On Zero Truncated Poisson- Muth Distribution | ||||
مجلة البحوث المالية والتجارية | ||||
Volume 26, Issue 1, January 2025, Page 426-446 PDF (481.72 K) | ||||
Document Type: المقالة الأصلية | ||||
DOI: 10.21608/jsst.2024.327144.1886 | ||||
![]() | ||||
Authors | ||||
nader fathi ![]() ![]() ![]() | ||||
1کلية التجارة جامعة الأزهر | ||||
2المنصورة | ||||
3جامعة الأزهر كلية التجارة قسم الاحصاء | ||||
4قسم الإحصاء- كلية التجارة بنين -جامعة الأزهر | ||||
Abstract | ||||
Abstract This paper introduces a novel statistical distribution, the Zero-Truncated Poisson Muth (ZTPM) Distribution, which is particularly useful for analyzing datasets that exclude zero values. The research thoroughly investigates the statistical properties of this distribution, including its probability density function (PDF), cumulative distribution function (CDF), survival function, and hazard rate function. These properties provide a comprehensive framework for understanding the behavior of the distribution in various applied contexts. Parameter estimation is conducted using the Maximum Likelihood Estimation (MLE) method, which is evaluated under a range of parameter values and sample sizes. Additionally, the study derives key moments of the distribution, such as the mean and variance, and provides an in-depth analysis of order statistics. Measures of skewness and kurtosis are also calculated to assess the shape of the distribution. Practical applications highlight the flexibility and usefulness of the ZTPM distribution in handling non-zero datasets, particularly in fields like reliability engineering and survival analysis. The ZTPM distribution proves to be an effective model for parameter estimation and data analysis in scenarios where zero-truncated data is common. | ||||
Keywords | ||||
Zero-Truncated Poisson Muth; Maximum Likelihood Method; Skewness; Kurtosis; Order Statistics | ||||
Statistics Article View: 158 PDF Download: 82 |
||||