

Zagazig J. Agric. Res., Vol. 43 No. (5) 2016

http:/www.journals.zu.edu.eg/journalDisplay.aspx?Journalld=1&queryType=Master

INTEGRATED METHODS FOR INCREASING P-SOLUBILITY OF PHOSPHATE ROCK

Hamida S.H. Hasan*, A.E.A. El Sherbieny, M.K.E. Matter and Sara E.E. Fouda

Soil Sci. Dept., Fac. Agric., Zagazig Univ., Egypt

ABSTRACT

Laboratory experiments were carried out to study the effect of some integrated factors on solubility of phosphate rock (PR) obtained from two locations which were Abou Tartour and El-Sibaia Gharb as well as tricalcium phosphate. PRs were crushed to pass through a 1.18-mm sieve and separated into 7 particle diameters of 500, 250, 212, 125,75 and 45 μ m. Scanning Electron Microscope "SEM" and Xray diffraction were done. P-solubility was assessed using water and 5 acids of formic (FR), Acetic (AC), tartaric (TR) oxalic (OX) and citric (CT) (each of 2%). P in Abou Tartour samples was mainly as calcium phosphate hydroxide "Ca₅(PO₄)₆ OH. Other crystalline were silicon oxide SiO₂, calcium carbonate CaCO₃ and calcium di-hydrogen phosphate hydrate Ca H₂PO₄. P in El-Sibaia samples was mainly in form of Brushite. P contents (g kg⁻¹) were 0.2 to 0.6 water-soluble, and 10 – 17 for Olsen extract. Ranges for the acid-extractants from the two PRs were 39-44 for CT, 25-41 for AC, 27-49 for TR, 14-28 for OX and 32-52 for FA. A tendency to increase with decreased particle size occurred. Practical aspects could be inferred regarding the use of PR for fertilization.

Key words: Phosphate rock, P solubility, x-ray of P-rocks, scanning electron microscopy.

INTRODUCTION

Phosphorus (P) is an essential nutrient element which has several functions in plants and animals growth. The appropriate and sound utilization of phosphate rocks (PRs) as P sources contribute to sustainable agriculture can intensification, particularly developing in countries endowed with PR resources. PR is the primary raw material for manufacturing P fertilizers. Therefore there are various methods for evaluating PRs for direct application.

Direct application of PRs enables utilization of PR sources that cannot be utilized for industrial purposes in the manufacture of water soluble fertilizers. Direct application of PRs in sustainable agriculture can be more efficient than water soluble P- fertilizers in terms of P recovery by plants. Based on the unit cost of P, natural or indigenous PRs is usually the cheapest. Because of their extremely variable and complex chemical composition, PRs are sources of several nutrients other than P. They are usually applied to replenish soil P, and upon dissolution they provide other nutrients contained in them.

Characterization studies on PRs should provide data on (i) the composition of the apatite and other phosphate minerals; (ii) relative contents of mineral species and (iii) particle size distribution of the pulverized rock. Egypt produces 0.7% of world phosphate rock production (Mew, 2000). Local phosphate rock resources includes Abou-Tartour and El Sibaia Gharb locations.

Root exudates in the rhizosphere include organic acids such as oxalic, citric, formic, malic, acetic, tartaric, which decrease soil pH, act as chelating compounds and increase P solubility (Dinkelaker *et al.*, 1989; Hoffland *et al.*, 1992; Al-Oud, 2011; Marschner, 2012).

The current study involves characterization of Abou Tartour and El Sibaia Gharb PR,

^{*}Corresponding author: Tel. : +201098892639

E-mail address: hamida_sobhy2010@yahoo.com

through using various techniques including solubility in water and some organic acids, Scanning Electronic Microscope (SEM) with EDX unit, X-ray diffraction, and particle-size distribution.

MATERIALS AND METHODS

Laboratory experiments were carried out to study the effect of some integrated factors on solubility of PR-P in two PR sources (from Abou-Tartour and El-Sibaia Gharb) as well as tricalcium phosphate.

Preparation of Materials

Phosphate rocks were crushed to pass through a 1.18-mm sieve. One kg of each source was sieved to pass a set of sieves with the following diameters 500, 250, 212, 125, 75 and 45 μ m (using Electric Sieve Shaker). Part of the PR from the <45- μ m fraction was further ground manually for comparison with the other parts. The weights of each diameter of the samples were recorded and are shown in Table 1.

Identification and Classification

Identification and classification of the pulverized rock phosphate were done through scanning with electronic microscope (Plate 1) and x ray diffraction for the two PR sources. Solubility tests were done on the two PRs and the tricalcium phosphate.

Solubility and extractability tests

Determinations of water-soluble P, Nabicarbonate-soluble P (available Olsen extract), citric acid-soluble P and total P were done.

Experiments

Two experiments were done to assess some factors on PR solubility.

Experiment 1 (Particle size and P solubility)

To study the effect of particle size on PR solubility. Samples of different particles size were analyzed for water soluble, Na-bicarbonate extractable and citric acid extractable P. Samples (0.5-g each) of the different size fractions of

:500, 250, 212, 125, 75,45and $< 45\mu m$ were extracted; each with 100-ml acid solution. Total P was also assessed.

Experiment 2 (Comparative P-solubility by organic acids)

To study the comparative PR solubility using 5 acid extractants :formic acid 2%, Acetic acid 2%, tartaric acid 2%, oxalic acid 2% and citric acid 2%. Such organic acids are exudated by plant roots in the rhizosphere.

P-extraction and analysis

Extractable P was extracted on each of the different particle fractions of 500, 250, 212, 125, 75, 45and < 45 μ m Ø > Total P was also analyzed. Weight of extracted samples for each fraction was in 5 categories : 0.10, 0.20, 0.30, 0.40 and 0.5g. Each was extracted by 100 ml of extractant. As for total P, samples representing the different size fractions as well as the hand-ground were digested by concentrated acid mixture of H₂SO₄/ HClO₄.

Water-Soluble P

Extraction was by distilled water, shaking for one hour then filtration through Whatman 42 filter paper (Chapman and Pratt, 1961).

Na-bicarbonate-soluble P (Olsen extract)

Extraction was by 0.5 M NaHCO₃ solution at pH8.5 after shaking for half an hour (Olsen *et al.*, 1954).

Citric acid-soluble P

Extraction was by 2% citric acid; then shaking was done for 30 min followed by filtration through Whatman 42 filter paper and P was measured in the filtrates.

Total P

0.5-g was digested by 10 ml concentrated $H_2SO_4 + 5$ ml HClO₄ on a heater. After the mixture was clear, the digest was transferred to a 100-ml measuring flask and the volume were made up with distilled water (Jackson, 1958).

Phosphorus was determined in the extracts or digests using a colorimetric method of the ascorbic acid method (Murphy and Riley, 1977).

Sieve		Source						
μm	Mesh	Abou Tartour	El-Sibaia	Tricalcium phosphate				
>1180	16	66.73	118.79	0.00				
<1180 ->500	35	260.42	497.42	10.00				
500 ->250	60	204.05	160.74	98.40				
250 ->212	70	122.70	48.86	141.00				
212 ->125	120	132.04	57.12	250.10				
125 ->75	200	75.10	47.88	320.00				
75 ->45	325	105.57	45.93	130.00				
< 45	>325	33.74	23.26	50.50				

 Table 1. Weight (g) of different fractions after sieving

RESULTS AND DISCUSSION

Classification and Identification of P in the PR Sources

The X-ray diffraction analysis

The X-ray diffraction was carried out by scanning a powdered sample of each PR sources (Fig. 1). The diffraction pattern revealed that P in Abou Tartour PR exists in the form of calcium phosphate hydroxide $Ca_5(PO_4)_6$ OH. The other crystalline phase was in the form of silicon oxide SiO₂, calcium carbonate CaCO₃ and calcium di-hydrogen phosphate hydrate CaH₂PO₄. Phosphorus in El-Sibaia Gharb phosphate rock sample exists in the form of Brushite Ca H₂PO₄.H₂O. The other crystalline phase was sodium calcium aluminum "Albite" Na_{0.499} Ca_{0.491} (Al_{1.488}Si_{2.5} O₈) and "Ferroan" calcium iron magnesium silicon oxide; Ca Mg _{0.82} Fe_{0.18}Si₂ O₆.

Scanning electron microscope "SEM"

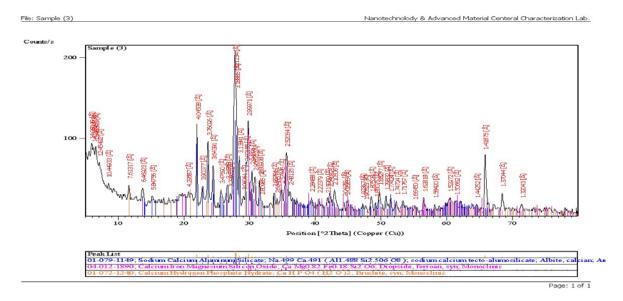
Plate 2 shows that the apatite grain size ranged between 4.941 μ m to 25.76 nm in the hand ground sample of Abou Tartour. On the other hand the apatite grains size of El-Sibaia Gharb PR ranged between 28.37 μ m to 7.310 μ m in the <45 μ m.

Total P in different size fractions

Total P in Abou Tartour PR ranged from 130.6 to 133.0 g kg⁻¹ and value for the ground* PR was 139.4. Total P in El-Sibaia PR ranged

from 72.4 to 78.6 g kg⁻¹, and value for the ground* PR was 88.8. Total P for tricalcium phosphate ranged from 166.8 to 182.5. For all three sources, there was a trend of increasing total P with decreasing size of particles. The hand-ground particles showed P higher than any of the size fractions (Table 2).

Ranking of phosphate rock sources


According to the ranking of Diamond (1979), the Abou-Tartour PR is of a high grade whereas the PR of El-Sibaia is of a medium grade. The high grade is considered most appropriate for sustainable agriculture (Table 3).

Forms of P in PR and tricalcium phosphate sources

Water-soluble P

Water soluble P contents were very low, not exceeding 1 and ranged from about 0.2 to 0.6 g kg⁻¹. Values (g P kg⁻¹) in Abu Tartour PR (Fig. 2) ranged from 0.246 to 0.300 for the 0.1-g sample, 0.255 to 0.357 for the 0.2-g sample, 0.279 to 0.397 for the 0.3-g sample, 0.282 to 0.415 for the 0.4-g sample and 0.282 to 0.412 for the 0.5-g sample. For the El-Sibaia (Fig. 3) ranges were as follows: 0.246 to 0.300, 0.270 to 0.403, 0.288 to 0.415, 0.297 0 to 0.427 and 0.303 to 0.451 for the aforementioned weight categories respectively. For the tricalcium phosphate (Fig. 4) ranges were as follows: 0.282 to 0.421, 0.282 to 0.454, 0.282 to 0.493, 0.291 to 0.517 and 0.303 to 0.553 for the aforementioned weight categories, respectively (Tables 4 and 5).

Hasan, et al.

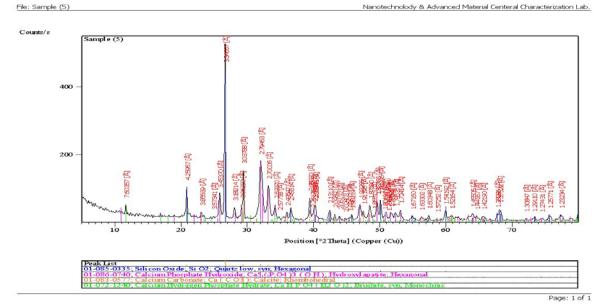


Fig. 1. X-ray diffraction for Abu Tartour PR and El-Sibaia Gharb PR

Plate 1. SEM with EDX unite

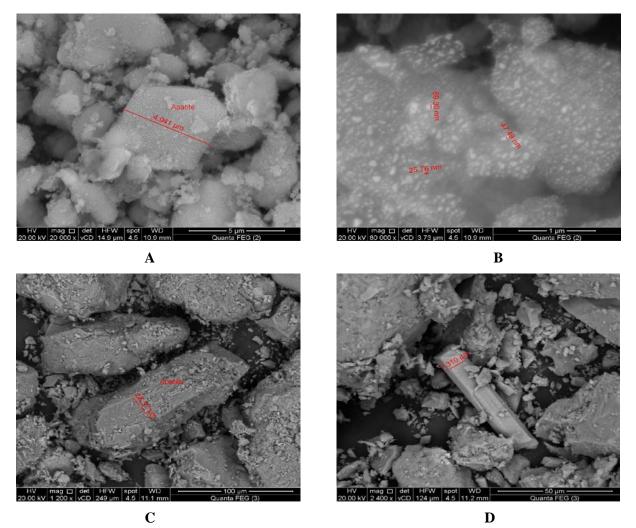


Plate 2. PR SEM of Abou Tartour PR (A and B) and (C and D) El-Sibaia Gharb PR

Table 2. Total P (g kg⁻¹) content in different PRs A- Abou Tartour, B-El-Sibaia Gharb, C-Tri Calcium Phosphate as affected by particles size (weight of analyzed sample = 0.5 g)

Sou	rces		Diameter (µm)							
	500	250	212	125	75	45	<45	Ground*	-	
					Total P (g	kg ⁻¹)				
A	130.6	131.5	131.9	132.0	132.2	132.6	133.0	139.4	132.90	
B	72.4	74.2	74.3	74.8	75.3	76.7	78.6	88.8	76.89	
С	190.0	191.2	194.1	194.8	195.0	196.0	196.7	nd*	194.0	

nd: Grinding of Tri-calcium phosphate was not done. Ground*: <<45 µm : 25 nm

Hasan, et al.

	Gharb, C-Tri Calcium Phosphate and ranking grades (according to Diamor sustainable agriculture	d 1979) for
Source	P content of various forms (g kg ⁻¹)	Ranking
	Total Water-soluble Available* Citric acid soluble	

14.15

14.39

15.97

40.22

32.51

78.62

High

Medium

High

0.28

0.30

0.30

130.6

72.40

190.0

 Table 3. Total and extractable P (g kg⁻¹) content in different PRs A- Abou Tartour, B-El-Sibaia Gharb, C-Tri Calcium Phosphate and ranking grades (according to Diamond 1979) for

* Na-bicarbonate extract

C- Tri Calcium phosphate

A- Abou Tartour

B- El-Sibaia Gharb

Table 4. Watr soluble P "Olsen extract" (g kg⁻¹) in different particle-size fractions of PR sources and tricalcium phosphate using different sample weights (extractant per sample=100ml)

Weight of sample(g)	Diameter(µm)											
	500	250	212	125	75	45	<45	•				
		A	- Abou Ta	artour								
0.1	0.246	0. 258	0. 282	0. 285	0. 285	0. 297	0.300	0. 279				
0.2	0. 255	0. 282	0.318	0.342	0.351	0.354	0.357	0. 323				
0.3	0. 279	0.303	0.324	0.342	0.357	0.384	0. 397	0.341				
0.4	0. 282	0.327	0.345	0.354	0.378	0. 391	0.415	0.356				
0.5	0. 282	0. 294	0.315	0.327	0.345	0.387	0.412	0.338				
Mean	0.269	0. 293	0.317	0.330	0.344	0.363	0.376	0.327				
	B- El-Sibaia Gharb											
0.1	0.246	0. 255	0.270	0.288	0. 288	0. 297	0.300	0. 278				
0.2	0.270	0. 285	0.300	0.342	0.357	0.384	0.403	0.335				
0.3	0. 288	0. 291	0.327	0.345	0.378	0.406	0.415	0.350				
0.4	0. 297	0.312	0.330	0.348	0.360	0.394	0. 427	0.353				
0.5	0.303	0.315	0.336	0.351	0. 391	0.406	0.451	0.365				
Mean	0. 281	0. 292	0.313	0.335	0.355	0.377	0. 399	0.336				
		C- Tri	Calcium	Phospha	te							
0.1	0. 282	0. 288	0.306	0.342	0.378	0.397	0. 421	0.345				
0.2	0. 282	0. 291	0.324	0.366	0. 394	0.427	0.454	0.363				
0.3	0. 282	0.303	0.336	0.397	0.454	0. 481	0. 493	0. 392				
0.4	0. 291	0. 339	0.369	0.430	0.460	0.484	0.517	0. 413				
0.5	0. 303	0.366	0. 394	0.451	0. 484	0. 508	0. 553	0. 437				
Mean	0. 288	0.318	0.0346	0. 397	0. 434	0. 459	0. 487	0. 390				

1550

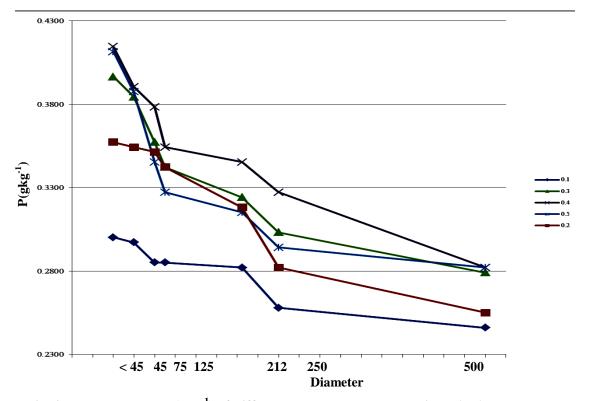


Fig. 2. Water-soluble P (gkg⁻¹) of different phosphate rocks particles A- Abou Tartour

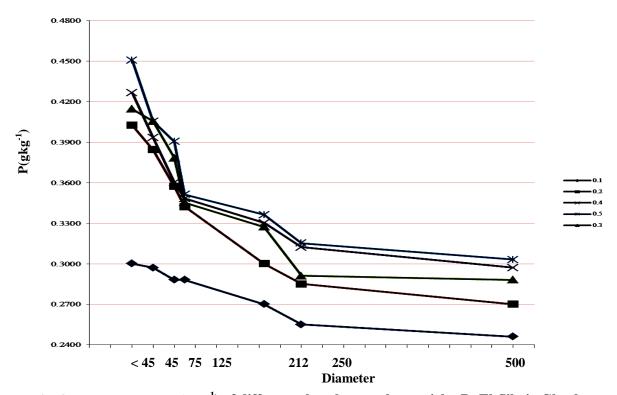


Fig. 3. Water-soluble P (gkg⁻¹) of different phosphate rocks particles B- El-Sibaia Gharb

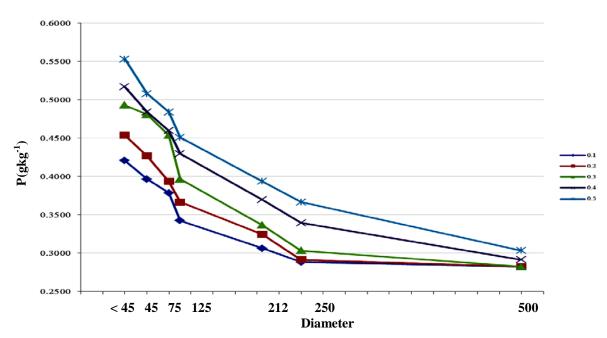


Fig. 4. Water-soluble P (gkg⁻¹) of different phosphate rocks particles C- Tri calcium phosphate (each sample was extracted by 100-ml extractant)

In all of the three sources, there was a trend of increase with decreasing size of particles. Also a trend of increased content occurred with the increase in the sample weight.

(Available P) Olsen extract

Extraction with sodium bicarbonate showed greater values than given by the water soluble extracts ranging from about 10 to 17 g kg⁻¹. Values in Abu-Tartour PR (Fig. 5) ranged from 09.87 to 11.14, 10.27 to 10.97, 10.27 to 13.22, 10.24 to 12.31 and 14.15 to 14.54 g P kg⁻¹ for the sample weight fractions of 0.1, 0.2, 0.3, 0.4 and 0.5-g, respectively. El-Sibaia PR (Fig. 6) showed ranges as follows: 9.94 to 10.54, 9.94 to 12.51, 10.00 to 12.51, 10.30 to 12.98 and 14.40 to 16.05 g P kg⁻¹ for same above-mentioned sample weight fractions. Values for the tricalcium phosphate (Fig. 7) were in the range of 15.53 to 16.35, 15.60 to 16.89, 15.73 to 17.30, 15.78 to 17.45 and 15.98 to 17.48 g P kg⁻¹ for same above-mentioned sample weight fractions.

Citric acid extractable P

Phosphorus extracted by citric acid was greater than extracted by water or by Na-

bicarbonate .The values ranged from about 36 to 85 g kg-1 as an acid, such acidic extractant would extract greater amounts of P from the insoluble sources of PR or the tricalcium phosphate (Mostara and Datta, 1971). Values in Abu-Tartour PR (Fig. 8) ranged from 36.37 to 47.04, 37.55 to 48.38, 38.30 to 50.16, 38.89 to 52.08 and 40.22 to 52.53 g P kg⁻¹ for the sample weight fractions of 0.1, 0.2, 0.3, 0.4 and 0.5-g, respectively. El-Sibaia PR (Fig. 9) showed ranges of 27.03 to 34.59, 27.47 to 36.66, 30.88 to 38.59, 31.62 to 40.37 and 32.51 to 41.56 g P kg⁻¹ for the above-mentioned sample weight fractions, respectively. Values for the tricalcium phosphate (Fig. 10) were in the range of 74.92 to 80.99, 75.81 to 82.92, 75.81 to 83.98, 76.55 to 33.96 and 78.62 to 84.55 g P kg⁻¹ for the abovementioned sample weight fractions, respectively. The trend of increase with decreased size of particles, and the trend of increased content occurred with the increase in the sample weight observed for the other extractants of water and Na\bicarbonate were also observed with the citric acid extractant.

Table 5. Na-bicarbonate-soluble P "Olsen extract" (g kg ⁻¹) in different particle-size fractions of
PR sources and tricalcium phosphate using different sample weights (extractant per
sample=100 ml)

Weight of sample(g)										
	500	250	212	125	75	45	<45	-		
		A	- Abou T	artour						
0.1	9.87	10.14	10.41	11.28	11.48	11.71	11.14	10.86		
0.2	10.27	10.64	10.17	11.21	11.34	11.51	10.97	10.87		
0.3	10.17	10.51	10.17	11.38	11.94	13.22	13.22	11.51		
0.4	10.24	10.57	10.97	10.84	11.51	13.22	12.31	11.38		
0.5	14.15	14.22	14.28	14.17	14.18	14.25	14.54	14.25		
Mean	10.94	11.21	11.20	11.77	12.09	12.78	12.44	11.78		
	B- El-Sibaia Gharb									
0.1	09.94	10.07	10.17	10.24	10.51	10.67	10.54	10.30		
0.2	09.94	10.17	11.07	12.35	12.55	12.68	12.65	11.63		
0.3	10.00	10.64	10.97	11.98	12.58	12.71	12.51	11.63		
0.4	10.30	10.81	11.34	12.61	13.01	13.32	12.98	12.05		
0.5	14.40	14.64	15.51	15.23	15.76	15.93	16.05	15.36		
Mean	10.92	11.27	11.81	12.48	12.88	13.06	12.95	12.20		
		C- Tr	i Calcium	Phospha	ite					
0.1	15.53	15.59	15.98	16.04	16.16	16.29	16.35	15.99		
0.2	15.60	15.75	16.11	16.21	16.66	16.75	16.89	16.28		
0.3	15.73	15.79	16.66	16.93	17.11	17.20	17.30	16.68		
0.4	15.78	15.93	16.76	17.11	17.21	17.30	17.45	16.79		
0.5	15.98	16.18	16.50	16.59	16.77	17.29	17.48	16.68		
Mean	15.72	15.85	1640	1658	1678	1697	1710	16.49		

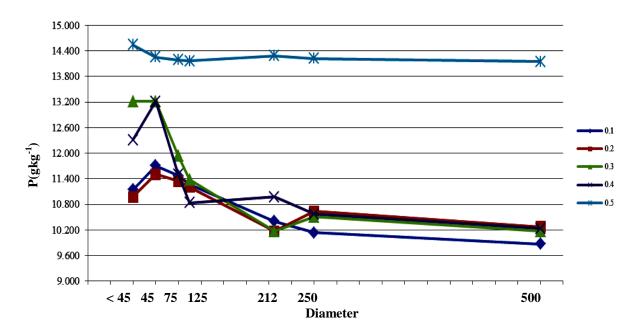


Fig. 5. Available P (gkg⁻¹) of different phosphate rocks particles A- Abou Tartour

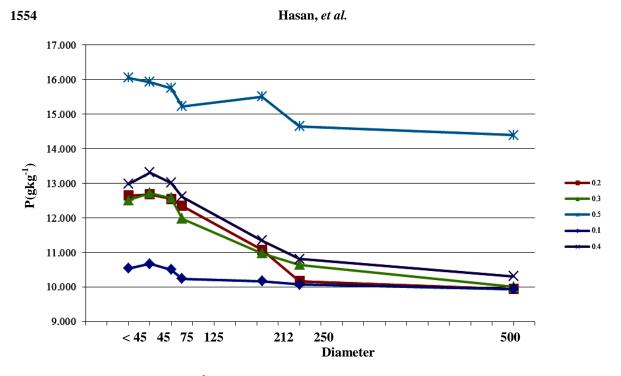


Fig. 6. Available P (gkg⁻¹) of different phosphate rocks particles B- El-Sibaia Gharb

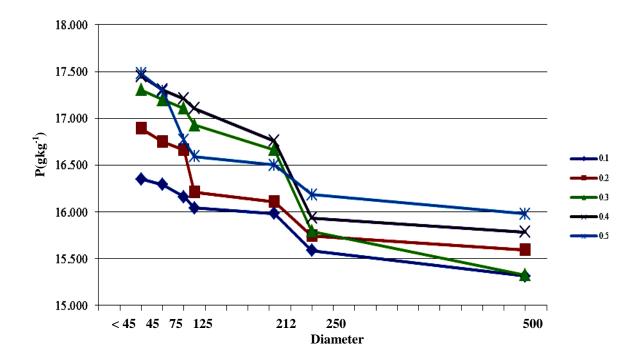


Fig. 7. Available P (gkg⁻¹) of different phosphate rocks particles C- Tri calcium phosphate

-	-	0	-	0		-	-	
Weight of sample (g)			Di	ameter (µ	ım)			Mean
	500	250	212	125	75	45	<45	-
		Α	- Abou T	artour				
0.1	36.37	37.70	39.78	41.26	42.45	44.08	47.04	41.24
0.2	37.55	40.37	41.56	43.34	45.86	47.04	48.38	43.44
0.3	38.30	39.93	41.71	43.63	45.56	47.93	50.16	43.89
0.4	38.89	40.37	41.71	44.67	46.89	50.16	52.08	44.97
0.5	40.22	41.26	42.74	44.67	47.64	50.60	52.53	45.67
Mean	38.27	39.93	41.50	43.51	45.68	47.96	50.04	43.84
		В-	El-Sibaia	Gharb				
0.1	27.03	28.81	29.70	31.92	33.11	33.55	34.59	31.24
0.2	27.47	29.10	29.99	32.51	33.70	35.92	36.66	32.20
0.3	30.88	32.22	35.33	36.81	38.15	38.15	38.59	35.73
0.4	31.62	32.66	33.85	36.66	39.19	40.07	40.37	36.35
0.5	32.51	34.29	35.63	37.70	39.93	41.56	41.56	37.60
Mean	29.90	31.42	32.90	35.12	36.81	37.85	38.35	34.62
		C- Tri	Calcium	Phospha	te			
0.1	na	74.92	76.84	78.18	79.81	80.40	80.99	78.52
0.2	na	75.81	76.84	79.07	80.40	81.74	82.92	79.46
0.3	na	75.81	76.84	79.66	81.74	82.33	83.96	80.06
0.4	na	76.55	77.29	79.66	81.29	83.07	83.96	80.30
0.5	na	78.62	80.40	81.74	82.77	83.66	84.55	81.96
Mean	na	76.34	77.64	79.66	81.20	82.24	83.28	80.06

 Table 6. Citric acid soluble P (g kg⁻¹) in different particle-size fractions of PR sources and tricalcium phosphate using different sample weights (extractant per sample=100 ml)

na : Non-applicable since the tricalcium phosphate salt was of a diameter of 250 µm or less.

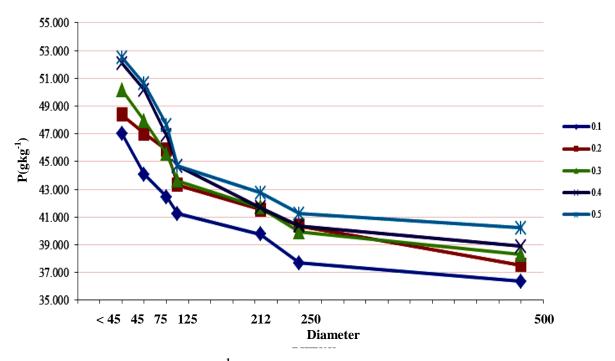


Fig. 8. Citric acid-Soluble P (gkg⁻¹) of different phosphate rocks particles A- Abou Tartour

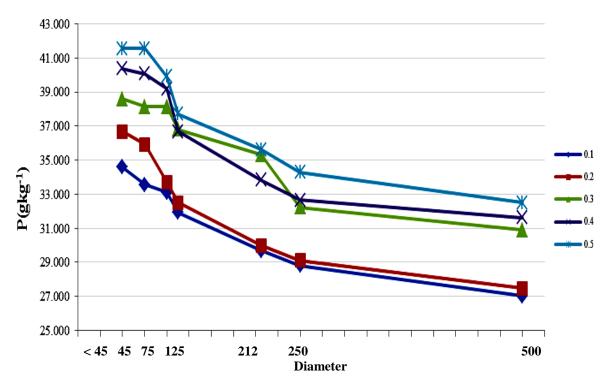


Fig. 9. Citric acid-Soluble P (gkg⁻¹) of different phosphate rocks particles B- El-Sibaia Gharb

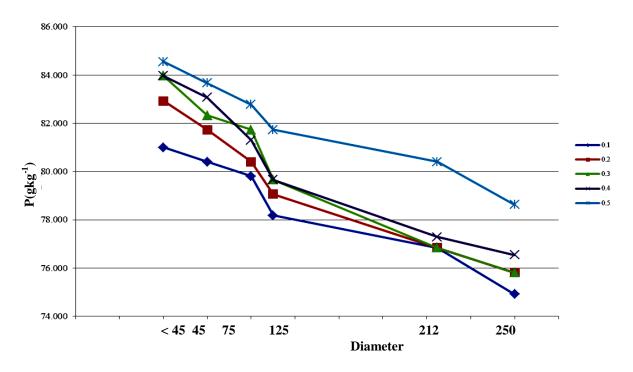


Fig. 10. Citric acid-Soluble P (gkg⁻¹) of different phosphate rocks particles C- Tri calcium phosphate

Experiment 2 (Comparative P-solubility by organic acids)

Extractable P was the highest using citric acid and the lowest using oxalic acid. The pattern was as follows: citric > formic > tartaric > acetic > oxalic for Abou Tartour PR and citric > formic > tartaric > acetic > oxalic for Abou Tartour PR and citric > formic > tartaric > acetic > oxalic for El-Sibaia Gharb PR. A trend of increasing extraction with decreasing the particle size is shown (Table 7 and Figs. 11 and 12). These results agree with findings by Dinkelaker *et al.* (1989), Hoffland (1992), Hoffland *et al.* (1992) and Al-Oud (2011) who noted that acid extraction using citric acid gives more P than other extractions using organic acids such as oxalic acid. The data also show that there was a high increase for the 250 and 125 μ m diameters.

The oxalic acid showed that the highest relative increase (146%) occurred due to the decrease in particle size.

To study the possibility of using low molecular weight organic acids as an indicator for available P, the statistical analysis showed significant correlation between the organic acids used and available P, determined by Olsen (1956) method. The organic acids can be arranged due to correlation coefficient as following: oxalic (0.84); tartaric (0.865); acetic (0.826); formic (0.749) and citric acid (0.397) for Abou Tartour.

In addition to El-Sibaia Gharb the correlation coefficients were acetic (0.959); oxalic (0.941); tartaric (0.917); formic (0.759) and citric acid (0.716).

Acio	ł	Diameter(µm)									
	-	500	250	212	125	75	45	<45	Mean		
				A- Ab	ou Tartou	r					
Formic	2%	39.3	40.1	41.1	42.3	43.0	43.6	44.2	42.0		
Acetic	2%	36.1	36.8	37.9	38.4	39.6	41.0	41.3	38.7		
Tartaric	2%	36.8	39.2	41.7	44.1	45.9	48.2	49.0	43.5		
Oxalic	2%	19.0	21.1	22.9	24.5	25.5	26.6	27.8	23.9		
Citric	2%	40.2	41.3	42.7	44.7	47.6	50.6	52.5	45.7		
Mea	n	34.3	35.7	37.3	38.8	40.3	42.0	43.0	38.8		
				B- El-S	ibaia Gha	rb					
Formic	2%	31.3	31.8	32.5	33.7	35.2	36.5	38.1	34.2		
Acetic	2%	25.7	26.4	27.5	28.7	29.5	30.7	32.4	28.7		
Tartaric	2%	27.1	28.6	30.9	32.1	33.1	34.1	35.8	31.7		
Oxalic	2%	14.4	15.9	17.4	19.0	20.8	22.0	23.5	19.0		
Citric	2%	32.5	34.3	35.6	37.7	39.9	41.6	41.6	37.6		
Mean		26.2	27.4	28.8	30.2	31.7	33.0	34.3	30.2		

Table 7. Soluble P (gkg⁻¹) extracted by low molecular weight organic acids

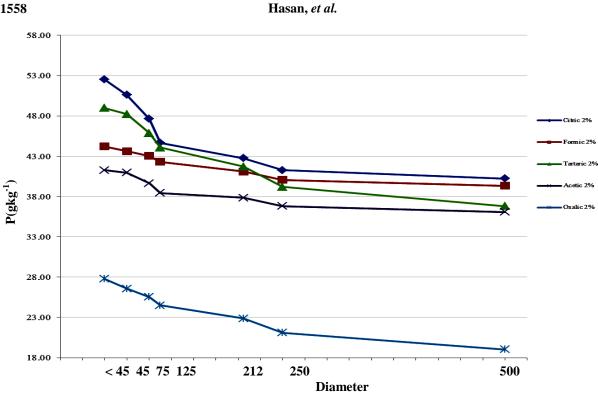


Fig. 11. Soluble P (gkg⁻¹) extracted by low molecular weight organic acids as affected by particle size A- Abou Tartour

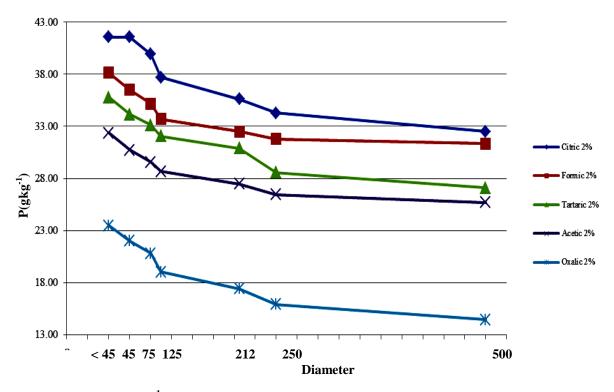


Fig. 12. Soluble P (gkg⁻¹) extracted by low molecular weight organic acids as affected by particle size B- El-Sibaia Gharb

REFERENCES

- Al-Oud, S. (2011). Improving phosphorus availability fromphosphate rock in calcareous soils by amending with: Organic acid, sulfur, and/or organic manure. Ozean J. Appl. Sci., 4 (3): 227–235
- Chapman, H.D. and P.F. Pratt (1961). Methods of Analysis for Soils, Plants and Waters. California Univ., Division of Agric. Sci., CA, USA.
- Diamond, R.B. (1979). Views on Marketing of Phosphate Rock for Direct Application. In Ifdc, Ed. Seminar on Phosphate Rock For Direct Application. Special Publication SP-1. Muscle Shoals, USA, IFDC.
- Dinkelaker, B., V. Romheld and H. Marschner (1989). Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (*Lupinus albus* L). Plan Cell Enviorn., 12: 285-292.
- Hoffland, E. (1992). Quantitative evaluation of the role of organic-acid exudation in the mobilization of rock phosphate by rape. Plant Soil, 140: 279-289.

- Hoffland, E., R. Van den Boogaard, J. Nelemans and G. Findenegg (1992). Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol., 122: 675-680.
- Jackson, M.L. (1958). Soil Chemical Analysis. Prentice Hall Ink, Englewood Cliffs, New, Jersey USA.
- Marschner, P. (2012). Marschner's Mineral Nutrition of Higher Plants, 3rd Acad. Press: San Diego, CA USA,
- Mew, M. (2000). Phosphate rock. In Metals and mineral annual review, London, The Mining J. Ltd., 110-122.
- Mostara, M.R. and N.P. Datta (1971). Rock phosphate as a fertilizer for direct application in acid soils. J. Ind. Soil Sci., 19: 107-113.
- Murphy, J. and J.R. Riley (1977). A modified single solution method for the determination of phosphate in natural waters. Anal. Chem., 27: 31-36
- Olsen, S.R., C.V. Cole, F.S. Watanabe and L.A. Dean (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. 939, us GOV. Print. Office, Washington, DC, USA.

Hasan, et al.

طسرق متكساملسة لسزيسادة ذوبسانيسة صخسسر الفوسس

حميدة صبحي حسن حسن - أحمد عفت أحمد الشربيني - محمد كمال الدين مطر – سارة السيد السيد فودة قسم علوم الأراضي – كلية الزراعة – جامعة الزقازيق – مصر

أجريت مجموعة من التجارب المعملية لدراسة تأثير بعض العوامل المتكاملة على ذوبان صخر الفوسفات والفوسفات مثلاثى اثلاثى الكالسيوم حيث كان صخر الفوسفات من موقعي دراسة وهما أبو طرطور والسباعية غرب، حيث تم طحن عينات صخر الفوسفات إلى حبيبات ذات قطر أقل لتعبر من منخل ذو قطر ١٠ مليمتر، وقد تم فصلها إلى ٧ أقطار مختلفة وهى صخر الفوسفات إلى حبيبات ذات قطر أقل لتعبر من منخل ذو قطر ١٠ مليمتر، وقد تم فصلها إلى ٧ أقطار مختلفة وهى محدر الفوسفات إلى حبيبات ذات قطر أقل لتعبر من منخل ذو قطر ١٠ مليمتر، وقد تم فصلها إلى ٧ أقطار مختلفة وهى صخر الفوسفات إلى حبيبات ذات قطر أقل لتعبر من منخل ذو قطر ١٠ مليمتر، وقد تم فصلها إلى ٧ أقطار مختلفة وهى مالميكروسكوب الإلكترونى وكذلك حيود أشعة أكس، تم تقييم ذوبان صخر الفوسفات بالماء المقطر وكذلك استخدام المسح أحماض عضوية مختلفة وهى الفورميك، الخليك، الطرطريك، الأوكساليك والسيتريك بتركيز ٢%، حيث يوجد الفوسفور فى المصدر الأول أبو طرطور على هيئة فوسفات كالسيوم هيدروكسيد والتركيب البلورى يوجد على هيئة أكسيد سليكون وكربونات كالسيوم وفريون وكربونات كالسيوم فيدروكيب والتركيب البلورى يوجد على هيئة أكسيد سليكون أقر بوسيت والتركيب البلورى يوجد على هيئة أكسيد سليكون أسمد الأول أبو طرطور على هيئة فوسفات كالسيوم هيدروكسيد والتركيب البلورى يوجد على هيئة أكسيد سليكون أسمدر الأول أبو طرطور على هيئة فوسفات كالسيوم هيدروكسيد والتركيب البلورى يوجد على هيئة أكسيد سليكون أسمد الروسيت/ ويتراوح محتوى الفوسفور الذائب في الماء مابين ٢.٠ إلى ٢. جم/كجم، والمستخلص بطريقة أولسن يتراوح بين ١٢ إلى ١٧ جم/كجم، والمستخلص بطريقة أولسن يتراوح بين ١٢ إلى ١٧ جم/كجم، ويتراوح المستخلص بواسطة الأحماض العضوية المصدرين المستخلص بطريقة أولسن يتراوح بين ١٢ إلى ١٧ جم/كجم لحامض السيتريك، ٢٠ إلى ٤٠ لحامض الخليك، ٢٠ إلى العامين العنوية المصدرين المونك من مخر الفوسفات من مخر الفوسفات وين ١٢ إلى ١٧ جمركجم لحامض السيتريك، ٢٠ إلى ٤٠ جمركجم، والمستخلص بطريقة أولسن يتراوح بين ١٠ إلى ١٧ جمركجم ورمن السيتريك، ٢٠ إلى ٤٠ جمركجم، والمستخلص بطريقة أولس يتراوح بين ١٠ إلى ١٧ جمركجم لحامض الطرطريك، ٢٠ إلى ٤٠ لحامض الخريك، ٢٠ إلى ١٤ لحامض المين يتراوح مامين الرطروريك، ٢٠ إلى ٤٠ لحامض الخرميك، ٢٠ إلى ٤٠ لحامض الخرميك، ٢٠ إلى المع مام بين ١٢ إلى المين ويع ولي الم

- المحكمون :
- ١ أ.د. علي أحمد عبدالسلام
- ۲ أ.د. صلاح محمود دحدوح
- أستاذ الأراضي المتفرغ كلية الزراعة بمشتهر جامعة بنها.
 - أستاذ الأراضيُّ المتفرغ كلية الزراعة جامعة الزقازيق.