Potential Application of Saccharomyces cerevisiae as an Antioxidant Agent for Broiler Chickens – A Brief Overview | ||||
Journal of Applied Veterinary Sciences | ||||
Article 11, Volume 10, Issue 3, July 2025, Page 118-128 PDF (378.43 K) | ||||
Document Type: Review Article | ||||
DOI: 10.21608/javs.2025.381713.1604 | ||||
![]() | ||||
Authors | ||||
Sugiharto Sugiharto ![]() ![]() ![]() ![]() ![]() | ||||
Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Tembalang Campus, Semarang 50275, Central Java, Indonesia | ||||
Abstract | ||||
Broiler chicken strains and the intensive production system are typically attributed to the stress conditions in broiler production. The use of synthetic antioxidants is commonly practiced by the farmers to alleviate the adverse effects of stress on broiler chickens. Yet, excessive use of synthetic antioxidants can leave residues in broiler meats, which can be harmful to consumer health. As a probiotic, yeast Saccharomyces cerevisiae has been widely used as a feed additive by broiler producers. Beyond its probiotic properties, S. cerevisiae has also been demonstrated to have antioxidant properties and may therefore be exploited as an antioxidant agent for broiler chickens. However, the in-depth understanding about the potential use of S. cerevisiae as an antioxidant agent for broiler chickens is still limited. Hence, the overview regarding the application of S. cerevisiae as an alternative antioxidant agent for broiler chickens is of importance. The current review article elucidates the antioxidant potential of S. cerevisiae, the use of S. cerevisiae to increase the antioxidant activity of fermentation products, as well as the application of S. cerevisiae and its derivative products as an antioxidant agent in broiler production. Moreover, the potential application of S. cerevisiae as an anti-inflammatory agent for broiler chickens is also briefly discussed in this current review. | ||||
Keywords | ||||
Broiler; Gut health; Inflammation; Natural antioxidant; Stress; β-glucans | ||||
References | ||||
ABD El-HAMID, I.S., 2024. Influence of Spirulina platensis supplementation alone or mixed with live yeast on blood constituents and oxidative status of Damascus goats and their new born. Journal of Applied Veterinary. Sciences, 9 (1), 1-12.https://doi.org/10.21608/javs.2023.231998.1266
ABO-SRIEA, T. M., ISMAEL, E., SOBHI, B. M., HASSAN, N. H., ELLEITHY, E. M., OMAR, S. A., and RAMADAN, A., 2024. Impact of dietary-nucleotides and Saccharomyces cerevisiae-derivatives on growth-performance, antioxidant-capacity, immune-response, small-intestine histomorphometry, caecal-Clostridia, and litter-hygiene of broiler-chickens treated with florfenicol. International Journal of Veterinary Science and Medicine, 12(1), 11-24. https://doi.org/10.1080/23144599.2024.2324411
AFRILIANA, A., PURNOMO, B. L., and WITONO, Y., 2023. Antioxidant activity of fermented inferior Jember Robusta coffee beans using Saccharomyces cerevisiae as a starter in the semi-carbonic maceration technique. Asian Journal of Food Research and Nutrition, 2(4), 451-461. https://journalajfrn.com/index.php/AJFRN/article/view/69
AHIWE, E. U., DOS SANTOS, T. T., GRAHAM, H., and IJI, P. A., 2021. Can probiotic or prebiotic yeast (Saccharomyces cerevisiae) serve as alternatives to in-feed antibiotics for healthy or disease-challenged broiler chickens?. a review. Journal of Applied Poultry Research, 30(3), 100164. https://doi.org/10.1016/j.japr.2021.100164
AL-ABDULLATIF, A. A., ALHOTAN, R. A., AL-BADWI, M. A., DONG, X., KETTUNEN, H., VUORENMAA, J., and AZZAM, M. M., 2024. Effects of hydrolyzed yeast on growth performance, intestinal redox homeostasis, and woody breast myopathy in heat-stressed broilers. Frontiers in Veterinary Science, 11, 1484150. https://doi.org/10.3389/fvets.2024.1484150
ALAGBE, E. O., SCHULZE, H., and ADEOLA, O., 2023. Growth performance, nutrient digestibility, intestinal morphology, cecal mucosal cytokines and serum antioxidant responses of broiler chickens to dietary enzymatically treated yeast and coccidia challenge. Journal of Animal Science and Biotechnology, 14(1), 57. https://doi.org/10.1186/s40104-023-00846-z
AL-BAADANI, H. H., ALHARTHI, A. S., ABBAS, N. I., QASEM, A. A., SALEH, A., and IBRAHEEM, M. A., 2025. Effect of activated and inactivated Saccharomyces cerevisiae as alternative to antibiotic growth promoter on the performance and health of broilers infected with Clostridium perfringens. Italian Journal of Animal Science, 24(1), 43-52. https://doi.org/10.1080/1828051X.2024.2441349
ALUWONG, T., KAWU, M., RAJI, M., DZENDA, T., GOVWANG, F., SINKALU, V., and AYO, J., 2013. Effect of yeast probiotic on growth, antioxidant enzyme activities and malondialdehyde concentration of broiler chickens. Antioxidants, 2(4), 326-339. https://doi.org/10.3390/antiox2040326
ANGGRAENI, D., SUNARTI, D., and SUGIHARTO, S., 2025. Effects of Saccharomyces cerevisiae-fermented infertile egg flour on growth performance, antioxidant status and carcass of broilers raised in high density pens. Pakistan Journal of Agricultural Science, 62(1), 131-139. https://doi.org/10.21162/PAKJAS/25.375
APALOWO, O. O., EKUNSEITAN, D. A., and FASINA, Y. O., 2024. Impact of heat stress on broiler chicken production. Poultry, 3(2), 107-128. https://doi.org/10.3390/poultry3020010
ARISTIDES, L. G. A., VENANCIO, E. J., ALFIERI, A. A., OTONEL, R. A. A., FRANK, W. J., and OBA, A. 2018. Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product. Poultry science, 97(9), 3337-3342. https://doi.org/10.3382/ps/pey174
ATMACA, G., 2004. Antioxidant effects of sulfur-containing amino acids. Yonsei Medical Journal, 45(5), 776-788. https://doi.org/10.3349/ymj.2004.45.5.776
ATTIA, Y. A., AL-KHALAIFAH, H., EL-HAMID, A., HATEM, S., AL-HARTHI, M. A., ALYILEILI, S. R., and EL-SHAFEY, A. A., 2022. Antioxidant status, blood constituents and immune response of broiler chickens fed two types of diets with or without different concentrations of active yeast. Animals, 12(4), 453. https://doi.org/10.3390/ani12040453
AYLWARD, B. A., JOHNSON, C. N., PERRY, F., WHELAN, R., and ARSENAULT, R. J., 2024. Modern broiler chickens exhibit a differential gastrointestinal immune and metabolic response to repeated CpG injection relative to a 1950s heritage broiler breed. Frontiers in Physiology, 15, 1473202. https://doi.org/10.3389/fphys.2024.1473202
BAI, K., HUANG, Q., ZHANG, J., HE, J., ZHANG, L., and WANG, T., 2017. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poultry Science, 96(1), 74-82. https://doi.org/10.3382/ps/pew246
BILAL, R. M., HASSAN, F. U., SAEED, M., RAFEEQ, M., ZAHRA, N., FRAZ, A., SAEED, S., KHAN, M. A., MAHGOUB, H. A. M., FARAG, M. R., and ALAGAWANY, M., 2021. Role of yeast and yeast-derived products as feed additives in broiler nutrition. Animal Biotechnology, 34(2), 392-401. https://doi.org/10.1080/10495398.2021.1942028
CHANDRA, M. A., SYAMSU, K., AMBARSARI, L., FATIMAH, N., and NURCHOLIS, W., 2024. Increasing polyphenol antioxidant in Orthosiphon stamineus Benth leaves with fermentation extraction by Saccharomyces cerevisiae ATCC-9763. Journal of Applied Biology and Biotechnology, 12(1), 111-116. https://doi.org/10.7324/JABB.2024.149026
CHEN, F., ZHU, L., QIU, H., and QIN, S., 2017. Selenium‐enriched Saccharomyces cerevisiae improves growth, antioxidant status and selenoprotein gene expression in Arbor Acres broilers. Journal of Animal Physiology and Animal Nutrition, 101(2), 259-266. https://doi.org/10.1111/jpn.12571
CHUANG, W. Y., LIN, L. J., HSIEH, Y. C., CHANG, S. C., and LEE, T. T., 2021. Effects of Saccharomyces cerevisiae and phytase co-fermentation of wheat bran on growth, antioxidation, immunity and intestinal morphology in broilers. Animal Bioscience, 34(7), 1157. https://doi.org/10.5713/ajas.20.0399
CHUANG, W. Y., LIN, W. C., HSIEH, Y. C., HUANG, C. M., CHANG, S. C., and LEE, T. T., 2019. Evaluation of the combined use of Saccharomyces cerevisiae and Aspergillus oryzae with phytase fermentation products on growth, inflammatory, and intestinal morphology in broilers. Animals, 9(12), 1051. https://doi.org/10.3390/ani9121051
COLOVIC, M. B., VASIC, V. M., DJURIC, D. M., and KRSTIC, D. Z., 2018. Sulphur-containing amino acids: protective role against free radicals and heavy metals. Current Medicinal Chemistry, 25(3), 324-335. https://doi.org/10.2174/0929867324666170609075434
DARWESH, O. M., EWEYS, A. S., ZHAO, Y. S., and MATTER, I. A., 2023. Application of environmental-safe fermentation with Saccharomyces cerevisiae for increasing the cinnamon biological activities. Bioresources and Bioprocessing, 10(1), 12. https://doi.org/10.1186/s40643-023-00632-9
EJUAMA, C. K., ONUSIRIUKA, B. C., BAKARE, V., NDIBE, T. O., YAKUBU, M., and ADEMU, E. G., 2021. Effect of Saccharomyces cerevisiae-induced fermentation on the antioxidant property of Roselle Calyx aqueous extract. European Journal of Biology and Biotechnology, 2(3), 33-38. https://doi.org/10.24018/ejbio.2021.2.3.201
FAKRUDDIN, M. D., HOSSAIN, M. N., AND AHMED, M. M., 2017. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complementary and Alternative Medicine, 17, 1-11. https://doi.org/10.1186/s12906-017-1591-9
GHOSAL, S., BHATTACHARYYA, D. K., and BHOWAL, J., 2021. Effect of Saccharomyces cerevisiae fermentation process on the phenolic content, flavonoid content and antioxidant properties of flaxseeds. In Advances in Bioprocess Engineering and Technology: Select Proceedings ICABET 2020 (pp. 119-131). Springer Singapore. https://doi.org/10.1007/978-981-15-7409-2_12
GRŽINIĆ, G., PIOTROWICZ-CIEŚLAK, A., KLIMKOWICZ-PAWLAS, A., GÓRNY, R. L., ŁAWNICZEK-WAŁCZYK, A., PIECHOWICZ, L., and WOLSKA, L., 2023. Intensive poultry farming: A review of the impact on the environment and human health. Science of the Total Environment, 858, 160014. https://doi.org/10.1016/j.scitotenv.2022.160014
GUO, Y., ZHANG, J., LI, X., WU, J., HAN, J., YANG, G., and ZHANG, L., 2023. Oxidative stress mediated immunosuppression caused by ammonia gas via antioxidant/oxidant imbalance in broilers. British Poultry Science, 64(1), 36-46. https://doi.org/10.1080/00071668.2022.2122025
HASHEMITABAR, S. H., and HOSSEINIAN, S. A., 2024. The comparative effects of probiotics on growth, antioxidant indices and intestinal histomorphology of broilers under heat stress condition. Scientific Reports, 14(1), 23471. https://doi.org/10.1038/s41598-024-66301-9
HASSAN, H. M., 2011. Antioxidant and immunostimulating activities of yeast (Saccharomyces cerevisiae) autolysates. World Applied Science Journal, 15(8), 1110-9. https://www.idosi.org/wasj/wasj15(8)11/11.pdf
HE, T., MA, J., MAHFUZ, S., ZHENG, Y., LONG, S., WANG, J., and PIAO, X., 2022. Dietary live yeast supplementation alleviates transport‐stress‐impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Journal of the Science of Food and Agriculture, 102(10), 4086-4096. https://doi.org/10.1002/jsfa.11758
HE, T., MAHFUZ, S., PIAO, X., WU, D., WANG, W., YAN, H., and LIU, Y., 2021. Effects of live yeast (Saccharomyces cerevisiae) as a substitute to antibiotic on growth performance, immune function, serum biochemical parameters and intestinal morphology of broilers. Journal of Applied Animal Research, 49(1), 15-22. https://doi.org/10.1080/09712119.2021.1876705
HEINSOHN, Z., BROWN, A., SOBOTIK, E., HOUSE, G., STIEWERT, A., CHANEY, W. E., and ARCHER, G. S., 2024. Evaluating the effects of feeding a concentrated Saccharomyces cerevisiae fermentation product on the performance and stress susceptibility of broiler chickens. Poultry, 3(1), 57-65. https://doi.org/10.3390/poultry3010006
HOU, L., QIU, H., SUN, P., ZHU, L., CHEN, F., and QIN, S., 2020. Selenium-enriched Saccharomyces cerevisiae improves the meat quality of broiler chickens via activation of the glutathione and thioredoxin systems. Poultry Science, 99(11), 6045-6054. https://doi.org/10.1016/j.psj.2020.07.043
JELENA, J., and YUSTIANTARA, P. S., 2021. Antioxidant activity of fermented coffee beans. Pharmacy Reports, 1(2), 25-25. https://doi.org/10.51511/pr.25
LIANG, Z., HUANG, Y., ZHANG, P., and FANG, Z., 2023. Impact of fermentation on the structure and antioxidant activity of selective phenolic compounds. Food Bioscience, 56, 103147. https://doi.org/10.1016/j.fbio.2023.103147
LIN, J., COMI, M., VERA, P., ALESSANDRO, A., QIU, K., WANG, J., and ZHANG, H. J., 2023. Effects of Saccharomyces cerevisiae hydrolysate on growth performance, immunity function, and intestinal health in broilers. Poultry Science, 102(1), 102237. https://doi.org/10.1016/j.psj.2022.102237
LUO, G. M., REN, X. J., LIU, J. Q., MU, Y., and SHEN, J. C., 2003. Towards more efficient glutathione peroxidase mimics: Substrate recognition and catalytic group assembly. Current Medicinal Chemistry, 10(13), 1151-83. https://doi.org/10.2174/0929867033457502
MAKKY, E. A., ALMATAR, M., MAHMOOD, M. H., TING, O. W., and QI, W. Z., 2021. Evaluation of the antioxidant and antimicrobial activities of ethyl acetate extract of Saccharomyces cerevisiae. Food technology and biotechnology, 59(2), 127-136. https://doi.org/10.17113/ftb.59.02.21.6658
MOHAMED, H. E., IBRAHIM, W. A., and GAAFAR, R. E., 2022. Impact of Moringa olifera leaves or Saccharomyces supplementation on carcass quality, mRNA of heat shock proteins and antioxidants in broilers exposed to heat stress. SVU-International Journal of Veterinary Sciences, 5(4), 193-227. https://doi.org/10.21608/svu.2022.167661.1232
NAJAFI, P., RAMIAH, S. K., AMAT JAJULI, N., FARJAM, A. S., ZULKIFLI, I., O’REILY, E., ECKERSALL, D., and AMIR, A. A., 2015. Environmental temperature and stocking density effects on acute phase proteins, heat shock protein 70, circulating corticosterone and performance in broiler chickens. International Journal of Biometeorology, 59(11), 1577-1583. https://doi.org/10.1007/s00484-015-0964-3
NELSON, J. R., SOBOTIK, E. B., ATHREY, G., and ARCHER, G. S., 2020. Effects of supplementing yeast fermentate in the feed or drinking water on stress susceptibility, plasma chemistry, cytokine levels, antioxidant status, and stress- and immune-related gene expression of broiler chickens. Poultry Science, 99, 3312-3318. https://doi.org/10.1016/j.psj.2020.03.037
OBIANWUNA, U. E., CHANG, X., OLEFORUH-OKOLEH, V. U., ONU, P. N., ZHANG, H., QIU, K., and WU, S., 2024. Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. Journal of Animal Science and Biotechnology, 15(1), 169. https://doi.org/10.1186/s40104-024-01101-9
PRABHU, A., GARG, Y., CHITYALA, S., and VENKATA, D., V., 2016. Improvement of phytonutrients and antioxidant properties of wheat bran by yeast fermentation. Current Nutrition and Food Science, 12(4), 249-255. https://doi.org/10.2174/1573401312666160830155812
QIU, S., YAO, K., SUN, J., LIU, S., and SONG, X., 2025. Impact of fermentation by Saccharomyces cerevisiae on the macronutrient and in vitro digestion characteristics of Chinese noodles. Food Chemistry, 462, 140967. https://doi.org/10.1016/j.foodchem.2024.140967
RAKNGAM, S., ZHU, Y., OKRATHOK, S., PUKKUNG, C., and KHEMPAKA, S., 2024. Enhancing heat stress resilience in broiler chickens through the use of probiotics and postbiotics: a review. Tropical Animal Science Journal, 47(4), 538-548. https://doi.org/10.5398/tasj.2024.47.4.538
RAMOS-GONZÁLEZ, E. J., BITZER-QUINTERO, O. K., ORTIZ, G., HERNÁNDEZ-CRUZ, J. J., and RAMÍREZ-JIRANO, L. J., 2024. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia, 39(3), 292-301. https://doi.org/10.1016/j.nrleng.2021.10.010
RIBER, A. B., and WURTZ, K. E., 2024. Impact of growth rate on the welfare of broilers. Animals, 14(22), 3330. https://doi.org/10.3390/ani14223330
RYBARCZYK, A., HARAF, G., TOKARCZYK, G., TELESZKO, M., TOBOLSKA, I., and BIENKIEWICZ, G., 2024. Effect of distiller’s yeast in feed on texture, fatty acid profile and antioxidant properties of breast muscle of broiler chickens. Agricultural and Food Science, 33, 2. https://doi.org/10.23986/afsci.145308
SANTOS, L. O., SILVA, P. G. P., LEMOS JUNIOR, W. J. F., DE OLIVEIRA, V. S., and ANSCHAU, A., 2022. Glutathione production by Saccharomyces cerevisiae: current state and perspectives. Applied Microbiology and Biotechnology, 106(5), 1879-1894. https://doi.org/10.1007/s00253-022-11826-0
SETIYONINGRUM, F., PRIADI, G., and AFIATI, F., 2022. Chemical properties of solo black garlic fermented by Saccharomyces cerevisiae. IOP Conference Series: Earth and Environmental Science, 976(1): 012044. https://doi.org/10.1088/1755-1315/976/1/012044
SITHOLE, A. N., HLATINI, V. A., and CHIMONYO, M., 2022. Potential of combining natural-derived antioxidants for improving broiler meat shelf-life - a review. Animal Bioscience, 36(9), 1305. https://doi.org/10.5713/ab.22.0188
SHAKERI, M., LE, H., SHAKERI, M., and OSKOUEIAN, E. 2020. Strategies to combat heat stress in broiler chickens: Unveiling the roles of selenium, vitamin E and vitamin C. Veterinary Sciences, 7(2), 71. https://doi.org/10.3390/vetsci7020071
SOBOTIK, E. B., NELSON, J. R., PAVLIDIS, H. O., and ARCHER, G. S., 2022. Evaluating the effects of supplementing Saccharomyces cerevisiae in the feed or drinking water on stress susceptibility of broilers. Journal of Applied Poultry Research, 31(1), 100220. https://doi.org/10.1016/j.japr.2021.100220
SUGIHARTO, S. 2016. Role of nutraceuticals in gut health and growth performance of poultry. Journal of the Saudi Society of Agricultural Sciences, 15, 99-111. http://dx.doi.org/10.1016/j.jssas.2014.06.001
SUGIHARTO, S. 2019. A review of filamentous fungi in broiler production. Annals of Agricultural Sciences, 64(1), 1-8. https://doi.org/10.1016/j.aoas.2019.05.005
SUGIHARTO, S. 2022. Dietary strategies to alleviate high-stocking-density-induced stress in broiler chickens–a comprehensive review. Archives Animal Breeding, 65(1), 21-36. https://doi.org/10.5194/aab-65-21-2022
SUGIHARTO, S., AGUSETYANINGSIH, I., WIDIASTUTI, E., WAHYUNI, H. I., YUDIARTI, T., and SARTONO, T. A., 2023. Dietary supplementation of enzymes: An approach to mitigate ammonia emission during broiler production. Iranian Journal of Applied Animal Science, 13(4), 615-625. https://journals.iau.ir/article_708962.html
SUGIHARTO, S., YUDIARTI, T., ISROLI, I., WIDIASTUTI, E., WAHYUNI, H. I., and SARTONO, T. A., 2019. Effect of formic acid, Saccharomyces cerevisiae or their combination on the growth performance and serum indices of the Indonesian indigenous crossbred chickens. Annals of Agricultural Sciences, 64(2), 206-210. https://doi.org/10.1016/j.aoas.2019.12.004
SUMANU, V. O., CHAMUNORWA, J. P., OOSTHUIZEN, M. C., and NAIDOO, V. 2022. Adverse effects of heat stress during summer on broiler chickens production and antioxidant mitigating effects. International Journal of Biometeorology, 66(12), 2379–2393. https://doi.org/10.1007/s00484-022-02372-5
SUMANU, V. O., BYARUHANGA, C., BOSMAN, A. M., OCHAI, S. O., NAIDOO, V., OOSTHUIZEN, M. C., and CHAMUNORWA, J. P., 2023. Effects of probiotic (Saccharomyces cerevisiae) and ascorbic acid on oxidative gene damage biomarker, heat shock protein 70 and interleukin 10 in broiler chickens exposed to heat stress. Animal Gene, 28, 200150. https://doi.org/10.1016/j.angen.2023.200150
SUMANU, V. O., NAIDOO, V., OOSTHUIZEN, M. C., and CHAMUNORWA, J. P., 2024. Evaluating the efficacy of probiotics and ascorbic acid as anti-stress agents against heat stress in broiler chickens. Frontiers in Veterinary Science, 11, 1482134. https://doi.org/10.3389/fvets.2024.1482134
WANG, T., CHENG, K., LI, Q., and WANG, T., 2022. Effects of yeast hydrolysate supplementation on intestinal morphology, barrier, and anti-inflammatory functions of broilers. Animal Bioscience, 35(6), 858. https://doi.org/10.5713/ab.21.0374
Wang, T., Cheng, K., Yu, C. Y., Li, Q. M., Tong, Y. C., Wang, C., and Wang, T., 2021. Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers. Poultry Science, 100(9), 101343. https://doi.org/10.1016/j.psj.2021.101343
WANG, W., LI, Z., HAN, Q., GUO, Y., ZHANG, B., and D’INCA, R., 2016. Dietary live yeast and mannan-oligosaccharide supplementation attenuate intestinal inflammation and barrier dysfunction induced by Escherichia coli in broilers. British Journal of Nutrition, 116(11), 1878-1888. https://doi.org/10.1017/S0007114516004116
WANG, X., LIU, X., LIU, S., QU, J., YE, M., WANG, J., and LI, R., 2023. Effects of anti-stress agents on the growth performance and immune function in broiler chickens with vaccination-induced stress. Avian Pathology, 52(1), 12-24. https://doi.org/10.1080/03079457.2022.2114874
WANG, Z., ZHENG, Y., LAI, Z., KONG, Z., HU, X., ZHANG, P., YANG, Y., and LI, N. 2025. Effect of Saccharomyces cerevisiae CICC 32883 fermentation on the structural features and antioxidant protection effect of Chinese yam polysaccharide. Foods, 14(4), 564. https://doi.org/10.3390/foods14040564
XU, X., LIU, A., HU, S., ARES, I., MARTÍNEZ-LARRAÑAGA, M. R., WANG, X., and MARTÍNEZ, M. A., 2021. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353, 129488. https://doi.org/10.1016/j.foodchem.2021.129488
YERRA, V. G., NEGI, G., SHARMA, S. S., and KUMAR, A., 2013. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biology, 1(1), 394-397. https://doi.org/10.1016/j.redox.2013.07.005
ZDANOWSKA-SĄSIADEK, Z., LIPIŃSKA-PALKA, P., DAMAZIAK, K., MICHALCZUK, M., GRZYBEK, W., KRUZIŃSKA, B., and MARCHEWKA, J., 2019. Antioxidant effects of phytogenic herbal-vegetable mixtures additives used in chicken feed on breast meat quality. Animal Science Papers and Report, 36(4), 393-408.
ZHAO, Y., WANG, J., FU, Q., ZHANG, H., LIANG, J., XUE, W., and ODA, H., 2022. Characterization and antioxidant activity of mannans from Saccharomyces cerevisiae with different molecular weight. Molecules, 27(14), 4439. https://doi.org/10.3390/molecules27144439
| ||||
Statistics Article View: 133 PDF Download: 105 |
||||