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Simulation of the detection, identification and classification of the vibration 
signature of oil/gas pipelines in response to acts of vandalism is presented in this 
paper.  In a real experimental field work, vibration signal data were acquired from a 
sample oil/gas steel pipe subjected to different excitation forces from human traffic, 
vehicular traffic, and impact on the pipe by separately using a hammer and a 
drilling machine.  The data acquired from the use of a drilling machine were used 
as the reference input data to an intelligent system modelled to classify the 
vibration data during a simulation process by the use of the MATLAB fuzzy logic 
toolbox.  During the simulation process, the frequency and power components of 
the vibration data were fuzzified into five linguistic variables each.  Results from 
the simulation shows that the triangular membership function is most appropriate 
for use in the intelligent system.  Results from the simulation also show that a 
relatively uniform vibration output value of 1.0 (on a scale of 0 to 1), being the 
desired output, was achieved.  This value serves as an ideal value that can be used 
for the design of a system to detect and diagnose an act of vandalism on oil/gas 
pipelines.  Any values outside of this would not be regarded as a force due to an act 
of vandalism.© 2018 EIJEST. All rights reserved 
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1. Introduction 
The desire by professionals and researchers to make 
life more comfortable, easy and meaningful has 
resulted in the development of networks of 
equipment and systems that are potential targets of 
attacks by vandals and intruders.  Over the years, the 
network of oil/gas pipelines in Nigeria has grown 
into a large system that is often attacked by vandals.  
This research aims at finding a solution to this 
problem by employing intelligent systems paradigm.  
Advancements in technology have helped to develop 
intelligent control systems that could be adapted for 
the design of a system that can identify intrusion on 
oil/gas distribution pipelines and promptly notifies 
operators of the pipelines to take appropriate action.  
This study simulates the process of detecting and 
diagnosing the signature of the vibration of oil/gas 

distribution pipelines in response to intrusions on the 
pipes by vandals.  To achieve this, vibration signal 
data were acquired from an experimental field work 
and used as input to an Adaptive Neuro-Fuzzy 
Inference System (ANFIS), which was used as the 
simulation engine in this study.  Results from the 
simulation would be very useful in the design and 
building of a real system that would detect and 
diagnose acts of vandalism when installed on oil/gas 
distribution pipelines.  Such a system will forestall 
the incessant attacks on the pipelines since intrusion 
on them will in real time be reported promptly to the 
operators of the network.  This will consequently 
improve on the safety of the pipelines and the lives 
and properties of those who live in communities 
across which the pipelines run. 
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2. Related Works 
Research works have been carried out in the field of 
Structural Health Monitoring (SHM) to detect and 
locate damages in civil and mechanical engineering 
facilities by constantly monitoring and assessing their 
health conditionsvia digital instruments, such as 
acceleration sensors [1].  SHM entails continuous 
monitoring of a structure, collection of its vibration 
data and analysing them in real-time to determine 
damage-sensitive characteristics of the structure, and 
the location of the perceived damage(s).It involves 
the use of an array of sensors [2,3] distributed over a 
structure to measure its dynamic response with the 
aim to undertake a more cost-effective condition-
based surveillance on it [4]. Kaya and Safak [1] 
developed a real-time technique (software) which 
monitors and identifies the modal properties of a 
structure, along features for tracing and plotting time 
variations in the modal properties, which bear strong 
relationship with damage(s) in the structure.   
Capabilities of SHM technology allows remote 
monitoring of the behaviour and integrity of 
structures to detect any damages on pipelines and 
reports this to a remote control station by the use of 
Information and Communication Technology (ICT) 
tools [5], to enable the right actions to be taken to 
avoid or reduce any risks associated with the damage.  
A model which describes a system comprising of 
wireless sensor nodes that could be deployed to 
remotely carry out continuous monitoring of gas 
pipelines is discussed in [6].  According to the 
authors, the model can be implemented for 
monitoring and identifying fluid leakage in, or other 
kinds of damages on, oil/gas pipelines.  A fault 
tolerant framework which uses a wired/wireless 
sensor network to remotely monitor pipeline network 
with a view to tracking acts of bunkering and 
vandalism on crude oil pipelines was proposed in [7].  
A microcontroller-based system that uses distributed 
sensing technology to continuously monitor the 
integrity of oil and gas pipelines with a view to 
detecting leakages on them was designed by [8].  
Shoewu et al [9] designed a microcontroller-based 
system that senses light, measures pressure drops and 
mechanical breaks (i.e., damages) in pipeline.  A 
system for detecting cracks on oil pipelines was 
developed by Ezeh et al [10].  The microcontroller-
based system is equipped with an electrical circuitry 
that provides a continuous electrical path.  A break in 
the electrical signal path causes a detectable state 
change in the system. This causes an alarm module in 
the system to trigger, and a “text message” sent to the 
operators of the system through short message 

service (SMS) of their mobile telephones. In 
reviewing technologies for detection of leakages in 
pipelines in the Niger Delta Region of Nigeria, [11] 
suggested an integration of impressed alternating 
cycle current (IACC) and an acoustic system for use 
in the management of malicious and inadvertent 
pipeline potential damages.  The paper suggested an 
integration of impressed alternating cycle current 
(IACC) and an acoustic system for use in the 
management of malicious and inadvertent pipeline 
potential damages.  While the former traces 
encroachment on pipeline coating, the latter is used 
for monitoring changes in the sound generated by a 
pipeline in operation.  Ononiwu et al. [12] developed 
and implemented a real-time oil pipeline monitoring 
system, equipped with acoustic sensors, that detects 
audio signals (from intruders) which are transmitted 
through wires laid along the pipeline. 

None of the works reported above is suitable for 
monitoring pipelines against acts of vandalism since 
they were all designed/developed to detect damages 
on or leakages in pipes, and not forces that could 
cause damages on them.  This brings to fore the 
limitations of SHM which include “anomaly 
detection, sensor deployment studies, model 
validation, threshold check, and damage detection” 
[13].  However, it was reported in [14] that a research 
organization awarded a contract to an Israeli 
company, Magal Security Systems Ltd, to improve 
the facilities of her product called Pipe Guard system.  
Capabilities of the new product were expected to 
include reporting of occurrences of excavation, and 
discriminating between types of excavation                      
equipment within the vicinities of gas pipes.  Oil/gas 
pipeline vandals do not use heavy excavation 
equipment.  Consequently, the new product will not 
be suitable for detecting acts of vandalism on 
pipelines.  A surveillance system based on phase-
sensitive optical time domain reflectometry (f-
OTDR) technology, and aimed at detecting and 
classifying threat signals within the vicinities of long 
range gas pipelines was presented in [15]. The 
proposed sensing system, which has capabilities for 
signal acquisition, uses discriminatively-trained 
multi-layer perceptions of Artificial Neural Networks 
(ANN) for classifying patterns of the acquired 
vibration signal features.  Similar to that in [14], the 
system aims at detecting the presence of both 
dangerous (threatening) excavation equipment and 
other non-dangerous (non-threatening) machine 
operations near the pipelines. 

2



 EIJEST  Vol. 24 (2018) 01–08  

 

 

An ideal system for prevention of acts of vandalism 
on pipelines should be able to detect and identify 
vibration signals that deviate from the normal 
operational vibration of the pipelines and could cause 
damages on them.  This concept was employed in 
[16] that proposed an “optimized composite 
dictionary single-atom matching algorithm (CD-
SaMP)” for extraction of vibration signal features 
from a gearbox with the aim of diagnosing any fault 
in the gearbox.  This also informed the focus of this 
research, which simulates the process of detection of 
forces that could cause damages on pipes.  The path 
of simulation was followed to avoid the risk, 
difficulty and high cost associated with direct 
experimentation with real insitu oil/gas pipeline. 
 
3.0 Methodology 
The following sections describe the procedures 
adopted to achieve the goal of this study. 

 

3.1 Data Acquisition 
An actual field experiment was carried out to acquire 
real vibration signal data that were used for the 
simulation of the process of detecting and identifying 
the signature of the vibration signal (forces) on the 
experimental steel pipe.  The pipe was separately 
excited externally by human and vehicular traffic 
moving close to the pipe.  It was excited also by 
hitting it with a hammer, and by the use of a drilling 
machine, which is assumed to be the tool used by 
vandals to bore hole on oil pipes to have access to 
their fluid contents. 
 
3.1.1 Experimental Setup 
Figure 1 depicts the experimental setup of the 
equipment used to acquire vibration signal data from 
the sample oil/gas pipe.  The setup consisted of a pipe 
representing the oil pipeline, data acquisition (DAQ) 
device, a laptop and excitation tools (sources). 

 
Fig. 1. Experimental Setup 

 
 

3.1.2 Signal Measurement 
Vibration signals were measured as the response of 
the experimental steel pipe to excitation forces from 
the various sources described in section 3.1. 

 

Fig. 2. Data Acquisition Instrument 

The signal data were collected real-time from the 
field experiment by use of a National Instrument high 
channel industrial vibration signal data acquisition 
(DAQ) device shown in Figure 2. 

 
Fig. 3. Hitting Experimental Steel Pipe with a 

Hammer 
Figure 3 shows the experimental pipe being hit with a 
hammer by a research assistant, while Figure 4 
depicts an attempt at boring a hole into the pipe with 
a drilling machine. 

 
Fig. 4. Drilling Operation 

Vibration signal data acquired from the response of 
the pipe to the various excitation forces were stored 

3



F.A.U. Imouokhome and E.A. Onibere/ Towards Prevention of Oil/Gas Pipelines Vandalism 

 

 

into the experimental laptop computer.  The stored 
data were later analysed using the Fast Fourier 
Transform from the signal processing toolbox of 
version 7.10.0.499 of the MATLAB software. 
 
 
3.2 Simulation Procedure 

For simulation of the detection and identification of 
forces that could cause breakage or damage of oil/gas 
pipes is shown by the Unified Modelling Language 
(UML) Activity Diagram of Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. UML Activity Diagram for ANFIS Simulation 

Selected vibration signal data (as explained in section 
3.1.2) were loaded into the running MATLAB 
software, and the ANFIS of Figure 6 structure was 
generated. 

 

 

3.2.1 Loading the Training and Checking data 
8192 data pairs, comprising of 4096 training data and 
4096 checking data, selected from the transformed 
experimental vibration signal data were loaded from 
a file into the MATALAB Workspace.  At this point 
the number of linguistic terms for each input variable 
is stated. For this study the data sets are divided into 
two input variables namely, Frequency and Power. 
 
 
Table 1: ANFIS Input Parameters 

Linguistic 
Terms 

Linguistic Variable 

Frequency (KHz) Power (dB) 
VERY LOW -0.1747 to 0.1747  -107.34734 to -84.95  

LOW 0.08485 to 0.4242  -95.14 to -59.47  

AVERAGE 0.3244 to 0.6737  -69.66 to -33.99  

HIGH 0.5739 to 0.9232  -44.18 to -8.514  

VERY HIGH 0.8234 to 1.173  -18.71 to 16.97  

Table 1 shows a summary of the input data pairs 
ranging from -0.1747 KHz to 1.173 KHz for the 
frequency variable, and -107.34734 dB to 16.97 dB 
for the power variable.  The linguistic variables 
(Frequency and Power)in Table 1 are further 
subdivided into qualitative partitions expressed in 
linguistic terms, namely: VERY LOW, LOW, 
AVERAGE, HIGH, and VERY HIGH. 

 

3.2.2 Training of ANFIS Structure with 
Training Data 

The ANFIS was trained with 4096 data pairs loaded 
from a file into the MATLAB Workspace.  Following 
are the steps taken to train the ANFIS to learn the 
profile of the signals. 
(i) Loading of the training data into the ANFIS 

Editor Graphical User Interface (GUI) from 
the MATLAB Fuzzy Logic Toolbox. 

(ii)  Generating the Fuzzy Inference System (FIS).  
MATLAB fuzzy logic toolbox has the 
capability of determining the architecture (i.e., 
model or structure) of Adaptive Neuro-Fuzzy 
Inference System (ANFIS) automatically.  
With the Genfis1 command of the fuzzy logic 
toolbox, the ANFIS model of Figure 6 having 
two inputs and one output was generated using 
the grid partition algorithm technique 
 

Validate ANFIS with 
Checking/Testing Data 

Get Training Results 

Train ANFIS with 
Training Data 

 

Load Checking/Testing 
Data 

Set Numbers and 
Types of Input, and 
Output Membership 
Functions. 
Choose 
Optimization 
Method for FIS 
Model. 
Define Number of 
Training/Testing 
Epochs  

Get Testing 
Results 

Diagnose Pipe 
Vibration Signal 

Load Vibration 
Data 

Acquired 
Vibration Data 

Load 
Trainin
g Data 

Generate 
ANFIS 

MATLAB 
Software 
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Fig. 6. Adaptive Neuro-Fuzzy Inference 

System Structure 
 

The ANFIS model (shown in Figure 6) 
consists of a five-layer neural network that 
simulates its working principles.  The nodes in 
the first layer represent the input variables.  
Nodes in the second (i.e., condition elements) 
layer are linguistic term nodes that act as the 
membership functions for the input variables.   
The third layer is a layer of neurons where 
each neuron represents a fuzzy rule.  The 
action elements are represented by the nodes 
in the fourth layer.  Outputs from the fourth 
layer are aggregated in the fifth (output) layer 
to give one single output. 

(iii) Choosing the hybrid optimization method in 
the ANFIS Editor GUI to train the 
membership function factors to imitate the 
training data. 

(iv) Specifying the number of training cycles 
(epochs) and the training Error Tolerance to 
set the criteria for stopping the training.  The 
training procedure stops when the maximum 
number of epochs is reached or the training 
error goal is realised. 

(v) Training of the ANFIS to adjust the 
parameters of the membership function and 
display the error plots. 
 

3.2.3 Validation of Trained FIS Model with 
Checking Data 

After training, the Fuzzy Inference System (FIS) 
model was checked for validation by use of the 4,096 
checking data pairs loaded from a file into the 
MATLAB Workspace.  This process allows the 
generalization capability of the fuzzy inference 
system to be checked.  The convergence checking 
error is displayed after the validation exercise. 

 

Table 2: Training and Checking/Testing Errors from 
various Membership Function Types 
S/
N 

Membership 
Function 

Type 

Member-
ship 

Function 
Matrix 

Number 
of 

Epochs 

Average 
Training 

Error 

Average 
Checking Error 

1.  
Triangular [5   5] 100 1.7184e-07 2.9842e-08 

2.  
Trapezoidal [5   5] 100 6.9032e-08 8.7495e-08 

3.  Generalized 
Bell [5   5] 100 1.3612e-05 1.1138e-02 

4.  
Gauss [5   5] 100 9.3592e-06 2.3475e-02 

5.  
Gauss2 [5   5] 100 1.1385e-06 8.3919e-02 

6.  
Pi [5   5] 100 1.6592e-07 3.0364e-07 

7.  
DSigmoid [5   5] 100 4.7981e-06 3.405e-04 

8.  
Psigmoid [5   5] 100 4.7981e-06 8.2781e-02 

 

Table 2 shows the training/checking converging 
errors recorded from training the FIS with the 4096 
training and 4096 checking data sets using various 
membership functions. 

It is observed from the table that the Trapezoidal 
membership function produced the least average 
training error value of 6.9032e-08 after 100 epochs, 
in comparison with the error produced by the use of 
the other membership functions. 
 

   
Fig. 7. FIS Model Showing Average Testing Error 
 

However, this is not the best membership function for 
the system.  The best is the Triangular membership 
function, which produced the least average checking 
(i.e., validating) error of 2.9842e-08 as shown in 
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Table 2 and in the average error plot of Figure 7.  The 
Triangular membership function curves for the 
linguistic variables (Power and Frequency) are shown 
in Figures 8 and 9 respectively. 

 

 
Fig. 8. Vibration Signal Power Input Membership 

Function 

 
Fig. 9. Vibration Signal Frequency Input 

Membership Function 

Every point in the input space is mapped to a 
membership value between 0 (zero) and 1 (unity) by 
a membership function to show the degree of 
belonging of the point to the input space.  The Fuzzy 
Logic Toolbox works out the membership function 
parameters and automatically selects the membership 
function curve appropriate for a particular input 
space. 

The Rule Editor of Figure 10 shows part of the 25 
fuzzy rules generated by the fuzzy system in the 
ANFIS during the fuzzification of the input data. 
 

 
      Fig.10. Fuzzy Rules 

 

 
   Fig. 11. Rule Viewer 

The rule viewer of Figure 11 shows that the system 
has an average output value of 1.0 (on a scale of 0.0 
to 1.0).  A row in the rule viewer corresponds to one 
of the 25 generated rules. 

A 3-dimensional output surface plot of the fuzzy 
inference system (FIS), based on the inputted 
vibration frequency and power data, is shown in the 
surface viewer of Figure 12. 

 
Fig. 12. Simulation Output (Surface Viewer) Plot 
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The figure shows that the output of the system is 
relatively stable at a value of 1.0.  This represents the 
working force from the drilling machine.  Other 
points on the surface represent the system output 
when the drilling operation just commenced or when 
it was being relaxed or withdrawn from the 
experimental pipe. 
 
5. Conclusion 

This paper presents a report of the simulation of a 
process by which the vibration signature of oil/gas 
pipes subjected to acts of vandalism can be detected, 
identified and classified.  An Adaptive Neuro-Fuzzy 
Inference System (ANFIS) model was used as the 
simulation engine.  Actual vibration data, acquired 
from the response of a sample experimental oil/gas 
steel pipe, excited by an attempt to bore a hole in it 
using a drilling machine, were inputted into the 
model.  Results from the simulation show that the 
Triangular membership function is most appropriate 
for the Fuzzy Inference System (FIS) model 
generated because it gave the least “average checking 
error” value in comparison with the error values 
produced by the simulation when other membership 
functions were used.  The results also show a 
relatively uniform output of 1.0 (on a scale of 0 to 1), 
being the desired output, was achieved.  Using this 
value and the Triangular membership function to 
design and build a system that can detect forces that 
could cause damage on pipes would be of immense 
benefit to operators of oil/gas pipeline networks.  
Such a system should be equipped with facilities that 
can report intrusion on pipes, using Information and 
Communication Technology (ICT) tools for 
appropriate actions to be taken to forestall or prevent 
acts of vandalism.  This will improve on the safety of 
lives and properties of those who live in communities 
across which the pipelines run. 
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