400

©
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S 0 ‘ ‘ ‘ ‘ ‘ - -
= = = = = = =
<t < [-% o. a [-™ o
P= P =] = S =] S
S S S oS S S S
D) — — o [72) ~ =)

L |
Daytime, h

Figure 5. Variations of solar radiation incident throughout the whole
drying experiment
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Figure 6. Ambient air temperature and air relative humidity as related to
daytime during the experimental work

Figure 7 shows that the temperature of water entering the heat exchanger
increased gradually during the period from 5.00PM to 7.00PM, after that
the temperature decreases gradually to be stable until reached 9.00PM.
The water temperature decreases dramatically due to the high
consumption of the stored energy by water reservoir tank. The
temperature of the water outlet of the counter flow heat exchanger is
lower than that in the parallel system during the period from 9:00AM to
9:00PM due to thermal energy loss of hot water and gaining of the drying
air with the drying air velocity of 1.5m/s, The same behavior was found at
the other drying air velocities of 2 and 3m/s, during the period of drying.
Figure 8 shows that, at drying air velocity of 1.5m/s, the drying air
temperature reached its highest values for both parallel and counter flow
heat exchangers of 39.1 and 42.5°C, respectively. The same behavior was
found at drying air velocities of 2 and 3m/s. The drying chamber
temperature increases with the increase of drying air temperature and this
leads to decrease the air relative humidity and reduces the moisture
content of fish on the drying tray that can be noticed on the digital panel
of the load cell as weight reduction. The counter flow heat exchanger
achieved the highest values of moisture content reduction if compared to
the parallel one for all the investigated drying air velocities.
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Figure 7. The influence of water temperature on the drying air
temperature for both the parallel (A) and counter (B) flow
heat exchangers at different drying air velocities

Figure 9 shows the evolution of fish wastes drying rate versus drying
time. Drying rate of fish wastes was decreased continuously with the
progress of drying time due to the reduction in fish wastes moisture
content. There are different drying curve profiles; the drying rate for the
first drying day is higher than that of the second drying day due to the
cohesion strength of the water molecules with fish dried and increases
with the drying time until the equilibrium moisture content of 9+1.74%wb
IS reached.
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Figure 8. Hourly variations of air temperature inside and outside solar
drying system for both parallel (A) and counter (B) flow heat
exchangers at different drying air velocities
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Figure 9. Drying rate as a function of drying time at different drying air
velocities for both the parallel and counter drier units

Misr J. Ag. Eng., January 2017

- 503 -




BIOLOGICAL ENGINEERING

In addition, the drying rate of counter drier unit (CDU) is higher than that
of the parallel drier unit (PDU) at all drying air velocities because drying
air temperature of counter system is higher than that of parallel system.
From the drying curves, it is evident that the highest drying rates occurred
in case of CDU. Since the drying rates at drying air velocity of 1.5m/s in
PDU and CDU are of 0.28 and 0.42kg water/(kg dry matter. min)
respectively. Whereas the final moisture content of 11.43 and 6.43%wb is
reached after three days of drying for the PDU and the CDU respectively.
The same trend was observed at drying air velocities of 2 and 3m/s. These
results are corresponded to the observations reported by Elbadawy, 2016.
Figures 10 shows the variations of moisture content of fish wastes over
drying process time at different levels of drying air velocities. It is
observed that, the moisture content decreases tremendously with the
drying time. The reduction rate of fish wastes moisture content was
increased as the drying air velocity rises. There is a significant difference
between the parallel and counter flow systems at drying air velocity of
1.5m/s and this difference begins to be less with the increase of drying air
velocity. Moreover, the reduction rates of fish wastes moisture content of
counter drier unit were higher than that of the parallel drier unit
throughout the period of drying experiment.

The maximum averaged value of energy stored efficiency of the water is
50.284% at useful energy of 240W during the drying process. A
significant reduction of the storage efficiency was noticed due to
continuous consumption of energy stored during the drying process at
7:00PM, Figure 11. The maximum average value thermal efficiency of
flat plate solar collector obtained is 53.549% at ambient air temperature
of 33.9°C and solar radiation of 743.843W/m? at 11.00AM, Figure 12.
The internal energy of water stored at the three experimented drying air
velocities is depicted in Figure 13. For the second drying day and drying
air velocity of 1.5m/s, the internal energy of the water reached its maxima
of 5.85kJ at 3.00PM, water temperature was of 39°C and solar radiation of
609.3W/m?. Moreover, for the third drying day and at drying air velocity
of 2m/s, its value was of 6.09kJ at 5:00PM, water temperature of 40.6°C
and solar radiation of 77.43W/m?. While for drying air velocity of 3m/s it
was of 6kJ at 5:00PM, water temperature of 40°C and 63.7W/m? solar
radiation.
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Figure 10. Evolution of fish wastes moisture content as affected by

drying hours for both the parallel and counter drier units at
different drying air velocities
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It can be concluded that the highest internal energy was obtained at the
end of drying day at 5.00PM. Exergy summation is the exergy gained by
drying chamber greenhouse. It is observed from Figure 14 that the
maximum exergy rate at drying air velocity of 1.5m/s was of 0.08314 and
0.1356kW for parallel and counter drier units, respectively. Moreover, at
drying air velocity of 2m/s, its value was of 2.497 and 0.225kW. While at
drying air velocity of 3m/s, its value was of 0.303 and 0.433kW. The
specific enthalpy inside the drying chamber has higher values than that of
the ambient specific enthalpy at all drying air velocities. Figure 15 shows
the maximum values of specific enthalpy of 86.32, 214.56 and
121.06kJ/kg inside the solar drier at drying air velocities of 1.5, 2 and
3m/s, respectively, for the parallel drier unit. While for the counter drier
unit, its values were of 115.69, 180 and 135.14kJ/kg.
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Figure 11. The averaged storage efficiency of flat plate solar collector
during the experiment at real time
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Figure 12. Thermal efficiency of flat plate solar collector during the
experiment at real time
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Figure 13. The effect of ambient temperature and solar radiation on
internal energy of water tank at different drying air velocities

In general, the specific enthalpy of drying air increases with the increase
of drying air velocity. The ambient air has higher latent specific enthalpy
than that of air inside the parallel and counter drier units. In contrast, the
sensible specific enthalpy of the air inside parallel and counter drier units
has higher values than that of the ambient air. The maximum
effectiveness of heat exchanger over the drying time, at drying air
velocity of 1.5m/s, was of 0.282 at the end of the first drying day in the
parallel flow heat exchanger at 9:00PM, Figure 16. While for the counter
flow heat exchanger, it was of 0.0562 for the third drying day at
11:00AM. At drying air velocity of 2m/s, the maximum effectiveness of
the counter flow heat exchanger was of 0.195 at the end of the second
drying day. In general the parallel system had the highest effectiveness at
drying air velocity of 1.5m/s but for the counter system, the highest
effectiveness was achieved at drying air velocity of 2m/s. The thermal
resistance in the counter flow heat exchanger is less than that of the
parallel flow heat exchanger for the three drying air velocities, Figure 17.
The thermal resistance begins to increase at the beginning of the drying
process and decreases with the evolution of drying time due to the high
water temperature emerging from the collector and the input to heat
exchanger. Consequently, the counter flow system is better than the
parallel one for enhancement of the thermal efficiency of the solar drying
system.
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Figure 18 shows the relationship between the heat energy transferred
against daytime for the three drying air velocities under study. For the
first drying day and parallel flow heat exchanger, the heat energy
transferred was of 0.77, 1.71 and 1.81kW at drying air velocities of 1.5, 2

and 3m/s, respectively.
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In contrast, for the counter flow heat exchanger and first drying day, the
heat energy transferred was of 0.89, 0.96 and 2.81kW at 1.5, 2 and 3m/s
drying air velocity, respectively. Moreover, for the second and third
drying days, the heat energy transferred behaves the same. In general, the
maximum of thermal energy transferred from water to air of 2.21kW and
2.81kW for the parallel and counter flow heat exchangers, respectively.
Figure 19 shows the maximum mass loss of the fish wastes for the three

drying air velocities under study.
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Figure 19. Changes of mass loss of fish farm wastes against drying time
at different drying air velocities for the parallel and counter

flow heat exchangers
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For the first drying day and parallel drier unit, the mass loss of the wastes
was of 800, 650 and 700g at drying air velocities of 1.5, 2 and 3m/s,
respectively. In contrast, for the counter drier unit and first drying day, the
mass loss of the wastes was of 900, 850 and 800 at 1.5, 2 and 3m/s drying
air velocity, respectively. Moreover, for the second and third drying days,
the mass loss of fish wastes behaves the same. It was found that the mass
loss of fish wastes is higher for the counter drier unit than that of the
parallel one. Table 1 shows the final mass and the mass reduction
percentage in each of the parallel and counter systems. Each treatment
was replicated three times.

Table 1. Mass of fish wastes before and after drying

Drying Drying air | Initial Final Time Mas_s
system velocity, mass, mass, | taken, | reduction,
m/s kg kg day %
1.5 1.20 17.14
Parallel 2 1.35 19.28
drier unit 3 7 1.35 19.28
1.5 0.90 12.86
Counter 2 1.10 3 15.71
drier unit 3 7 1.15 16.43

Chemical composition of dried fish wastes is presented in Table 2.

Table 2. Chemical composition of dried fish wastes

Dry Cruc_le Crude fat, Qrude Carbohydrates, | Ash,
Item matter, | protein, % fiber, % %
% % %
Moisture
content, | 85.89 50.04 8.13 0.43 9.05 18.24
%wb
Moisture
content, 100 58.26 9.46 0.51 10.53 21.24
%db
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CONCLUSIONS

The experiment was conducted on drying fish ponds wastes. The effect of
different drying air velocities of 1.5, 2, and 3m/s on two types of heat
exchangers (parallel and counter) was studied. The parallel and counter
drier units have the ability to dry fourteen kilograms of small fish with a
thin layer where moisture content of the fish wastes was 76.9+1%wb. The
drying air temperature and outlet from the fan in the parallel system
ranged from 33 to 43.9°C, and in the counter system, ranged from 34 to
45.8°C and therefore outlet air from the fan can be used again for the
drying process. The most important results could be summarized as
follows:

1. The drying air velocity of 1.5m/s has achieved the drying rate of
0.283 and 0.420kg water/(kg dry matter. min) for the parallel and
counter drier units, respectively.

2. Drying time decreases with the increase of drying air temperature and
the type of heat exchangers (parallel and counter) represents a
significant impact on the drying process of fish farm wastes.

3. The final moisture content of 11.43 and 6.43%wb is reached after
three days of drying for the parallel and counter drier units,
respectively at drying air velocity of 1.5m/s.

4. The drying air velocity of 3m/s has achieved the highest heat energy
transferred rate from water to air of 2.21 and 2.81kW for the parallel
and counter flow heat exchangers, respectively.

5. The thermal resistance of the counter flow heat exchanger is less than
that of the parallel one for all the drying air velocities.

6. The maximum effectiveness of heat exchanger was of 28% at 1.5m/s
for the parallel drier unit, but it was of 20% at 2m/s for the counter
one.

7. Moisture content decreases tremendously with the evolution of drying
time, where the reduction rates of fish wastes moisture content for
counter drier unit were higher in comparison with parallel one
throughout the drying process.

8. The highest internal energy of water tank is 6.09kJ at 5.00PM,
temperature of water is 40.6°C and less radiation is 77.43 W/m?.
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9. The counter flow system has achieved the highest exergy rate of
0.433kW at the drying air velocity of 3m/s and the parallel system is
2.49kW at drying air velocity of 2m/s.

10. Specific enthalpy of drying air of counter drier unit is higher than that
of parallel one at drying air velocities of 1.5 and 3m/s while lower at
drying air velocity of 2m/s.

11. Latent specific enthalpy of the ambient air is less than the sensible
specific enthalpy of the air outside the parallel and counter systems.
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