- Thupakula, S. S. R. Nimmala, H. Ravula, S. Chekuri, and R. Padiya, "Emerging biomarkers for the detection of cardiovascular diseases," The Egyptian Heart Journal, vol. 74, no. 1, pp. 77, 2022.
- H. Patel, A. K. Dey, A. V. Sorokin, M. Teklu, R. Pet role, W. Zhou, and N. N. Mehta, "Chronic inflammatory diseases and coronary heart disease: Insights from cardiovascular CT," Journal of cardiovascular computed tomography, vol 16, no. 1, pp. 7-18, 2022.
- Berta, N. Zsíros, M. Bodor, I. Balogh, H. Lőrincz, G. Paragh, and M. Harangi, "Clinical aspects of genetic and non-genetic cardiovascular risk factors in familial hypercholesterolemia," Genes, vol. 13, no. 7, pp. 1158, 2022.
- A. Ali, A. B. Feroz Khan, and J. Ramakrishnan. "Fuzzy rules-based data analytics and machine learning for prognosis and early diagnosis of coronary heart disease." Journal of Information and Organizational Sciences48, no. 1 (2024): 167-181.
- A. Qureshi, K. N. Qureshi, G. Jeon, and F. Piccialli, "Deep learning-based ambient assisted living for self-management of cardiovascular conditions," Neural Computing and Applications, pp. 1-19, 2022.
- Baggiano, G. Italiano, M. Guglielmo, L. Fusini, A. I. Guaricci, R. Maragna, and C. M. Giacari, "Changing paradigms in the diagnosis of ischemic heart disease by multimodality imaging," Journal of Clinical Medicine, vol. 11, no. 3, pp. 477, 2022.
- Ullah, I. Siddique, R. M. Zulqarnain, M. M. Alam, I. Ahmad, and U. A. Raza, "Classification of arrhythmia in heartbeat detection using deep learning," Computational Intelligence and Neuroscience, no. 1, pp. 2195922, 2021.
- Corbett, J. Forster, W. Gamlin, N. Duarte, O. Burgess, A. Harkness, W. Li, J. Simpson, and R. Bedair, "A practical guideline for performing a comprehensive transthoracic echocardiogram in the congenital heart disease patient: consensus recommendations from the British Society of Echocardiography," Echo Research & Practice, vol. 9, no. 1, pp. 10, 2022.
- Randazzo, J. Ferretti, E. Pasero, "Anytime ECG monitoring through the use of a low-cost, user-friendly, wearable device," Sensors, vol. 21, no. 18, pp. 6036, 2021.
- Caesarendra, T. A. Hishamuddin, D. T. C. Lai, A. Husaini, L. Nurhasanah, A. Glowacz and G. A. Alfarisy, "An embedded system using convolutional neural network model for online and real-time ECG signal classification and prediction," Diagnostics, vol. 12, no. 4, pp. 795, 2022.
- Hadiyoso, F. Fahrozi, Y. S. Hariyani, and M. D. Sulistiyom, "Image Based ECG Signal Classification Using Convolutional Neural Network," International Journal of Online & Biomedical Engineering, vol. 16, no. 4, 2022.
- S. Huang, Y. H. Tseng, C. F. Tsai, J. J. Chen, S. C. Yang, F. C. Chiu, Z. W. Chen, J. J. Hwang, E. Y. Chuang, Y. C. Wang, and C. T. Tsai, "An artificial intelligence-enabled ECG algorithm for the prediction and localization of angiography-proven coronary artery disease," Biomedicines, vol. 10, no. 2, pp. 394, 2022.
- Sathish kumar, and R. Devi Priya. "A Novel Radial Basis Function Neural Network Approach for ECG Signal Classification." Intelligent Automation & Soft Computing35, no. 1 (2023).
- Badidi, "Edge AI for early detection of chronic diseases and the spread of infectious diseases: opportunities, challenges, and future directions," Future Internet, vol. 15, no. 11, pp. 370, 2023.
- Namasivayam, N. Senguttuvan, V. Saravanan, S. Palaniappan, and M. K. Kathiravan, "Artificial intelligence and its application in cardiovascular disease management," In Machine Learning and Systems Biology in Genomics and Health, pp. 189-236. Singapore: Springer Nature Singapore, 2022.
- Lu, Y. Yao, L. Wang, J. Yan, S. Tu, Y. Xie, and W. He, "Research progress of machine learning and deep learning in intelligent diagnosis of the coronary atherosclerotic heart disease," Computational and Mathematical Methods in Medicine 2022, no. 1, pp. 3016532, 2022.
- S. Ahmad, Y. Luo, R. M. Wehbe, J. D. Thomas, and S. J. Shah, "Advances in machine learning approaches to heart failure with preserved ejection fraction," Heart failure clinics, vol. 18, no. 2, pp. 287-300, 2022.
- Shu, J. Ren, and J. Song, "Clinical application of machine learning-based artificial intelligence in the diagnosis, prediction, and classification of cardiovascular diseases," Circulation Journal, vol. 85, no. 9, pp. 1416-1425, 2021.
- U. Khan, S. Samer, M. D. Alshehri, N. K. Baloch, H. Khan, F. Hussain, S. W. Kim, and Y. B. Zikria, "Artificial neural network-based cardiovascular disease prediction using spectral features," Computers and Electrical Engineering, vol. 101, pp. 108094, 2022.
- S. Al Reshan, S. Amin, M. A. Zeb, A. Sulaiman, H. Alshahrani and A. Shaikh, "A robust heart disease prediction system using hybrid deep neural networks," IEEE Access, 2023.
- Repaka, S. D. Ravikanti, and R. G. Franklin, "Design and implementing heart disease prediction using Naives Bayesian," Mater. Today: Proc, vol. 42, no. 1, pp. 1002–1008, 2021.
- Yildirim, M. Talo, E. J. Ciaccio, R. San Tan, and U. R. Acharya, "Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records," Computer methods and programs in biomedicine, vol. 197, pp.105740, 2020.
- S. Pandian and A. M. Kalpana, "HybDeepNet: ECG signal based cardiac arrhythmia diagnosis using a hybrid deep learning model," Inf. Technol. Control., vol. 52, no. 2, pp. 416–432, 2023.
- Gao, W. Li, M. Loomes, and L. Wang, "A fused deep learning architecture for viewpoint classification of echocardiography," Information Fusion, vol. 36, pp. 103-113, 2017.
- Kumar, S. A. Kumar, V. Dutt, A. K. Dubey, and V. García-Díaz, "IoT-based ECG monitoring for arrhythmia classification using Coyote Grey Wolf optimization-based deep learning CNN classifier," Biomedical Signal Processing and Control, pp.76-103638, 2022.
- Raza, K. Ahmed, M. Danish, K. Sheikh, and F. Noor, "IoT Empowerment in Healthcare: Detailed ECG Analysis and Prediction by using 2D Gaussian Filter," Innovative Computing Review, vol. 4, no. 1, pp. 51-69, 2024.
- Moutaib, M. Fattah, Y. Farhaoui, B. Aghoutane, and M. El, "Extraction of fetal electrocardiogram signal based on K-means Clustering," 2023.
- Mostefai, M. Benouis, M. Denai, and M. Bouhamdi, "Enhanced local patterns using deep learning techniques for ECG based identity recognition system," Multimedia Tools and Applications,pp. 1-29, 2025.
- Panwar, M. Narendra, A. Arya, R. Raj, and A. Kumar, "Integrated portable ECG monitoring system with CNN classification for early arrhythmia detection," Frontiers in Digital Health, vol. 7, pp. 1535335, 2025.
- Minic, L. Jovanovic, N. Bacanin, C. Stoean, M. Zivkovic, P. Spalevic, A. Petrovic, M. Dobrojevic, and R. Stoean, "Applying recurrent neural networks for anomaly detection in electrocardiogram sensor data," Sensors, vol. 23, no. 24, pp. 9878, 2023.
- M. Shaker, M. Tantawi, H. A. Shedeed, and M. F. Tolba, "Generalization of convolutional neural networks for ECG classification using generative adversarial networks," IEEE Access, vol. 8, pp. 35592-35605, 2020.
- Khanna, P. Selvaraj, D. Gupta, T. H. Sheikh, P. K. Pareek, and V. Shankar, “Internet of things and deep learning enabled healthcare disease diagnosis using biomedical electrocardiogram signals,” Expert Syst, vol. 40, pp. e12864, 2023.
- Mohammad, and S. Al-Ahmadi, "WT-CNN: a hybrid machine learning model for heart disease prediction," Mathematics, vol. 11, no. 22, pp. 4681, 2023.
- A. Gunawan, L. S. A. Putra, F. Imansyah, E. Kusumawardhani, "Identification of Coronary Heart Disease through Iris using Gray Level Co-occurrence Matrix and Support Vector Machine Classification," Int. J. Adv. Comput. Sci. Appl, vol. 13, 2022.
- H. Miao and J. H. Miao, "Coronary heart disease diagnosis using deep neural networks," International Journal of Advanced Computer Science and Applications, vol. 9, no. 10, pp. 1–8, 2018.
- Dutta, T. Batabyal, M. Basu, and S. T. Acton, "An efficient convolutional neural network for coronary heart disease prediction," Expert Systems with Applications, vol. 159, Article ID, pp. 113408, 2020.
- B. Raju, S. Dara, A. Vidyarthi, V. M. Gupta, and B. Khan, "[Retracted] Smart Heart Disease Prediction System with IoT and Fog Computing Sectors Enabled by Cascaded Deep Learning Model," Computational Intelligence and Neuroscience 2022, no. 1, pp. 1070697, 2022.
- A. Ahmed, W. Ali, T. A. Abdullah, and S. J. Malebary, "Classifying cardiac arrhythmia from ECG signal using 1D CNN deep learning model," Mathematics, vol. 11, no. 3, pp. 562, 2023.
- Tutuko, A. Darmawahyuni, S. Nurmaini, A. E. Tondas, M. N. Rachmatullah, S. B. Putra Teguh, F. Firdaus, A. I. Sapitri, and R. Passarella, "DAE-ConvBiLSTM: End-to-end learning single-lead electrocardiogram signal for heart abnormalities detection," Plos one, vol. 17, no. 12, pp. e0277932, 2022.
|