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Damage detection in structures using vibration analysis has been a subject of 
intensive investigation for the last two decades. In this paper, a method for damage 
detection using wavelet analysis is presented. MATLAB program is prepared to 
simulate a beam, calculate its mode shapes and analyze the first mode shape by 
discrete wavelet analysis. The first mode shapes of damaged and undamaged beams 
are transformed to the wavelet domain. The difference of the detail coefficients of 
damaged and undamaged mode shapes displays accurately the damage location. A 
detailed parametric study was conducted by changing the damage location, 
intensity as well as the boundary conditions and wavelet families. These studies 
have indicated that discrete wavelet transform accurately predicts the damage 
location (single or multi damages) from analyzing the first mode shape.   
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1. Introduction 

Due to different actions such as earthquakes, 
overloads, thermal effects or corrosion, the structural 
systems accumulate damage during their time life. 
This is why a reliable procedure that allows the 
structural evaluation is needed. If damage is not 
detected correctly, it can lead to the deterioration of 
the structural elements and consequently to risk the 
stability of the structure. The classical model based 
on the vibration analysis such as the changes in the 
vibration frequencies and mode shapes of a structure 
could detect only the large damages. The need to 
detect small damages with numerical methods is 
under investigation. One of such methods is wavelet 
transform (WT). 

The wavelet analysis (WA) became an efficient 
tool in the problems of structural damage detection 

due to high sensitivity to discontinuities in the signals 
caused by damages. So, the researchers started 
seeking for improvement of a sensitivity of wavelet-
based - methods for damage identification problem 
and tried to develop novel methodology which 
estimate the damage presence and position with high 
precision. 

Several studies using continuous wavelet 
transform (CWT) on the cracks detection in beams 
were presented by Douka et al. [1], Silva et al. [2],  
Khatam et al. [3], Ravanfar [4] and Sivasubramanian 
[5], [6]. Wang et al. [7] had made an experimental 
study of delamination detection. Rucka [8] used 
CWT on higher vibration modes. Masoumi et al. [9] 
used continuous wavelet transform and stationary 
wavelet transform. Also, Janeliukstis, et al. [10] 
studied damage identification in polymer composite 
beams based on spatial continuous wavelet transform. 
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The B-spline wavelets for damage location in beams 
and the composite elements with non-linear geometry 
were studied by Katunin [11], [12].  

Twodimensional (2D) wavelet transform for 
detection of cracks in plates studied by 
Hadjileontiadis and Douka [13], Janeliukstis et al.  
[14], Katunin [15],[16]. Rucka et al. [17] used neuro-
wavelet damage detection technique in beam, plate 
and shell structures with experimental validation. 
Nagarajaiah and Basu [18] presented short time 
Fourier transform (STFT), empirical mode 
decomposition (EMD), Hilbert transform (HT) and 
wavelet techniques for decomposition of free 
vibration response of MDOF systems into their 
modal components. Lima et al. [19] used two 
nonlinear frame models for simulation of the real 
condition of structures and restoring force response is 
calculated by Runge-Kutta method. Pnevmatikos [20] 
and Hongnan Li et al [21] studied damage detection 
of frame structures subjected to earthquake loading 
by continuous wavelet transform. Mandal et al. [22] 
presented a performance evaluation of damage 
detection algorithms for identification of debond in 
stiffened metallic plates using a scanning laser 
vibrometer. Other studies using discrete wavelet 
transform (DWT) on the cracks detection in beams 
were presented by Zabel [23] and Katunin [24].  

Katunin et al. [25] proved that discrete 
wavelet transform (DWT) is the most effective 
wavelet transform in comparison with continuous 
wavelet transform (CWT), stationary wavelet 
transform (SWT) and lifting wavelet transform 
(LWT). As the DWT provides the lowest time-
consuming algorithm in comparison with CWT, SWT 
and LWT, which is important when the large number 
of measurement points is considered in the analysis.  

All the previous researches had been done 
on some cases with limited damage intensity using 
one or two wavelet families. Some researchers used 
higher modes in order to improve the damage 
detection accuracy. But the damage couldn't be 
detected at the nodal points of the mode shapes. So, 
in this paper, damage detection of single or multi-
damages have been done accurately by analyzing the 
first mode only. Also, this technique could detect 
most boundary conditions cases such as (fixed-fixed, 
simply supported and cantilever) beams with damage 
percentage of (1% up to 90%) by the discrete wavelet 
transform (DWT) on the first mode shape. Four 
wavelet families (BiorSplines ''bior2.4'', Daubechies 
''db2'', Coiflets ''coif5'' and Symlets ''sym4'') have 
been used also in this study. 

 
 

2- Discrete wavelet theory: 

The discrete wavelet transform (DWT) 
was developed mostly by Daubechies in late 80 of 
the twentieth century basing on the multi-
resolution signal representation proposed by 
Mallat [26].  This representation forms the 
descending sequence of closed functional spaces 
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the wavelet and scaling function. They should be 
orthonormal or (semi-, bi-) orthogonal.  During 
DWT the signal f (x) is decomposed to the set of 
approximation coefficients (Aj)   and the set of 
detail coefficients (Dj) in each level of 
decomposition. The signal could be presented in 
the following form:  
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by the set of filters. In this case the resulted sets of 
approximation and detail coefficients could be 
presented as:  
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        where h~  and g~ are the impulse responses of 
the low-pass and high-pass filters, respectively. Due 
to the down sampling operation during DWT the 
resulted sets of coefficients have a half length with 
respect to the original signal in the case of single-
level decomposition. Following to the dyadic rule, 
the resulted length of sets of obtained coefficients 
reduces twice with each next level of decomposition.  
 
 
 

30

http://www.sciencedirect.com/science/article/pii/S0141029606003932


EIJEST Vol. 26 (2018) 29–37 

3. Procedure: 

The proposed program deals with different 
models. The program constructs the model 
undamaged stiffness matrix (K), model damaged 
stiffness matrix (Kd) based on the assumed damage 
and the model mass matrix (M). In the modal 
analysis the mass matrix has been assumed 
unaffected by damage. These matrices can be 
constructed by assembling the element's stiffness and 
mass matrices which are defined as follow [27]:   
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where: Ke, Kd, Me, E, I, ρ, A, l  and α are the 
undamaged element stiffness matrix, the damaged 
element stiffness matrix, element consistent mass 
matrix, Young's Modulus, second moment of inertia, 
mass density, cross section area, element length and 
damage ratio respectively. Both the damaged and 
undamaged element's stiffness and mass matrices are 
assembled to get the overall stiffness and mass 
matrices of the beam structure. 

From free vibration analysis, the mode 
shapes (Φi) and its frequencies (λi) for undamaged 
and damaged case are calculated. The program 
receives the model mode shapes and it's frequencies 
that are obtained directly from field using modern 
instruments like scanning laser vibrometer. The 
proposed program transforms the first mode shape of 
the undamaged and damaged beams to wavelet 
domain. 

Analyzing the damaged beam only may 
detect the damage location but the analysis give high 
boundary distortion. So, in this research the damaged 
and undamaged beams have been used for analysis 
because of two benefits. First, if the original beam 
was designed to have a sudden change in the 
stiffness. Second, the difference between detail 
wavelet coefficients of damaged and undamaged 
cases would avoid the boundary distortion.  

 

       Three levels of discrete wavelet decomposition 
have been done by four wavelet families (BiorSplines 
''bior2.4'', Symlets ''sym4'' ''sym6'', Daubechies ''db2'' 
and Coiflets ''coif5''). The detail coefficients of the 
third level decomposition are calculated for damaged 
and undamaged beams. The location of damage can 
be calculated as the location of absolute maximum 
difference in the detail wavelet coefficients as in the 
following equations; 
 
             WDiff=Wd–Wun                                          (10)                                                                                    

             AMDWC=abs(WDiff)                                (11)                                                                         

where: Wun, Wd are the detail wavelet coefficients of 
undamaged and damaged beams respectively, WDiff is 
the difference in detail wavelet coefficients of 
damaged and undamaged beams, and AMDWC are 
the absolute maximum difference in wavelet 
coefficients. The locations of damages are indicated 
at the location of maximum AMDWC. 
 
4. Finite element Models: 

      The proposed technique has been verified on 
three models; fixed- fixed, simply supported and 
cantilever steel beams. Single damage and multi 
damages are simulated and detected.  
 
4.1The first FE model  

     The first model is a fixed-fixed steel beam with 
geometric and elements properties as shown in 
Table1. The beam has a length (L) equals 0.5m and is 
divided into 500 elements with equal lengths 1mm.  
Each element has four degrees of freedom 
(translation δi, δi+1 and rotation θi, θi+1) as shown in 
Fig. 1.  
 

Table1: Steel beam geometric and elements properties 

Value Symbol Properties 

4.00cm B Breadth 

0.60 cm H Height 

0.072 cm4 I Moment of Inertia 

200.00 Gpa E Modulus of elasticity 

7850.00 kg/m3 ρ Density 
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Fig. 1. Fixed-Fixed steel beam 

 
4.2 The second FE model  

 
     The second FE model is a simply supported steel 
beam with dimensions and element's cross section as 
shown in Table1.   and Fig. 2.  The beam length (L) 
equals 0.6m and divided into 600 elements with equal 
lengths 1mm.  
 

 
 
 
 
 
 
 
 

 
Fig. 2. Hinged-Hinged steel beam 

 
4.3 The third FE model 

  
    The third finite element model is the cantilever 
steel beam with dimensions and element's cross 
section as shown in Table1 and Fig. 3. The beam 
length (L) equals 0.7m and divided into 700 elements 
with equal lengths 1mm.  
 
 

 

 

 
 

Fig. 3. Cantilever steel beam 
 

 

5. Results of models: 

     For fixed-fixed beam (first model), the first mode 
shape of undamaged beam and three cases of 
damaged beams with damage percentages (5%, 10% 
and 30%) at element no. 150 are shown in Fig. 4.  

 
 
 
 
 
 
 
 
  

Fig. 4. First mode shape of undamaged and damaged beams with 
percentages (5%, 10% and 30%) at element no. 150 

 
       The first mode shape for hinged-hinged beam 
(second model) of undamaged beam and three cases 
of damaged beams with damage percentages (5%, 
25%and 50%) at element no. 200 are shown in Fig. 5.  
 

 

 

 

2.  
 
Fig. 5.  First mode shape of undamaged and damaged beams with 
percentages (5%, 25% and 50%) at element no. 200 

       Also, the first mode shape of cantilever beam 
(third model) for undamaged and damaged beams 
with damage percentages (5%, 15%, 35%) at element 
no. 400 are shown in Fig. 6. 
 
 
 

 

 

 

Fig. 6 First mode shape of undamaged and damaged beams with 
percentages (5%, 15% and 35%) at element no. 400 
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     From previous mode shapes figures, it is shown 
that the first mode shapes of the different cases of 
damaged beams coincide with that of the undamaged 
beams. Also, the first mode shapes for all cases of 
damage percentage of the three models don't show 
clearly the damage location as the difference is very 
small. So, the first mode shapes of the three models 
of undamaged and damaged cases are transformed to 
wavelet domain.  
 
5.1  Single damage scenarios 

     When the damage in element 150 is assumed in 
the first model with damage percentage 30%, and the 
wavelet family ''db2'' is used for the decomposition, 
the detail wavelet coefficients at the third level of 
decomposition are calculated. It is found that at the 
damage location, a sudden change in wavelet 
coefficients are detected as shown in Fig. 7. a, b.   
 

 

 

 

 

 

 

 

 

 
Fig. 7. a. Detail wavelet coefficients at level 3 using ''db2'' for 
damage percentage 30%, b.  Detail of damage location 

 
       Then, the proposed technique calculates 
AMDWC where the maximum AMDWC indicates 
clearly the damage location as shown in Fig. 8. 

 

 

 

 

 
 
 
 

 
Fig. 8 Damage detection of element no. 150 in first model with 
damage percentage 30% using ''db2'' 

 
      In single damaged element scenarios, damage 
presents in one element only, while the rest of the 
elements are healthy. The proposed technique is 
applied to the three models (fixed-fixed, hinged-
hinged, cantilever). The damage is assumed to be 
varied from 5% up to 90%. 
       The errors in the damage detection of element 
150 when using four wavelet families (BiorSplines 
''bior2.4'', Symlets ''sym4'', Daubechies ''db2'' and 
Coiflets ''coif5'') are shown in Fig. 9. The error is 
zero for using BiorSplines ''bior2.4'' at all damage 
percentages and for using Daubechies ''db2'' in 
damage percentage 25% and 30%. The maximum 
error in the estimated damage location is 
approximately 0.004% i.e.  2mm which are very 
small. This means that the error of the proposed 
technique in detecting the damage is very small. And 
the proposed technique is accurate in detecting the 
damage in beams with fixed-fixed boundary 
condition in all percentages of damage. 
 

 
 
 
 
 
 
 
 
 

 
Fig. 9. Damage detection of element no. 150 in the first model with 
damage percentage up to 90% using different wavelet functions  
The damage detection of element no. 200 in the 
second model using  different wavelet families such 
as ''db2'', ''bior2.4'', ''coif5'' and ''sym4'' with different 
damage percentages (5% up to 90%) have been 
shown in Fig. 10. 

a 

b 
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Fig. 10 Damage detection of element no. 200 in second model with 
damage percentage up to 90% using different wavelet functions 

 
     The proposed technique that is used in detecting 
element 200 in the second model shows that the error 
is zero when using Symlets ''sym4'' and Coiflets 
''coif5'' in all damage percentages. The max errors 
using BiorSplines ''bior2.4'' and Daubechies ''db2'' are 
approximately 0.00167% i.e are very small. This 
means that the proposed technique is accurate in 
detecting the damage in beams with hinged - hinged 
boundary condition in all percentages of damage. 

      The damage detection of element no. 400 in the 
third model using  different wavelet families with 
different damage percentages (5% up to 90%) have 
been shown in Fig. 11  

 

 

 

 

 

 

 

 
Fig. (11) Damage detection of element no. 400 in the third model 
with damage percentage up to 90% using different wavelet 
functions 

 
      It is noticed that the damage detection errors 
using wavelet families Symlets ''sym4'' and 
Daubechies ''db2'' are zero. The max error in the 
damage detection of element 400 is approximately 
0.0057%. This means that the error of the proposed 
technique in detecting the damage is very small and 
the proposed technique is accurate in detecting the 
damage in beams with fixed–free boundary 
conditions in all percentages of damage. 
 
 
 

5.2   Multi – damages scenarios 
 
     Four cases of damages in the three models are 
assumed with damage percentage 20% for all cases. 
The wavelet family Symlets ''sym6' is used in the 
analysis. The proposed technique calculates the 
absolute maximum difference in the detail wavelet 
coefficients at the third level of decomposition 
(AMDWC).  
     For fixed-fixed steel beam (first model) the 
estimated damage location using ''sym6'' for the four 
cases of damages are indicated at Table2. When 
damage is assumed in elements 200 and 350 with 
damage percentages 20% and the proposed technique 
calculates (AMDWC), the AMDWC obtained at the 
elements 201 and 349 as shown in Fig.(12-I) with 
difference equals 1mm. Also, for Fig. ((13) II,III, IV) 
this note is found in estimating the damage in 
elements 100,200,300,350 and 400 with difference 
equals 1mm. This result shows that the proposed 
technique detects accurately the damage location 
with maximum difference equals 1mm (error = 
0.002%). 
 
Table2 Cases of damage detection location with 
damage ratio 20% for first model 
Damage 

case 
Damage assumed 

Damage estimated 

using ''sym6'' 

I 200,350 201, 349 

II 100,300,400 101 , 301 , 401 

III 
100,200,300 , 

400 

101 , 201 , 301 , 

401 

IV 
100,200,300, 

350,400 

101 , 201 , 301 , 

349 , 401 
 

 

 

(I) 
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Fig. 12. (I, II, III, IV) Damage detection locations cases using 
''sym6'' in the first model 
 
      For the hinged-hinged steel beam (second model), 
the estimated damage locations using ''sym6'' for the 
cases of damages are shown in Table3. The 
maximum AMDWC at the estimated damage 
location is shown in Fig. 13 for these cases. When 
damage is assumed in elements 200 and 350, the 
damages locations are estimated at elements 201 and 
349 with difference 1mm. This means that the error is 
0.002 i.e. very small. Also, for all cases in Table 3, 
the maximum difference in estimation the damage 
location is 1mm. This small difference in the damage 
location estimation indicates that the proposed 
methodology is accurate in the damage location 
detection in simply supported beam. 
 
Table3 Cases of damage detection location with damage 
ratio 20% for second model 
Damage 

case Damage assumed Damage estimated 
using ''sym6'' 

I 200 , 350 201,349 

II 120 , 320, 440 121,321,441 

III 100, 150, 300, 
400 

101,149,301 , 
401 

IV 80, 150, 200, 
250,400 

81,149, 201, 
249,401 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. (I, II, III, IV) Damage detection locations cases using 
''sym6'' in second model 

        For the cantilever steel beam (third model), 
when damage is assumed in elements 160 and 250 
with damage percentages 20%, the damage location 
is estimated at elements 161 and 249 with difference 
1mm as shown in Fig.14. This means that the error is 
0.002 i.e. very small. Also for all cases in Table (4), 
the maximum differences in estimation the damage 
location is 1mm. This small difference in the damage 
location estimation ensures that the proposed 
methodology is accurate in the damage location 
detection in cantilever beam. 

 

(II) 

(III) 

(II) 

(I) 

(III) 

(IV) 

(IV) 
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Table 4 Cases of damage location with damage ratio 20% 
for third model 

Damage 

case 

Damage assumed Damage estimated 

using ''sym6'' 

I 160 , 250 161,249 

II 140 , 310, 400 141,309,401 

III 150, 190, 250, 450 149,189,249,449 

IV 80, 120, 200, 280,500 81,121,201,281,501 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. 14 (I, II, III, IV) Damage detection locations cases using 

''sym6'' in third model 

 

6. Conclusion: 

In this paper, damage detection location in 
beams using the discrete wavelet transform is 
presented. The proposed technique uses a MATLAB 
program to simulate a beam, calculate its mode 
shapes and analyze the first mode shape by discrete 
wavelet analysis. Four wavelet families have been 
used for analysis. Three models of beams with 
different boundary condition are discussed.   
From this study, it is concluded that: 
 

1. The first mode shape couldn't detect the 
damage location as the differences of mode 
shapes are very small. 

2. Analyzing the first mode shape of damaged 
and undamaged beams using any discrete 
wavelet family detects accurately the 
damage location.   

3. The proposed program deals with beam 
structure with different properties (boundary 
conditions, material properties, beam length, 
beam cross section and damages percentages 
up to 90%). 

4.  This methodology detects accurately the 
location of single or multi- damages with 
small, moderate and severe damages. 
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